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STOCHASTIC DYNAMICS AND BOLTZMANN HIERARCHY. II
CTOXACTHYHA TUHAMIKA I IEPAPXISI BOJIBIIMAHA. 11

Stochastic dynamics corresponding to the Boltzmann hierarchy is constructed. The Liouville-It6 equa-
tions are obtained, from which we derive the Boltzmann hierarchy regarded as an abstract evolution
equation. We construct the semigroup of evolution operators and prove the existence of solutions of the
Boltzmann hierarchy in the space of sequences of integrable and bounded functions. On the basis of
these results, we prove the existence of global solutions of the Boltzmann equation and the existence of
the Boltzmann - Grad limit for an arbitrary time interval.

[ToByioBana croxacrHyna JIHIaMiKa, AKa Bijinosijlae iepapxii BosmmimMana. Orpumani pisusnns Jliy-
sl —ITo, a 3 HUX BuBe/lena iepapxin BosibiMana, AKa postiajlaerses AK aberpak rie esosiottinne
pisusnns. [Mobyjiosana nisrpyna enosnoUifnux oneparopin i jlosejlelo icHyBaniis po3s’ a3Kis icpapxii
Bosbumana i npoctopi nociijiosiocred inrerponimx 1a obMexenux (pynxiii. Ha uint ocnosi jiose-
JIEHO icHyBaniA 1106anbuX po3s’A3Kis pisuannA BosbiMana Ta icnysanis rpannui Bosbnmana—
IMpejta na JlosijisioMY iHTepsasi yacy.

4. Representation of the sequence F (¢) through F(0). Formula (3.11) expresses
the sequence F(r) via the sequence

D{I) = (D](f,xi), Dz{f,x],xz), ‘DN(I’XI’ ,,rN). ) =

= (St(_I)Dl(O"‘])‘ S:}'(—l')Dz(O,.xl,).a), ,SJV(—.")DN(O,X', ,IN), )
(4.1)

Let us express the sequence F(t) via F(0). For this purpose, we introduce the
space L which is a direct sum of the spaces L.,

L= ) ®L,. 4.2)

The clements of L are the sequences

Fuilsfilddmeiti B i) 4.3)

of symmetric functions f € L., and f is a complex number.
The norm in L is the sum of the norms of f; in L,

Al = S AN follo = 1fol- (44)

s=0

Define an operator _[ dx in L as follows:

(] dxf]_r(x,,.,,,.r,) = [ fealCrivosmanminn) desais (4.5)
The operator jdx is bounded in L and |” dxH = |. The exponents eJ&,
exist and "etldx <e.

Let us define the second operator S(-t¢) in L as the direct sum of the operators
Si(=1), t>0,
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S(-1) = _ZOS.;(—I). So(=1) = L. (4.6)
The operator S(-1) is formally defined as follows
S(=0f = (So(=0f0, Sy (=0f1(x)), o S, =D f,(x s o xy), ). (47)

The operator S(-¢) forms a formal semigroup together with the operators S;(—1).

Now represent the sequence F(t) via S(-t), D(0) and the operator J dx. By
definition (4.1), we have

D(r) = S(-1)D(0). (4.8)
It follows from definition (3.11) that

Fo(0,x,...,x;) =

oo

M

(=

1
7 Dy 0, Xy X
N=0 ‘

gy Xg

stlveeer Xsan) Ay odag y =

_='.. M (ef‘*’-" D(OJ] (Bipaxc)s

(4.9)
F(0) =

(] —

Mel®po), ==Mm (eIdXD(O))O.

The sequence D(0) does not depend on the random variables 7 and, therefore, the
operation M may be omitted in (4.9). In what follows, we will meet a situation where
the initial time ¢, is different from zero, sequences D(r,;) and F(t;) depend on the

random vectors 1, and the operation M cannot be omitted in (4.9) with ¢ instead of
to=0. We represent formula (3.11) in the following way:

F‘.\'(r‘xli Sl ‘ta‘)

(-

(MeJ 0 D(o)]x(x, v x).

For the sequence F(r), we get

F(r)

[m|—

Mel ¥ s(=1) D(0). (4.10)

The operator Mel ¥ has an inverse one, which is equal to MehJ 4 The second
formula in (4.9) yields

D(0) = E Me T4 F(0).

