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STOCHASTIC DYNAMICS AND BOLTZMANN HIERARCHY. I
CTOXACTHYHA THHAMIKA I IEPAPXISA BOJIBIIMAHA. I

Stochastic dynamics corresponding to the Boltzmann hierarchy is constructed. The Liouvillr—Ité equa-
tions are obtained, from which we derive the Boltzmann hierarchy regarded as an abstract evolution
equation. We construct the semigroup of evolution operators and prove the existence of solutions of the
Boltzmann hierarchy in the space of sequences of integrable and bounded functions. On the basis of
these results, we prove the existence of global solutions of the Boltzmann equation and the existence of
the Boltzmann —Grad limit for an arbitrary time interval.

IMobyoBaita croxacrHuna /iMnaMika, ska sianosijae iepapxii Bosibnmana. Otpumani piBHsnus Jliy-
BiJIA—ITO, a 3 NUX BUBe/leHa iepapxis BoJblMana, sika po3rJisllaeTbes K abeTpakTHe eBoJliolife
pisnsnin. [Nobynosatia Misrpyna eso/ionifiMx onepaTopis i JloBe/ieHo icHyBalHs po3s’A3Kis iepapxii
BosbimMana B npocTopi nocslijioBHoCTeR iHTErPOBIHHX Ta ofMeskenux (oynkiif. Ha nii ociiosi jlose-
JleHo icnyBanus 1J106anbHHX po3n’sA3Kis pisnsAnus bossnmMana 1a icnysanns rpanuni Bonbiumana—

I'pejia Ha JioBisIbHOMY inTepBalii yacy.

Introduction. About hundred years ago, Boltzmann deduced his famous equation.
Since that time, the researchers discuss the problem of irreversibility, i.e., how to pass
from reversible solutions of the Hamiltonian equations to irreversible solutions of the
Boltzmann equation.

In doing this, it is customary to assume (explicitly or implicitly) that the Boltzmann
equations can be derived directly from the Hamiltonian equations. At the same time,
this assumption is not evident and, maybe, even not true. Indced, the BBGKY hierar-
chy follows from the Hamiltonian equation (via the Liouville equation) and, in this
sense, they are equivalent. In its turn, the Boltzmann equation can be obtained from
the BBGKY hierarchy as a result of specific limit transitions (the Bogolyubov limit
and the Boltzmann—Grad limit) and, therefore, should be equivalent to certain limiting
Hamiltonian equations. To clarify in what sense one should understand limiting
Hamiltonian equations, let us analyze the cited Bogolyubov and Boltzmann-Grad
limit transitions used to derive Boltzmann equations from the BBGKY hierarchy.

The relationship between the Boltzmann equations and the BBGKY hierarchy was
first established by Bogolyubov [1] who showed that the Boltzmann equations can be
obtained from the BBGKY hierarchy in the first order of perturbation theory in density
if one restricts himself to the solutions satisfying the principle of decay of correlations.
It follows just from the procedure of derivation of the Boltzmann equations that one
uses only the asymptotics of the solutions of Hamiltonian equations for two particles as
the distance between them tends to infinity and this asymptotics is reflected in the
Boltzmann equation by the scattering cross section. The computation of the collision
integral is pure probabilistic and this means, in turn, that the limiting evolution of par-
ticles that corresponds to the Boltzmann equation is governed by a certain random pro-
cess. Note that Bogolyubov’s method has not yet found its mathematical justification.

In recent years, significant progress has been achieved in the mathematical justifi-
cation of the derivation of the Boltzmann equations from the BBGKY hierarchy for an
infinite system of hard spheres in the Boltzmann—Grad limit [2—5]. It was shown that,
in the Boltzmann—Grad limit, solutions of the BBGKY hierarchy for a system of hard
spheres approach, in a certain sense, solutions of the Boltzmann hierarchy. In its turn,
the Boltzmann hierarchy possesses the property of chaos, i.e., it has solutions such that
all distribution functions are equal to the product of one-particle functions and the one-
particle distribution function satisfies a nonlinear Boltzmann equation.

The right-hand side of each equation in the Boltzmann hierarchy has two terms, one
of which is simply the right-hand side of the Liouville equation for free particles and
the second integral term contains the scattering cross section of hard spheres. Note that
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the solutions of this Boltzmann hierarchy can be regarded as a limit of solutions of the
BBGKY hierarchy only outside hyperplanes where the coordinates of particles coin-
cide and the momenta are outside certain cones and, hence, the real Boltzmann hierar-
chy, i.e., the limit of the BBGKY hierarchy in the entire phase space may also contain
terms with 8-functions concentrated in these hyperplanes.

It is thus natural to ask the following question:

What kind of particle dynamics corresponds to the Boltzmann hierarchy? In other
words, we want to establish an analog of the Hamiltonian equations such that the
Boltzmann hierarchy is obtained from these equations via the Liouville equations by
applying the standard procedure.

This would enable one to clarify the problem connected with the contradiction be-
tween the reversible nature of Hamiltonian equations and the irreversible nature of
Boltzmann equations. But if the equations of motion that correspond to the Boltzmann
hierarchy are also irreversible, no contradiction appears.

Another problem connected with particle dynamics that corresponds to the Boltz-
mann hierarchy is the problem of construction of its global solutions. Actually, global
solutions of the BBGKY hierarchy were constructed in the space L of sequences of
summable functions and in certain sets in the space E of sequences of functions
bounded in coordinates and exponentially decreasing in momenta [6—8]. For this
purpose, the group of evolution operators for the BBGKY hierarchy was constructed
by using detailed information about Hamiltonian dynamics of systems of particles.
The evolutionary semigroup for the Boltzmann hierarchy has not yet been constructed
mainly because the corresponding particle dynamics was unknown. Solutions of the
Boltzmann hierarchy were constructed by the iteration method. The operator on the
right-hand side of this hierarchy (written as an abstract evolutionary equation) is
unbounded and, therefore, the iterative series converges in a finite time interval and
under essential restrictions imposed on the initial data.

This paper is aimed at the construction of stochastic dynamics that corresponds to
the Boltzmann hierarchy for hard spheres. On the basis of this dynamics, we construct
a semigroup of evolutionary operators and establish the existence of global (in time)
solutions both for the Boltzmann hierarchy and Boltzmann equations. Having global
solutions of the BBGKY and Boltzmann hierarchies, one can prove the existence of the
Boltzmann—Grad limit for an arbitrary interval of time and in the entire phase space.

Note that random processes and stochastic equations were used earlier for the con-
struction of smoothed Boltzmann equations [9-12]. However, the Boltzmann hierar-
chy was not studied in these works. Probably, the first hierarchy for the distribution
functions that correspond to certain stochastic equations was constructed in the mono-
graph (13]. Further progress in the approach founded in [13] is connected with the
works [14-16] based on the use of the method of iterations in the mean-field model.
The ideas used in this paper are similar to those developed in [13] but we take physi-
cally meaningful stochastic dynamics.

Let us now dwell upon the content of the present work.

We construct stochastic dynamics according to which particle move freely unless
they collide. As a result of collisions, particles change their momenta jumpwise, as in
the case of hard spheres, but reflection angles can be arbitrary (with the same probabil-
ity). This assumption is responsible for the stochastic nature of particle dynamics.
After collision, particles move freely up to the next collision. We say that this dynam-
ics is stochastic. Stochastic dynamics can be regarded as a certain limit of the dynam-
ics of hard spheres as their diameters tend to zero.

Let us now write the Liouville-Itd equations that corresponds to the stochastic dy-
namics described above. It has the form

) &
EDN(t'xI-"-'xN) = zpi'g‘;DN(xi’---'xN) +

i=1
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+ Z B(n;j'(pr"pj))n{f'(pi_Pj)a(QJ‘_Qj)[DN(‘!x]’-"’x:’”‘
i<j=1

ey X5, xy) = Dyt xp, e xgs e, j,...,xN)], t 20, (N

J

where Dy(t, xy, ..., xy) is the distribution function of a system of N particles in the
phase space at time 7, m;; is a random vector that characterizes the postcollision

momenta of particles, |n;|= 1, x} = (a;,p}), x] = (g;,P}),

p; = pi- Nij (nfj'(Pi_pj))a and Pf =pit TIU'(TI;; (pi-pj)).
The other notation is standard for statistical mechanics.
We introduce a sequence of s-particle (reduced) distribution functions, both in the
canonical and grand canonical ensembles, by integrating the function Dy(t, xy, ...

.., xy) withrespectto N —s phase variables and averaging over the random vectors
mM;; that correspond to the collisions of N — s particles.

This new conception of distribution functions takes into account the set of lower

dimension where particles interact and the contribution ol this set is different from

zero.
For the sequences of distribution functions, we have the following hierarchy of

equations:

5
E..F'_(r__{é!_;‘_-_‘_"_._'.—.. 2 —.F(f xl“"‘x!).}.

3 oy (pi— p) M- (i - p) 8(a; — a)) X

i<j=1

X [Ftxpeadiem Xfyeves X, By IR {0 S ..,xj-,...,xs)] +

+ z I 0(Mise1 (Pi = Pss1)) Nise1 - (Pi = Pss1) ¥

i=1
% [ E(F s s B sres Xgallis Prg) =
Fs+l(t-x]v---'QE'Pr"'“»x,\-’Qx‘spnl)]dni:-rldpx-ﬂ-l: 2
120, s=1,2:5..

with initial and certain boundary conditions.
The chain of equations (2) is called the stochastic Boltzmann hierarchy or simply
the stochastic hierarchy. It differs from the well-known Boltzmann hierarchy

oF (¢, xy,..., X, 2
Elnent) | $,0 00

+ Z j 0Mise1 - (Pi = Psr D Mise1 - (i "ps+1) x

i=1
¥ [ Esilt v g Pl Xy dinPran) =
Foar(8 %1000 @i Piseves X5s @js Pas1)) MNigay APy s 3
by the terms with 8(g; - ¢;) and coincides with (3) for ¢; # ¢;, (i,j)=(1,...,s).
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The problem of existence of formal solutions of the stochastic Boltzmann hierarchy
is positively solved by using the semigroup of evolutionary operators. Indeed, we have

F(t) = Mel ®s(=tye ] % F(0) = U()F(0), >0, @)

where F(t) and F(0) are sequences of distribution functions at time ¢>0 and at
t=0, M denotes the averaging over random vectors 1, S(—t) is a direct sum of

evolutionary operators of s-particle subsystems, and j dx denotes the operator of in-

tegration.