(4.11)
Substituting (4.11) into (4.10), we obtain a desired expression of F(t) via F(0)

F(t) = Mel®s(=1)e~] % F(0) (4.12)
or, componentwise,

F.!'("‘Xl’ o ,x“.} =
o n

=33 €U

— M | S, T AT )
_ Tk' J s+n—k L ) s Ay Xgeqls » Xgbn—k
e
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X J+n(0 'xl"“’x.\"x.\‘+1!""x,r+u—k’"‘!x.s'+n)dx_\:+]“‘dxxhi‘ (4]3:'

We perform average over the random parameters M., ..., N 1,, thatcorrespond to

collisions of the particles with the numbers 1,...,s,s+1,...,5s+n -k except the
collisions between the particles with the numbers 1, ..., s and the random vectors of

the last subsystem are arbitrary fixed. The operator S, (=, x, ..., X3, Xopp- s
X,4mx) corresponds to the system consisting of s +n — k particles with the initial
phase points x,..., X, X , ..., X k. The problem of convergence of series

(4.13) in the space L and other spaces will be discussed in a separate paper.
5. Group of operators of evolution and derivation of infinitesimal operator.
Define an operator of evolution as follows:

Uty = Mel®s(=nyel¥, 120 5.1)

Note that operation of averaging is carried out with respect to the random vectors M

which correspond to collisions of the particles, over whose phase points we integrate,
while phase points of all other particles and the other random vectors 1 are fixed.

In terms of the operator of evolution U(¢), the state F(r) at time t is expressed
via the state F(0) at the initial time =0 (see formula (4.12))

F(r) = U(t)F(0). (5.2)
Let us show that the operators [/(t), 0 < t < e, have the semigroup property
Uty +15) = U(t))U(1,) = U(ty) U(1)) (5.3)

for arbitrary f, 20, 1,20.
Indeed,

Ut U(ty) = Mel¥s(=) e T melts(=1,) e T =
s Me_[d.rs(_tl)e—Jn‘xe_[cil'S(__Iz) e—ju’.r -
= Mel#5(=t, - 1) eI * = U@t +1,). (5.4)

Here, we have used the semigroup property of S(—t) and the commutativity of the
operations M de,

Thus, the operators U(t) are defined in L for r=0 and form a semigroup. The
problem of the existence of the semigroup U(r) will be discussed in a separate paper.
In the given paper we restrict ourselves only to formal properties of U(t). Let us
determine the infinitesimal operator of the semigroup U(t). By definition,

Bf = lim % (Uf-1) = lim % M{S(-r)f - f+[dxsenr -

_ S [des + Z Z ;cl(n—k)'(-[d )" 5 r)(fdx) } -

n=2%k=
= lim % M{[S(—r)f ~fl+ [ax (S0 f - f1-[SC-n - N[ dx f +
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) i (n 1)!(jdx)"'*[s<—o-:](jdx)"f} .

n=2k=0

= Hf + dex?ff~ﬂjdxf+

’ M,,i:' g’ k‘(n—-k)' (Jd )" k (.[dx)kf (5.5)

where # is the infinitesimal operator of the semigroup S(—¢), which is equal to the
direct sum of the infinitesimal operators of the semigroups S(-1¢).
Consider the projection of (5.5) on the s-particle subspace

BALE1 12 = = oy Flxtren ) +

i=1

+ Z 5((1{_qj')n:'__:"(P;'_Pj}e(nij'([’i_l’j))x

i<j=l

% [muvetipsndipantil~ Flrmaansl] €
+ Z,l j Apy sy Mgt Nisar* (Pi = Post) O(Migyy - (P = Pyst)) X

X [t (Freveee X X K00 = Fonnrveees %o Xge gL =gy +

oo "

D
+ M” ‘Z kl(”_k)’_[dx.\'i-l"‘dx.\'+uﬂ.\'+u—k(x1!""'x.\"x,\'+!““‘xs‘-i—n—k)x

b2y P (TR e I (5.6)

where H ., (x;,...,x,,,4+) is the infinitesimal operator of S, ,(=t,x,,...

<oy Xg4n-g) (for the sake of simplicity, wedenote H ., , by H,,,_.).

Let us prove that the last term on the right-hand side of (5.6) is equal to zero. For
this purpose, we represcnt the operator H 4 (X)s ooy Xyiqs Xg42ses Xgppg) aS 2
sum of three operators .

}{.\'H:—&'(xl’""x\'+|'xw+2!""x\'+n—k) =
= g{.r(xlv" X, ) + Hu .fc(x\+l"" Xysn- k) +
+ Hx.n-k(xl reeer Kgs Kgppaeens xs+n—k) » 5.7
where H (xj,..., x,) is the infinitesimal operator of S;(~t,x(,...,x,), H,_x(Xsu1s ...
<y Xy4n—x) is the infinitesimal operator of S;,, _,(=t, ;4\, s Xy1n-k), and

g{.\'.n—vk(xl!""x,\';x,rﬂ‘ ""x.\‘+u—k)fs+n(x!’ *xs+u) b

5 n—-k
z Z 5(6’;_qj')ﬂ;j‘(Pf_Pj)e("lsj'([’f"P,'D><
i=1 j=s+1

X [ fyonCxps X Xy eee, T reens Xgppyogriens Xppn) =

- frﬂ:(xl"“ s i e X X s ey X s Xgg e ees xa‘+n)]‘ (5.8)
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JOEN | RUCEITRY)

i=1

i t . . . . . . "
where t;=i-, t, =0, and - is considered as an infinitesimal time. As it follows
n n

from Appendix I, 1.2, the operators U(¢; - t;_;) can be defined explicitly together
with operator Sy(t; —t;_;). We define the sequence of the distribution functions by
expression

Ft)y= [ U@t —1;_y) F(0).

i=1

The derivative of the sequence F(t) is equal to

dF(r) _ . A _ _
dt - atano At (F(f Fao F(f)) B
= lim i(U(AI) - DF@) = (H+ ) F@). (5.12)
At —0 At

We have obtained the formal derivation of the stochastic hierarchy.

In order to define the hierarchy for the distribtion function averaged with respect to
the all random vectors, including the random vectors of s-particle system, one should
also integrate with respect 1o M;;, i<j<s, in(5.9).

Thus, the infinitesimal operator B of the semigroup U(r) coincides with the oper-
ator on the right-hand side of the stochastic hierarchy (3.10). Henceforth, we identify
the stochastic hierarchy (3.10) with the evolution equation

dF(t) = BF(t), F()|,.o = F(0), (5.13)

where B is the infinitesimal operaior of the semigroup U(t). Then the stochastic
hierarchy (5.13) has a formal solution in the space L, which can be represented in
the form

Ft)y = U F(0) = Mel®s=ne ¥ F(0). (5.14)

6. Representation of solutions by iteration series. We have obtained the formal
solutions of the stochastic hierarchy (3.10) in the space L which are represented by
formula (5.14). We also necd solutions represented by iteration series. For this pur-
pose, we use the stochastic hierarchy represented in an abstract form as the evolution
equation (5.13) with the infinitesimal operator B (5.9)

dF (1)
dt

The operators H and A are defined by formulas (5.10), (5.11).
Let us represent the solution of the stochastic hierarchy in the form

= (H+A)F(t), F(t)|,.0= F(0). (6.1)

F(t) = S(-t)F(@t), F(0) = F(0). (6.2)
Then we obtain the following equations for F(r):

dF (1)
dt

or in the integral form

= S(NAS(-1)F@), F@),-o = F(0)
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378 D. Ya. PETRINA, K.D. PETRINA

F() = F(0) + j S(t) A S(-1) F(t) dr. (6.3)
0

By analogy with the Boltzmann equation, the solution of the integral equation (6.3)
is called a mild solution of the stochastic hierarchy.
For F(t), we obtain the following integral equation:

r
F(t) = S(-0)F(0) + [ S(=t+1) A F(v)dr. (6.3")
0

Iterating these equations, we obtain

Fo =3 J'dr,_[dr, I dt, S(1) AS(=1)S(1) AS(-1) ..
n=0p 0
.- S(’J:)ﬂS(Ff;J)F(O) (6.4)
or

! LT
dr, .[(l‘fg _[ dt, S(=t + 1)) AS(=1; +1,) AS(=1, + 15) ...
0 0

Fity= Y,

n=>0

O t—

: S(—f"_] +fn)/q'5(_"u)F(0)' (6.5)

It is obvious that series (6.4) is the unique formal solution of the integral equation (6.3)
and series (6.5) is the unique formal solution of hierarchy (6.37).

In the space L, the solution of the stochastic hierarchy (6.1) is represented by for-
mula (5.14). It follows from the uniqueness of solutions in the space L that represen-
tations (6.5) and (5.14) coincide and (6.5) is also a solution in L and, moreover, the
integration with respect to t, ..., t, in each term of (6.5) can be performed exactly

_[a‘rj j‘dr;E _[ dt, S(=t+ 1) AS(—1; + 1) AS(= 1, +13) ..
0

. S(=ty_y +1,)AS(~1,)F(0) =

"

- M “sen ([ )" F(0). (6.6)

k'(n—k}' jd

FFurthermore, the last formula and the coincidence of representations (6.5) and (5.14)
can be proved directly by using the following obvious identity:

d
Z[S(-arj,_i +1;) MIdx S(-¢; +rj+i)] = S(=tj_) +1;)AS(=t; +1;,)) (6.7)
i
or the projection of this identity onto the s-particle subspace
d
E[S(—{H +1;)M _[ dx S(-t; + -';n)]f.m(ﬂ NS A )
J
¥
= S.\'(_'rj—l 55 I_;) z J- dp,\'-rl dni.\‘+l Nis+1 (p! il p_\'+l)e(ni_\'1| : (pt - p.;'+i)) X
i=1
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x S.v+](_rj +'tj+l)1-f.s-+](xl"“!x?"“?x.\"x:ﬂ) -
- f-""'](xl‘""xf"""x-!"x-f+|)]lq,,-+;=q,‘ (6?')

where the operation of averaging M is carried out with respect to the random vari-
ables which correspond to the collisions of the s + 1-th particle with the other s par-
ticles.