The evolution operators U (¢) form a semigroup and its infinitesimal generator
coincides with the operator that determines the right-hand side of the stochastic
hierarchy (2). On this basis, we can identify the stochastic Boltzmann hierarchy (2)
with an abstract evolutionary equation

dF (1)
dt

where H is determined by the first and second terms and A is given by the third term
on the right-hand side of hierarchy (2). Therefore, relation (4) defines the formal solu-
tion of hierarchy (2).

The solutions given by formula (4) are made meaningful for initial data F(0) from
the space Eg of sequences of functions bounded in coordinatewise and exponentially

= (H+A)F(1t), F(t)|,=9 = F(0). (5)

decreasing in momenta and for initial data F(0) from the space L of sequences of
functions exponentially decreasing in squared coordinates and momenta. For general

initial data F(0) e Ey, this program is realized for a finite time interval, while fora

certain above described subset of L, this can be proved for an arbitrarily large time
interval,

It is proved that the Boltzmann—-Grad limit for solutions of the BBGKY hierarchy
for a system of hard spheres exists and coincides with solutions of the stochastic
Boltzmann hierarchy in the following sense. The one-particle distribution function of
the stochastic Boltzmann hierarchy (2) coincides with the one-particle distribution
function of the Boltzmann hierarchy (3) that satisfies the Boltzmann equation for
factorized initial data (conditions of chaos). In this sense, the Boltzmann equation, is
rigorously deduced for an arbitrarily large interval of time.

Note that the many-particle distribution functions of both hierarchies differ from
each other on certain set of zero measure in the phase space.

One can expect that these results remain true and can be established for the case of
the Boltzmann equation for particles interacting via a short range potential.

The authors express their gratitude to Dr. P. V. Malyshev and Dr. D. V. Malyshev
for the help in translation, editing, and preparing this paper for publishing.

In this introduction we have briefly described the contents of the entire work
devoted to the stochastic dynamics and the Boltzmann hierarchy. The work will be
published in several parts. In the first part we describe the stochastic dynamics, the
Liouville — Ito equation, the stochastic Boltzmann hierarchy.

1. Dynamics of finitely many particles. Let us consider N identical particles of

unit mass situated in a three -dimensional Euclidean space R*. Their positions and
momenta are denoted by g, and p;, and x; = (g;, p;) is the phase point of the i-th
particle, i = 1,..., N.

Denote by Q;(t), P;(t), X;(t) = (P;(t), Q;(t)) the position, momentum, and
phase point of the i-th particle, respectively, at time 0 < 7 < o (this means that time
changes from 0 to +eo, or, more generally, that time increases),

Q;(O) =4 P;(O) = Pi X,(O) =x;, i= 1,...,N.
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The phase point of the entire system of N particles is denoted by X(¢) = (X, (2), ...
sssos X))o XAQ) = (Xpoos 1 Xp) EX=(0:0) 4 = UGpieniligh B = [Proves
..,py). To indicate the dependence of X(z) on the initial value x we shall write

X() = X(t,x) = X(t,xy,...,xp), X;(t) = X;(t,x) = X;(t,x), ..., xp). X(t,x) is
the trajectory of our system which passes through the point x at r=0.
We suppose that particles move as free ones until their positions coincide:

Q;(t)y=¢q;+p;t, P)=p;, i=1..,N.
If the positions of the i-th and j-th particles coincide at time ¢,
Q,(1) = Q;(n), (1.1)

then they collide instantaneously and their momenta change jumpwise.
After the collision, for time ¢+ 0, the momenta have the following form:

P/ (t +0) = Pi(t) - n;jm;;- Pi(0) = P;(@)),
(1.2)

P (1 +0)

1]

Pj(f) + 11;;-11,-)-'(1’,-(1) - Pj(f})a

where m;; is an unit vector, |n;;|= 1, n;;- (P;(t) - P;(t)) is the scalar product of
the vector Ny and P;(t) — P;(r). We consider only vectors N iy that satisfy the con-
dition

n;i-(P;(e) - P;(1)) < 0, (1.3)

for positive time = 0. Denote the unit semisphere (1.3) by Ke,
If the vectors 7;; satisfy the condition

Ny (Pi(t) = Pi(t)) 2 0, (1.3%)
then, after the collision, the momenta P;(¢), P;(t) do not change, i.e., they are the
same as before the collision. Denote semisphere (1.3°) by S2 and the sphere In;l=
= 1 Byis% §%= B2)52,

We suppose that the vector m;; is random with constant density of probability on

the semisphere S2. Denote the density of probability by x(n;;)- Then

1
[ x(g)dn; =1, x(ny)= —. (1.4)
2 4m
It is obvious that two particles (i-th and j-th) can collide only if the vector p; —p; is

parallel to the vector g, - g;.