Moreover, the following identity holds:

d .
;{—;}—_[.S(—rj_l +1;) M _[ dx S(-t; +rj+1)]S(—rj_, +rj}MdeS(—rj +1,) =

; d
= S(=tj_y +1;) M_[ dx S(-t; + UH);: [5(_,j_1 +1;) M _f dx S(—t; + rJ,-H)]
i
. (6.8)
Identities (6.7) and (6.8) yield identity (6.6).

For details, we refer the reader to the book [8], where analogous calculations were
performed for the case of hard spheres. The proof of identity (6.8) is also analogous to
the derivation of the infinitesimal operator B in Section 5.

Thus, the representation by the evolution operator (4.13) and the representation by
the iteration series (6.5) coincide term by term. This implies that the iteration series is
convergent in the space [ for all initial data F(0) < L for which each term of the
iteration series (6.5) is meaningful and series (4.13) converge.

It follows from Appendix 11 (see also Lemma 1 in our paper [5]) that, for the initial
data F(0) < LY of differentiable functions with compact supports the integrand in
cach term of series (6.5) for F,(r, (x),) is a continuous function, with respect to the
variables g, .... g P s P Pysts - yPsen Nigp oMy, and f,1t,,...,1, on
the intervals between pair collisions, concentrated on compactum. Thus, for the initial
data F(0)c LY the integration in each term of series (6.5) can be carried out exactly
and, as a result, each term of serics (6.5) coincides with the corresponding term of
series (4.13).

It is casy Lo show that the seies (6.5) for F(t,x,....x,), s =1,2,..., are
uniformly convergent with respect to (x, ..., x;) on compacta globally in time for
the set Xg g of sequences from the space L which consist from functions
exponentially decreasing with respect to the squared momenta and coordinates [21, 22]
with norm

Al = sup & sup |f, Cxrveeen )l expiB X (7 +47)p- (6.9)

nz0 E o PR i=1

7. Convergence of iteration series in the space Eg. Note that solutions in the
space L describe states of finite systems with finite average number of particles. In-
deed, we have for the average number (N)

(N) ~ [ F(t,x)dx, < o

because F,(z,x,) L' if F(0)cL.

In order to describe the evolution of states of systems with infinite number of par-
ticles, it is necessary to use initial data from a functional space other than L. It is
natural to regard the initial data F(0) as certain perturbations of the equilibrium states
of systems of particles interacting via a regular stable pair potential. It is well known
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[8] that the equilibrium states of such systems (sequences of equilibrium distribution
functions) belong to the space Eg which consists of the sequences

f = (f;()ﬂ),fz(xhxa), ,fx(xh ,X_\.), ) (?I)

of symmetric functions with the norm

Hf” - hliﬂ) ?u}p é_-"eBZ:=!J’J,' |f.\'(x!’ ‘x.\')l T eRl (?2)
§ X ¥
The parameter & >0 depends on the density and potential of the system and B is in-
verse temperature.
In this section, we suppose that initial states of the stochastic hierarchy (5.13)
belong to the space E.

Let us show that, for F(0) c Eg, solutions of the stochastic hierarchy (5.13) exist

and can be represented by the iteration series (6.5). This follows directly from our re-
sults obtained for the systems of hard spheres [5, 8]. According to these results, series
(6.5) for F,(t.x,,...,x,) are uniformly convergent with respect to (x,,...,x,) on
arbitrary compacta and | 7| < t), where £ is some finite number determined by the pa-
rameters of systems (density, temperature, etc.) for arbitrary initial states F(0) < Eg.

The constructed solutions describe nonequilibrium states of infinite systems and
can be obtained from nonequilibrium states of finite systems by thermodynamic limit
procedure.

The proof of the existence of the thermodynamic limit for systems with the sto-
chastic dynamics is the same as for systems of hard spheres [5]. The obtained solu-
tions are weak solutions of the stochastic hierarchy. The proof of this statement is
completely analogous to the proof of the corresponding statement for systems of hard
spheres [5].

8. Connection between the stochastic hierarchy and the Boltzmann hierarchy.
In the previous sections, the solutions of the stochastic hierarchy (3.10) were con-
structed in the space L and E:. In this section, we clarify the close conncction be-
tween the stochastic hierarchy and the Boltzmann hierarchy. To do this, we write both
hierarchies. The stochastic hierarchy has the form

oF (¢, xy,....x, s
OF (6 xyyen k) 3 P;aiﬁ(fsxl,-v-»x.\-) %
qi

ot i=
+ z T]f_;"(Pi‘P_;)e(Tlu'(Pf‘i’j)} 8{‘{5“!_,') X
i<j=1
'Y U‘_;.(I._1.'],...,xf,“,,_r_;.....,rl‘.) - E;.(r..r]....,x,-.“,,xj,...._r_‘.)] W+

) _[ AMis 11 APyt Niger (P = Poat) OMigar - (P = Pyin)) X
=1

30 LIS i Er s B PR neonai B B Plra )5
= Fyi(6xysece s @1 Prseoes X @i Poa)]s (8.1)
s=12,000

with the boundary condition in Poisson bracket (or simply the boundary condition).
The Boltzmann hierarchy has the form

IF (1, x),..,x;) 3 3

ot I Z‘ e

i=1

F° Fiopias cuog
aq: .\( 1 .F) +
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+ ) J MNiss1 st Niga1 (Pi = Ps11) OMisyy - (Pi = Pya1))
i=1

0
X [Fgqy(t: Xpsees@is Pisvves X5a s Prat) =

= .?+|{f‘x[----vQ:‘vPi----vx.s-u‘i"f‘vP.‘-+1)]» (8.2)
S [

Usually, the Boltzmann hierarchy (8.2) is considered without the boundary conditions,
but we will also consider it with the boundary conditions (in Poisson bracket). Note
that the boundary conditions are not imposed on one-particle distribution function for
both hierarchy.

We suppose that the stochastic hierarchy is the true Boltzmann hierarchy in the
entire phase space and solutions of the stochastic hierarchy are the Boltzmann—Grad
limit of solutions of the BBGKY hierarchy for hard spheres in the entire phase space.

It is well known that the Boltzmann hierarchy without the boundary condition pre-
serves the chaos property. In other words, if the initial s -particle distribution func-
tions F_:" (0.x;,...,x;) have the chaos property and are products of the one-particle

distribution functions
ENO. xpeons) = F0 %) P02 ; (8.3)

then the time dependent distribution functions F,(t, x|, ..., x,) also have the chaos
property

i TR R o Ry e T (8.4)

where the one-particle distribution function is the solution of the nonlinear Boltzmann
equation

IFL(t, py.qy) d
: al,i ] =_Pla_q‘l'F10(-',P1‘Q|)+

+ [ dpydn6(m-(p; = p))n-(p1 = p2) %

x [F2@t, p},ay) Ot py.ar) = Ft, py.ay) FL(t, py. )] (8.5)

Now consider the solutions of the stochastic hierarchy (8.1) with initial data (8.3)

and F(0) e X; p.
The sequence

F(f} = (F!(f,xi),...,F-“.(I,xl,...,x“.),... )

is a solution of the stochastic hierarchy (8.1) global in time. In the next section we
consider in detail the connection between solutions of the stochastic and the Boltzmann
hierarchy (for the latter without the boundary condition) represented by the iteration
series in the entire phase space and show that the one-particle distribution functions of

both hierarchy F,(t,x,) and F’(,x,) coincide in the entire phase space, globally
in time, and for arbitrary initial data F(0) < X .
The many-particle distribution functions of both hierarchy are different in certain

set of zero Lebesgue measure (sce the next section and Appendix 1.1). These con-
siderations also will mean that there exist solutions of the Boltzmann equation for the
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initial data F,(0,x,) c Xg p in the same sense as solutions of the stochastic
hierarchy.

Analogous considerations are also true for solutions of the stochastic hierarchy
(8.1) with the initial data (8.3) which belong to the space Eg. Indeed, in this case,
solutions of the stochastic hierarchy (8.1) exist and are represented by the iteration
series (6.5) for |t] < 5.

The problem of construction of solutions of the stochastic hierarchy (8.1) by solu-
tions of the Boltzmann equation (8.5) in the whole phase space (including the hyper-
planes ¢; = q;, (i,j)< (1,...,5)) is open. It resembles the problem of construc-
tion of eigenfunctions of the Schrédinger equations with the 8-functions as a potential
[17,18].