We suppose that under a simultaneous collision of more than two particles they
move as free particles.

For negative time —eo < t < 0 (this means that time changes in direction from 0

to —eo, or. more generally, that time decreases), all considerations are the same as
for 20, but the random vector 1;; satisfies the condition

n;;- (Pi) - Pj(®)) = 0, (1.5)

1.e., the vector Ny belongs to the unit semisphere Sf, (1.5), and, after the collision, for
time ¢t <0, the momenta of the i-th and j-th particles have the following form:
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Pl (t=0) = Pi(t) - mymy;- (Pi(t) - P;()),
(1.2
P/ (t-0) = Pi(t) + n;n,;- Pi(e) — P;(@®)),
If the vectors m;; satisfy the condition
Ny (P() - P;(1)) <0, mycS?, (15}

then, after the collision, the momenta P;(t), Pj(r) do not change. The vector m;; is
again random with constant density x(n r'.:') = ﬁ

We suppose that random vectors 1;; related to different collisions are independent.

Note that the trajectories X (¢, x) constructed above are continuous functions of
time r and phase point x on the intervals of time between collisions. At time of colli-
sion, the trajectory X(z, x) has a jump, and it is left continuous for >0 and right
continuous for #< 0 (or for increasing and decreasing time, respectively).

We call the above defined evolution the stochastic dynamics.

Let us present a motivation of the aefinition of the concept of the stochastic dynam-
ics. For this purpose, we recall that dynamics of hard spheres with diameter a is as

follows:
They move as free particles if the distances between centers of two spheres are

greater than a: |Q;(r) — Q;(1)| > a. If | Q;(t) - Q;(1)| = a, then they collide in-
stantaneously and, after collision, their momenta P[-* (r), F}-' (r) are given by (1.2),
where a vector m;; is determined by the formula

. Q;() - Q;(1)
Qi - 9,01

For fixed p;, p; and a# 0, the collision of the i-th and j-th particles may take
place for all m;; defined according to (1.6) and belonging to semisphere (1.3) for
t>0 or(1.5) for <0 (or for increasing and decreasing time, respectively).

Let diameter a tend to zero, a — 0, with fixed m,;. In this limit, particles be-
come pointwise ones and their dynamics coincides with the stochastic dynamics de-
fined above with the same N and with conditions (1.3) for t>0 or (1.5) for < 0.
For the obtained point particles, momenta (1.2) after collision are determined for arbit-
rary 1;; from the corresponding semisphere S2 or Si with equal probability. (De-
tails of the proof will be published in a separate article.)

It is obvious that X(¢, x) considered as a function of ¢ for fixed x and arbitrary
fixed vectors n;;, related to pair collisions has the semigroup property

(1.6)

X(t +1t5,x) = X(t,,X(t5,x)) = X(15,X(1,x)) (1.7)

for arbitrary ¢, >0, t,>0 or t; <0, #,<0.

Note that X (z,x) does not possess the group property because the condition of
collision (1.3) for positive time t> 0 does not coincide with the condition of collision
(1.5) for negative time t<0 and the random vectors nij for different collisions are

independent.
If g;=gq; for some pair (i,j)c(1,...,N) at initial time ¢=0, then the
trajectory X(t, x) is defined as follows:

X(t,x)=(qg+p*t,p"), p*=(p -.-\ p:, S p;, R TOR (1.8)
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where p;, p; aredefined as in (1.2) or (1.2") with n;; € S? for t>0 or n, €S2

for 1<0. If ;€ S2 for t>0 or n;e S2 for 1<0, then

X(t,x) = (g +pt,p), (1.8%)

It is obvious that above mentioned properties of the trajectories are compatible with
conditions (1.3), (1.3") for increasing time because

(pi-pj)m=-n-(-p)<0, Me S,
and with conditions (1.5), (1.5 ) for decreasing time because

(p,-’—P})'TI =-n-@-p)>0, ne 52
Note that we consider point particles which may interact only if the vectors p; — p;

are parallel to the vectors g; — g;. The points (g¢; + p; 1, p; , g; + pjt, p;) satisfy
these conditions.

This means that if we consider the hypersurface all points of which satisfy the
condition that the vectors of difference of positions q, — q, are parallel to the
vectors of difference of momenta p, — p,, then this hypersurface is invariant with

respect to the stochastic dynamics.
The union of the hypersurfaces (with respect to time)

Qi(r, x) = Q;(t, x), (i,j)c(1,...,N), t>0(r<0), (1.9)

which correspond to all pair collisions with fixed random vectors m;;, has lower di-

mensionality than the phase space. The union of the corresponding points X"(1,x)
after collisions, with respect to the random vectors M ;; € S% and 1>0 or Nij € Si
and ¢t <0, forms a set of the same dimensionality as the phase space (see Appen-
dix L1).