9. éoincidence of solutions of the Boltzmann hierarchy and the stochastic hier-
archy represented by iteration series. It is well known that solutions of the Boltz-
mann hierarchy (8.2) without the boundary condition can be represented by the itera-
tion series

N Iy In-1
Fo) = ), Idrl Idrz... f dt,S% (=t + ) AS%(~1, +1,)4 ...
n=0 p 0 0

. §%(-1,_, +1,)A8%(-1,) F(0), ©.1)

where S°(—1) is the direct sum of the s-particle operators of evolution of free par-
ticles

$%-n= Y @si-n. 9.2)
s=0

and the operator A is defined by (5.11).
Solutions of the stochastic hierarchy (8.1) can be represented by the iteration series

s ! I T
F(ry= Y, J-dr,J‘drg,“ J dr, S(—t+1))AS(-1, +1,)A ...
n=0 ¢ 0 0

o S(=tyy +1,)AS(=1,) F(0), (9.3)

where S(-1¢) is the direct sum of the s -particle operators of evolution of particles
with the stochastic dynamics

S(=1)= Y ®S(-1). (9.4)
=0

The iteration series (9.1) of the Boltzmann hierarchy is convergent for the initial data
F(0) from the space Eg in the sense that for every Fot, x,,..., x;) series (9.1) is

uniformly convergent with respectto (x, ..., x,) on compacta for |r] < t,. Here, t,
is a certain number depending on the thermodynamic parameters of the system [5].
The iteration series (9.3) of the stochastic hierarchy is convergent in the same sense.

It follows from the results obtained in the proof of the existence of the
Boltzmann —Grad limit that the following statement is true:

For arbitrary € >0 the inequality

IFO(t, xyeven xg) = Bt, Xpseenu X5)| < € (9.5)

holds on compacts outside any neighborhood of the hyperplanes
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Qr'=qj‘ (f,j)C(l,...,S)

and outside any neighborhood of the hyperplanes such that vectors pi—p; are
parallel to q;—q; #0 and for |t| < t,.

In other words, the functions F (t,x,...,x,) and F (t,x,,...,x,) coincide
outside the collection of these hyperplanes.

According to the definition of the stochastic dynamics this collection forms the set
D, of zero Lebesgue measure in the phase space (see Appendix I, Section 1).

The one-particle distribution functions F,G (t,x,) and F,(t,x,) coincide on

entire phase space.

In order to prove this proposition we recall the main ideas of the proof of the
existence of the Boltzmann—Grad limit [4, 5].

In that proof, we used the iteration series of the BBGKY hierarchy for systems of
hard spheres with diameter a

e I ] fp=1
Fi(e) = ) j‘drl_[dfg,.. I dr, S°(-1+4) 4,54, +1)A, ...
n=0 4] 0

e SN =t +1,) A, 854(=1,) F(O), (9.6)

where S9—1) is defined by (9.4) but with the operators S¢(—f) of evolution of s

hard spheres. The operator 4, is defined by the following formula:

(A,0), Geprsx) = 3 [ dperrdnn (5= pest) 8- (py = pys1)) X

=1
N T T — g o
= feiiEieags Prveis s get oy oy )] 9.7

Serics (9.6) is convergent as well as series (9.1) and (9.3) [5].
In [4. 5]. it was shown that the iteration series for the BBGKY hierarchy (9.6) con-
verges 1o the iteration serics of the Boltzmann hierarchy (9.1) in the following sense:

Consider the functions F'(¢, x|,..., x,) for arbitrary s=1. Let the variables
(g1, -...q,) belong to an arbitrary compactum K such that |g;-gq;|> a+ao(a)
for all pairs (i,j)< (1,....s). The function ay(a) tends to zero as @ — 0 so that

lim =10:
a=0 ao{a)
The variables (p . ..., p,) belong to a compactum outside the cones with respect to

all differences p,;-p;, (i.j)c(1,...,s), whose volumes are proportional to
2

( o J and whose axes are parallel to the vectors ¢; - q;.
ay(a)

As a— 0, the function FU(t,x,...,x,) tends to the function F’(t, x,,..., x,)

on the above-described compacta uniformly with respectto (g, ..., q,) and weakly

with respect o (py,-.-.p,) on the finite interval [t| <ty. Here, the number ¢, is
determined by the thermodynamic parameters of the initial state F(0). (In [4, 5] the
weak convergence with respect to momenta p, ..., p, was considered, but it is easy

to prove that the uniform convergence also holds.)
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To prove inequality (9.5) for the difference F,(t,x,,...,x,)— FO(t,x,..., x,),
it suffices to use the fact that the operator S(—1t) (9.4) for the stochastic hierarchy is
determined by the dynamics obtained as a certain limit of the dynamics of hard spheres
as a— 0, and therefore particles interact only for the initial positions and momenta
such that the vectors p, - p; are parallel to the vectors g, — q; #0, i.e., the cones are

reduced to the vectors p, - p;. One can repeat the proof of the convergence of
P cnpinonn) b BN 2invanxl) aswg=Y0;

The collection of these vectors forms the set D, of zero measure, and
00 M . . F(t,x,,...,x,) ontheset D, (see Section 1 and Appendix I.1).
The set D, is empty for one-particle systems and, therefore, F,(z,x,) and
Fio (1, x;) coincide on the entire phase space.

These results are restricted to the finite interval of time 0 < ¢ <, because the it-

eration series for the both hierarchies are convergent on this finite interval for

F(0)c Eg' But for the stochastic and Boltzmann hierarchies, the solutions in the
space Xé,[i (F(0)e X‘,.;‘ﬁ) exist for arbitrary time ¢ = 0. The existence of the Boltz-

mann—Grad limit global in time and its coincidence in certain sense with the solutions
of the stochastic hierarchy can be proved as follows:

We represent the solutions of the Boltzmann hierarchy and the solutions of the
stochastic hierarchy by the series of iterations (9.1) and (9.3), respectively. These
series of iterations for the both hierarchies are convergent in the space XE,,B and we

can repeat the proof given above.

Note that the sum corresponding to the stochastic hierarchy (9.3) identically coin-
cides term by term with the analogous sum of the Boltzmann hierarchy (9.1) (outside
all hyperplanes g; = ¢; and outside all hyperplanes such that vectors p; - p; are par-
allelto g;—¢g; #0, i.e., outside of the domain D,). The proof of this statement is the
same as for a bounded interval of time.

This means that solutions of the Boltzmann hierarchy F‘O(.' XppsmaXy ) oS 2 Iy
global in time exist for F(0)c XE,_B and coincide outside the set D, with the
solutions of the stochastic hierarchy F (1, x,,...,x,) s 2 1, and for F(0)e Ey
the same holds on the finite time interval |t| < ty. The one-particle distribution
functions F]U (t,x;) and F,(1,x,) coincide in the entire phase space (the set
D, is empty for s =1).

10. New representation of solutions of the Boltzmann equation. Consider in
detail the one-particle distribution functions F,(z,x,) and F(r,x,) that corre-
spond to the stochastic hierarchy and the Boltzmann hierarchy, respectively. We
restrict ourselves to the factorized initial data

F(0,x,....x;) =F(0,x))...F(0,xy).

It was shown above that F, (¢, x;) coincides with Flo{f,x), i.e. the iteration
series (9.3) and (9.1) for them coincide term by term in the entire phase space. Series
(9.3) for F,(t,x,) is convergent for F(0) e X g Series (9.1) for Fla(r, x,) is also
convergent for F(0) € Xz g, and F2(t,x,) as well as F (1, x,) exists globally in

time for F(0) e Xe g
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As known, F(z,x,) represented by series (9.1) is the mild solution of the nonli-
near Boltzmann equation (8.5) and, thus, we have proved the existence of mild solu-
tions global in time of the Boltzmann equation for initial data F(0) € Xg_s»

Analogously, it can be proved that mild solutions of the Boltzmann equation exist
on the finite interval |¢|<¢, for initial data F(0) e Eg.

Usually the mild solutions of the Boltzmann equation (or the one-particle distribu-
tion function of the Boltzmann hierarchy) are represented by the iteration series

e !y fn-1
F(t, x)) = b Jdr, J(Irz _[ ds, SY (=t 42, %) A, S2 (=1, +15, %1, %3) A, ...
n=07g 0 0
'q}i SE(—.'”_| +I!i"r] * ""xlr)ﬁ[]‘f-ﬂ S?+N(_IH‘ xl‘ ):2"" *xu! xu+|)><
2 FIU(O--"I) F,U{O, X3) .o F|0(0- i Flﬂ(os X14n)s (10.1)

where
(ﬂ.f):'(-r]‘ ,x;) o (ﬂsff)(-“h sani s

the operator A is defined by (5.11), and S?(—:,-_i Fl X x,—) is the evolution
operator of free particles.

As shown, series (10.1) for F(r, x,) coincides with the series for F,(t, x,) of
the stochastic hierarchy

I Ty-1

Fi(t,x))= Z _[drl _[d.fz f dt, Si(=t+1, ) A, Sy (=t +15,x,,x3) A, ...
n=00 0 0
4 ;I.-r S”(—f”_| F X 'rn)‘qlﬂ: Sl+n (_In!xl'xZ‘ ...,x“.xm_,) x
x F(0,x,) (0. x,)... (0, x,) F(0. x,,,). (10.2)

F’(0,x) = F,(0,x),

where S;(—1;_ +1;, x|, ..., .x;) is the evolution operator associated with the stochastic

hierarchy.