In what follows, we denote by m the collection of random vectors m;; related to
all pair collision in our system during the interval of time [0,¢], £>0 or [z,0],

t<0.
One can say that stochastic trajectories are defined by initial momenta and positions

and by random vectors T, but depend explicitly on m only after collisions.
2. Operator of evolution of finitely many particles. Consider a function

fi(xy,s ..., xp) = f(x) defined on the phase space of N particles. The operator of
evolution of N particles Sy(¢) is formally defined by the following formula:

(SN ) (x1s s xp) = (S fR)(2) =
= fu(X(t,x)) = fn(X, (2, %), ..., Xp(2, X)) (2.1)

for arbitrary time r>0 or r<0.

The function f(X(¢, x)) depends on time, initial phase point x, and random vec-
tors 1 related to all pair collisions during the time interval [0, t].

Consider the function fy(X(z, x)) for arbitrary fixed realization of random vectors
mn. This means that we also consider the operator Sy(t) for some realization of m
and, in what follows, we consider the properties of the operator Sy(#) associated with

some realization of 1.
Outside hypersurfaces (1.9), the trajectory X (¢, x) coincides with the trajectory of
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free particles, i.e., is a continuous function of time ¢ and phase points x. Therefore,
the function fy(X(r,x)) is defined outside hypersurface (1.9), i.e., almost

everywhere in the phase space (for fixed realization of 7).
The semigroup property of the operator Sy(f)

Sn(t1+13) = Sy(2)) Sn(12) = Sy(22) Sy(1y) 2.2)

for arbitrary £,>0, £,>0 or t, <0, t,<0, follows from the semigroup property of
X(t, x).

Let us proceed to the determination of an infinitesimal operator of the semigroup
Sy(t) on the set of differentiable functions f(x).

First, we consider the case 120 and differentiate the function Sy(t)fy(x) =
= S(1)f(x) attime r=0

ds(t) f (x) i FX(B8R) - fG) B
dt t=0  Ar—=0 At

If g; # g; for arbitrary (i,j)e (1,...,s), then

X(At,x) = (g +pAt,p),
and

ds(t) f (x) _x 0
y- I::n = Y pi 50, f(x). (2.4)

i=1
If g; = gq; for some pair (i,j)e (1, ... ,s) and n;€ S2, then

X(At,x) = (g+p*At,p*),
where

p- = (p[v---v P;:---,P;‘---va),

and p;, p; are defined by (1.2).

In order to calculate (2.3), we choose the coordinate system so that the first compo-
nent of the vector (g;— qj) is directed along the vector 7;;. In this coordinate system,
we have
pi = (pi=(pi-pj) pi.Pi) = (pj. Pi.P})

(2.5)

-

pj = (pj—(pj—pi)pi.p}) = (Pispi.p}).
and the function f(X(z,x)) has a jump at r=0 which is connected with jumps of
P/() and P'(r) andisequalto f(x*) - f(x), x* = (q.p").

In this sense, the problem of calculation of derivative (2.3) is reduced to the one-di-

mensional case, where i-th and j-th particles change only the first components of their
momenta. Taking this into account, we obtain from (2.3) for ¢; = g;

SOID| o jim {(f(g+p*At,p*) - f(g+p*O(A1),p") +
dt t=0 At =0
+ f(g+p°0(An),p") = f(g+pO(An).p))} /At =
N
= 3 pisef@| 480D - @] o 26)
fai aQi PP

where T is the time of collision,
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1 1
q; —4;

, @7
Pi - P;

and O(At) is an infinitesimal value of higher order.
By using the definition of the time of collision, one can represent the first term on

the right-hand side of (2.6) as follows (for qf = qu, q? = q?):
d(t-v)[f(x*) - f)] =

= 8(q;-aq})|pi-p} | LFx" = flgz=g2.g=¢2-
This expression considered as a generalized function in the three-dimensional space of
the variables g; = g; is concentrated on the first axis q:- - q; (for qf - qf = 0,
q; - q? = 0) and, therefore, is equal to

8(q)-q)) |pi - P} |L£(x*) —F0)]1 8(qa] -} ) 8(a] —a]) =
= 8(a; - 4| p! - p! | [F(x") - FI].

(for analogous calculation, see [19, p. 48]).
Recalling that p; — p} = ;- (p; - p,), We obtain from (2.6) the following for-
mula:
das() f(x) -
dt r=0

N
=Y s f(x)| +8(g; ~ gpIny @i - P L") - F 0] 28)
iz 9g; pop

Formula (2.8) does not depend on the choice of a coordinate system because the
scalar product m; j pi-pr J-) is invariant under rotation.

If nye Sf, njj- @ - pj):\- 0, then X(t,x) = (g+pt,p), and the second
term is absent in (2.8). In the general case where 1; T oS 2, we obtain

ds(t) f (x) . 0
dt |:=o - E‘l & 9g; 700 #

+8(q; - ¢))0(-n;;-@; - P Inyj - @i = pIF(X*) - f0], (287

where 8(a) =1, a>0, 8(a) =0, a<0.
In ordér to take into account all possible pair collisions of all particles, one should
sum over all pairs (i,j)€ (1,...,N) in (2.8). After summation, we obtain the final

formula for arbitrary ¢ = (g4, ..., qy)
dS(t)f(x)| _ ¥, 9
o ML ‘2:;[ Pi 5g f +
N
j=1

# >, 8(qi-g)0(-n;- @i - p)Iny; @i - plx

i<

x [f(x*) - fx)] = H} f(x). (2.9
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For g; = q;, one must replace p =(p,,...,py) in the first term on the right-

hand side by p* = (py, ..., pi, .., Pj ..., py). We regard it as the boundary con-
dition in the Poisson bracket of free particles.

Thus, the second term on right-hand side of (2.8) is taken into account in (2.9).

By using the semigroup property (2.2), one can prove the following formula for the
derivative of S(z)f(x) at arbitrary time >0

450/ Z p,_sc:)f(x) +

N
+ 2 8(ai- 4)0(-ny @i - ) Ny @i - plI X
t(J =

x [S(f(x*) = SOf()] = Hy S f(x),

N N
as@) f(x) _ S RO——=f(X@®) + Y, 8(Q:;1 - Q;(®)x

dt i=1 aQ ®) i<j=1
x 8(=n;; - (B®) = B®)) Ing - (B@®) - PO LF(X"®) = F(X@)]
= S() H y f(x), (2.10)
Indeed, formula (2.10) follows directly from the identity
S(t+At) - S(t) = (S(At) - 1)S(¢) = S()(S(At) - I). (2.11)

We stress that in the expressions S(7)f(x*) and S(z)f(x) in (2.10) the initial
phase points x* and x are considered as the states after collision at the time = +0.
This means that, for >0, particles have the momenta p* in the first expression
S()f(x*) = f(X(¢,x*)) and p in the second expression S(#)f(x) = f(X(,x))
until new collisions take place (see Appendix 1.2).

Formulas (2.6)-(2.11), (2.12)—(2.14) have been obtained as a derivative of the
generalized function Sy(z)f(x) regarded as a function of time ¢ (see Appendix
L1, 2).

Tl)le case of negative time can be considered in a completely analogous way.

Consider the function Sy(-t)f(x) for +>0 and define its derivative at r=0 by
the formula

BOIW) - i LXCALD) 2 70 (2.12)

At—0 At
By repeating the calculation performed above almost word for word, we get

dSy(=1)f (x)
dt

Z P,—f(x) +

i=1

N

L Z ] 8(qi - g;)8(m;;- @i - PNy - i = PHLF(X*) = F0)] =
i<j=

= Hyf). (2.13)

For ¢; = g, n;;€ SE. one should replace p;, p; in the second term on the right-

hand side of (2.13) by p;, p;.
For arbitrary negative time, one obtains
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dS(-0f(x) _ < 9 o
— =- Y p 5. S(=0f(x) +

i=1

N
+ Z , 8(q; - Qj)e('fl;‘j - - pj))nij (i - Pj)

i<j=

X[S=0)f(x*) = S-nf(0)] = Hy S(-1)f(x),

N N
GSCNEY, ... S e f(Fiil) Y SED= D=8

dt it aQi(_I) i<j=1
x 8(n;; - (B(=1) = B=0) [F(X"(=1) = F(X0)]|n;-(B(=1) - By~ )| =
= S(=0Hy f(x), (2.14)

We stress again that, in the expressions S(—t)f(x*) and S(-t)f(x), the initial
phase points x* and x are considered as the states after collisions at the time r=-0.
The motivation is completely the same as for #> 0. We denote the infinitesimal oper-
ator of the semigroup Sy(-t) by H .

Note that the difference S(—¢)f(x)—S°(t)f(x) is different from zero in a certain
set D_, of Lebesgue measure zero (see Appendix 1.1). Here, §°(t) is the evolution

operator of free particles.
3. Sequences of reduced distribution functions and the stochastic hierarchy. In
the classical statistical mechanics, the states of a system of N particles are described

by the distribution functions Dy(t, x|, ..., xy), which are defined by the formula
DN(I,X) = DN(I,II,...,IN) = SN(—f)DN(O,X],....IN), f>0, (3.1)

where Dy(0,x,...,xy) = Dy(0, x) is an initial state (an initial distribution func-

tion).

We define the state of the system of N particles with the stochastic dynamics by
the same formula (3.1). But in the case of the system with the stochastic dynamics, the
distribution function Dy(¢, x) depends not only on time ¢ and phase point x but also

on the random vectors 1 = (1| Iyp+eva M {N) that determine the momenta after pair col-
lisions during the interval [0, ¢].

We denote by m a collection of all random vectors m;; and, for a sake of simplic-
ity, renumerate them M, ..., My, [7<...<l3<...<ly, I3=1. Here, I, 2<s5<
< N, are equal to the numbers of collisions of the s -th particle with all particles with
numbers less than s.