Indeed, as mentioned above, the term by term coincidence of series (10.1) and
(10.2) follows directly from the fact that, according to the stochastic dynamics, par-
ticles can interact if and only if the differences of their initial momenta are parallel to
the differences of their initial positions. Then, repeating our proof of the existence of
the Boltzmann — Grad limit word by word and taking into account that the cones in the
momentum space degenerate to the vectors parallel to differences of positions, we ob-
tain the proof of the coincidence of series (10.1) and (10.2).

Taking into account the importance of this assertion, we give the detailed proof.

Consider the integrand of the n-th term of series (10.2) for F|(t, x;)
S|(“f+f].xl)ﬁ| SZ(_‘fl +f:,ri,.t2)ﬂ2 S‘;(—tz +Iq,x|,x2,x;)
ﬁ“ S”(—'f“__] Tl X )“u) ’q|+n Sl+u(_'ru’x]‘ XZ""‘xfi’x|+n)X

X (0, x,) F(0,x5) .. (0, x,) F(0, x,,,) (103)

and the action of the operators S; and 4,.
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After the action of the operator S?(—r +1,,x,) all particles are shifted by the vec-
tor p,(=t+1;) or p\(=t+1,). After the action of the operator S, (—#,+t5, x|, x,)
the first particle is shifted again by the vector p,(—t,+ ) or pj(~t, +t,) and the
other particles are shifted by the vectors py(—t,+ 1) or p5(—t; +t,). The first and
the second particles do not interact because they are in the state of collision according
to the action of the operator A, and S,(—, + 15, x;,x5) = Sa(=t; +15,%],%;).

Consider now the action of the operator S, (—1,+ 3, x;, x5, x3). The third par-

ticle is in the state of collision with the second one and they do not interact, but the
third particle may interact with the first one if the difference of their momenta p, —p;
( py = p3) is parallel to the difference of their positions after the action of the oper-
ators Sy (—r+1,,x;) and S,(—1t,+ 15, x,x,) expressed in terms of the momenta
1, P> (P}, p5). Forexample, the position of the first particle may be p, (=1 +1,)
and the position of the third one may be p,(—t+1¢,) + po(=1,+ ;). Thus, the first
and third particles may interact only if one vector p;-—p, is parallel to the vector
(pa-p)(=t, +1t5). We can omit these vectors in the integrand because they form a
hyperplane of lower dimension in the momentum space (p;,p»,p3). This means
that, outside this hyperplane, the operator S;(—15+ 14, x|, x5, x3) coincides with the
free evolution operator S_g_} (=ty +13,x), %9, X3).

By analogy, we can replace successively all operators S;(—t;_; + ;. x,...,x;) by
the operators S? (=t;_y +1t;, x;,.... x;), omitting the hyperplanes of lower dimension
in integrand (10.3) and using the fact that since ¢, =¢>=...=¢q,=q,,,. the differ-
ences of the positions of all particles after the action of the operators S|, ..., S5;_, do
not depend on ¢g,; and on the momenta of the i-th particle, and depend only on the
momenta of the particles with numbers 1,2, ...,i-1.

Note that, in the case of s-particle distribution functions F(r, x,....,x,;) and
FO(t,x,.....x,). the proof of the term by term coincidence of the corresponding it-
eration series (9.3) and (9.1) outside the sct D, is absolutely the same as for F, (1, x,)
and F”(t,x,). If one fixes initial points x,, ..., x; outside the set D,, then all
stochastic evolution operators coincide with the free evolution operators outside the
degenerate cones such that the differences of positions are parallel to the differences of
momenta. These sets have Lebesgue measure zero with respect to p .y, ..., p,y,; and

the random vectors 1.
For solutions of the Boltzmann equation (10.1), (10.2), we have the equivalent new
representation

] =) k
Fln(-‘wl']) = Fi(t,x)) = Z Z ﬁMJSH-Hvk{_‘r“xi‘-'--xl+u—k)x
n=0 k=0 K=l
x K0, x) R0, x5) .. KO0, x,) KO, x ., ) dxy oodx, dxy ., , (10.4)

which was obtained from (10.2) by integration with respect to ¢, ..., t,, as shown in
Section 6. (Note that in (10.4) we have the evolution operators of the stochastic dy-
namics which differ from the evolution operators of the free dynamics on the sets D,
described in Appendix I.1. The many-particle distribution functions of the stochastic
and Boltzmann hierarchies also differ in the many-particle set D,.)
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