In what follows, we consider the function D y(t,x,...,xp) for arbitrary fixed
random vectors 1, i.e., for fixed realization of 7.
The function Dy(t, x|, ..., xy) is symmetric, i.e., invariant under permutations
DN(I,xl,...,xN) = DN(I,xI-l,...,x‘-H), (3.2)
where i, ..., iy is an arbitrary permutation of numbers (1,..., N). This property is
fulfilled if the initial distribution function Dy(O0, x, ..., xp) is symmetric. In what
follows, we consider the initial distribution functions Dy(0, x|, ..., x) that belong
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to the space of summable function L, are symmetric, positive, and normalized by
unity

JDN(O’x]““’x.N)dxl“‘de = 1

By using formulas (2.6)—(2.14), we obtain an analog of the Liouville equation for
DN(I,II, N XN)

) &2
gDN(f,X],.”xN) = - lzl p,—-aEDN(l,x;,....xN) +

N
* Z 8(q; —g;)ni; - (pi — pj) 8(n;; - (pi — P;j)) X

i<j=1

x [DN(I,xl,...,x:,...,x}....,.tN) — DN(t,xl,...,xN)], (3.3)

where the condition of collision M ;;- (p;—p;) > 0 was taken into account by the 6-
function. It is necessary to add the boundary condition to Poisson bracket and to re-
place p;, p; by pi, pj for g;=gq;.

Introduce a sequence of reduced distribution functions (or simply the distribution
functions) for a system of N particles as follows

F_‘.(f,xl,...,xN) =
= N(N=1)...(N=s+ 1) M [ Dy(t, %1, .., X5, Xgppsees Xy) @y gy (3.4)
§F = l,zu---vNa

where M means the operation of averaging over the random variables M.y, ..., My,
which correspond to the collisions of each of the particles with numbers s+1,..., N,
with the other N -1 particles, or to all possible collisions of all N particles except
the collisions between the particles with numbers 1, 2, ...,s. We fix the random vec-
tors N related to the collision of the particles with the numbers 1, 2,...,s, i.e., we
consider some realization of N = (n,,...,Mn;)-

The s-particles distribution functions, which do not depend on any random vectors,
is defined as follows

N(N-1)...(N-s+1)Mx
x I Dy(t,xys s Xgy Xgysees XN) @s(Xyy ooy Xg) dxy oodxy =
= jP;(r,xl....,xs)(p(.r],....xs)dxl...dxs, (3.4%)

where @,(x, ..., x,) is a test function and the averaging operation M corresponds to

all the random vectors.
In order to obtain the distribution functions (3.4), which depend on random vectors

Niy -+ » Ny, one should perform the averaging procedure in (3.4") only with respect to
the random vectors of the N-particles system, excluding the random vectors of the s-
particle system M, ..., M.

We stress that this new conception of distribution functions takes into account the
set of lower dimension where particles interact and contribution of this set is different
from zero (see Appendix 1.1, 2).

For justification of the operation of averaging M see Appendix 1.1, 2.
We denote the sequence of the distribution functions (3.4) by
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F(f) = (Fl(f,xi),... ,F_‘.(f,x],..-,x_,) A FN(t,xl, i .xN)).

The sequence F(t) is the state of a system of N particles at time ¢ in the framework
of canonical ensemble.

Let us proceed to derivation of an equation for the state F(¢). For this purpose, we
differentiate the left- and right-hand sides of (3.4) with respect to time. By differenti-
ating under the integral sign and using (3.3), we obtain

OF,(t,x,...,xp5)
ot

2
=N(N-1)..(N-s+1)M | =7 D8 X1 Xy Xty s 2N) gy dity =

N! Yoo
= mMJ{-lE piEI:DN(t'xl"“’x.r’x.f+1""’xN) +
N
. Z S(Qi”Qj)ﬂij'(Pi“Pj)e(ﬂfj'(P;—Pj))X
i<j=1

x [DN(r,x],...,x,-‘,..., ;,...,XN) - DN(t,x|....,x‘,.xs_,_],m,xN)]}dxj,rl...de. (3.5}

It is easy to see that the integration of the expressions
& 5]
2 2 pia_DN('r!xI""'x.r'x.r+l""'xN) +
i=1 qdi

*

s
+ Z 8(g; —q;)nij-(pi—pj)0(n;;-(pi — P [Dy(t, x5 ..., XiveesXPyoes
i<j=1
vs Xgs Xgqseers XN) = D8 Xpseees X5y Xpygaenns X5)]

on the right-hand side of (3.5) yields

S p) i
= Z pi ‘é‘;_‘ﬁ(f‘xl'-w%) + z 5(4,'—?;)"1:;'(P;‘Pj)e(ﬂfj'(Pf—Pj)) x

I

il i<J=1

X[t Xy enes X] voees X] 0oy X)) = Fy(t, Xq,000, X6)). (3.6)

Further, the integration of the expression
5 N
z Z 8(q; —Q‘j)ﬂu'(Pf "Pj)e('ﬂs;'(P.‘ - oD [Dn(t, xy,s.c0 74 .o
i=1 j=s+l
cy Kgs Xgghyraes X senas X)) = Dyt Xysoses By Xggpreeer X))
yields
5
Z I dpg iy g1 Nige1* (Pi = Ps1) O(Migsr - (Pi = Pesr)) X
i=1
X [Fpr(t, X0 s XF 0y 2o X341) = Bt (o Xpseen s X0 s X0 X1}y, =g, BT

Here, we have used the invariance of the function Dy(t,x,,...,x,) under the per-

mutation.
The contribution of the term
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Z Pis DN(r Xi,-ms X (3.8)
i=s5+1
is zero because the function Dy(t, x, ...,xN) tends to zero as |g;|— .

The contribution of the term

Z 8(qi=g))ni;-(pi— pj) 8(n;;-(pi— p))) ¥

i<j=s+l
x [DN(t,xh.‘.,x?,.”, ;,...,XN) - DN(f, XI,...,IN)]
is equal to the integral

I dxgyy dxg,qdn S(QHI - ‘h+2) n: (Ps+l - Ps+2) e(n- (Ps+] - Pr+2)) X

5 | AT - Xl e I;+2) = F;+2(xls ceea Xy Xgg s xr+2)], (3.9)
which is zero. This fact can be proved, using new variables p},; = pi,1, Prya =
= p;,2 and taking into account that the Jacobian of this transformation is equal to

unity.
Summing up the above performed calculation, we obtain the following chain of

equations:
OF(t, x1, ..., xp) J d
e L I

+ i 8(g; —g;)ni;-(pi = pj)8(M;; - (Pi — pj)) X

i<j=1

X [F(t, X1y cees Xppones X seens X)) = B8, Xy5 0, )] +
5
¥ z,] j apss1@Misst Nisar " (Pi = Ps41) O(Misiy - (Pi = Pyar)) X
=

X [F;*I-l(c')"]'“"xl"*"‘*xs*I:+l) - Ei‘+](!’ xl""’x.f'x.f+l)]q,+|=q,- 4 (310)
s=12,...,N

We call equations (3.10) the stochastic hierarchy or the stochastic Boltzmann hi-

erarchy.
The obtained stochastic hierarchy (3.10) is equivalent to the Liouville equation

(3.3); moreover, the last equation for Fy(z, x,, ..., xy) exactly coincides with the
Liouville equation (3.3). (Strictly speaking, in hierarchy (3.10), we have used the re-
normalized distribution functions F, =(4m)’Fy.)

Hierarchy (3.10) describes the evolution of the state F(¢) of a finite system. In or-
der to describe the state of infinite system within the framework of canonical ensemble
it is necessary to perform the thermodynamic limit procedure and to let the number of
particles tends to infinity N — oo,

Or, more exactly, one must consider the system of N particles at initial time =0

situated in some bounded domain A of the configurational space (this means that
Fi(0,xy,...,x,)=0if g;& A at least for one particle) and then let the number of

particles and the volume V(A) of the domain A tend to infinity (N — e, V(A)—
—> =) so that the density is constant
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—l— = —N— = const
v V(A) )

The stochastic hierarchy of infinite systems in the thermodynamic limit has form
(3.10) but with 1 < s < ee, The problem of mathematical justification of the thermo-
dynamic limit procedure is discussed below in Section 7.

Let us introduce a sequence of distribution functions within the framework of grand
canonical ensemble, when a system consists of arbitrary number of particles with cer-
tain probability. The s-particle distribution functions are defined according to the for-
mula

F At xp058,)=

1 «- 1
== EMJ Doy Nt Xy Xgy Xy oo Xy y) Xy oo dXg iy, (3.11)

=
—

where the functions D, p(t, x|, ..., x;,») are defined by (3.1) and the integration
with respect to the variables 1M, ..., N, is carried out over the random variables

that correspond to all collisions of the particles with the numbers 1,..., s,
s+1,...,5+ N, except the collisions of the particles with the numbers 1, ...,s. The
random vectors 1 related to collisions of the particles with the numbers 1, ...,s are
fixed. Note that, in this case, the functions D, (0, x|, ..., x;,5) are not normalized
by unity.

In (3.11), E is the grand partition function,

s — 1
- o= Z -—MI DN(r"tl""'xN)dxl---de =
N!
N=0
= i Ll_‘MJlDN(O,xlv---an)dxl...de,
N=o N!

Dy(t,x) = Sy(-t)Dy(0, x).

Here, we have used the Liouville theorem (see Appendix 1.2).
It is easy to prove that the sequence of the functions

B = (RGBS ¥ Boses ) (3.12)

satisfies the chain of equations (3.10) [8]. The chain of equations (3.10) is called the
stochastic hierarchy.

Sequence (3.12) describes the state of a system with the stochastic dynamics within
the framework of canonical and grand canonical ensemble.

In order to perform the thermodynamic limit procedure within framework of grand
canonical ensemble, it is necessary to let the average number of particles N tend to
infinity or, if the system of particles are situated in a bounded domain A of the con-

figurational space, let the volume V(A) also tend to infinity so that the density

i N

v V(A)
The problem of justification of the thermodynamic limit is discussed in Section 7.
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