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A NOTE ON GLOBAL ATTRACTIVITY
IN MODELS OF HEMATOPOIESIS

ITPO I'/IOBAJIbHI ATPAKTOPU
B MOJIEJII BIXTBOPEHHS KPOB’SIHUX TIJIEIIb

We consider the delay differential equations

) 0" P(t -} .
Py = BOPUCDE gy oo, )
0" +[P(1-1)]
which have been proposed by Mackey and Glass as a model of blood cell production. We suggest new
conditions sufficient for positive equilibrium of considered cquation to be a global attractor. In contrast
to the Lasota - Wazewska model, we establish the existence of the number 8; =8 ;(n, 1) > 0 such that

the cquilibrium of the cquation under consideration is a global attractor for all 8 € ((),5,-]

independently on B, 6.

Posruisyiaiornbest jiudpeperiiiaiinin pisisist 3 3ani3ienisim

n i
Py = BOIPUZOF py oo, ()
0" [ P(r-1)]" ‘
o 6yJin 3anpornonosaili MakkeioM Ta [J1accom stk MojIc/ihL TIPOHECY BIJITBOPENIIsE YEPBOHHX
KPOR™SHIMX TiJieHh. 3arpolionoBalio HOBI yMOBH, JIOCTATHI JIJ1s TO1'0, U100 NO3H THBIA TOYKa piBHoBald
HABC/ICHONO PIBIsHIT OyJla 1J100aLIHUM arpakTopom. Ha sijiMiny Bijt Mojiesi Jlacoru — Baxenchkoi
BCranoneto icysatis unena §; =38, (1, T) >0 TaKoI'o, U0 TOYKA PIBIOBAI'H BKA3ANOI0 PiBLALI €

1JI06ILIMM €Ipak Topom Juist Beix 8 e (0, 6/-] nesaiekno it Bo. 0.

1. Let us consider the delay differential equations

X(t) = =8x(t) + , p,0>0, (H

__r
1+[x(t-1)]"
px(t—1)

iz _pxi=T
O i oF

X(1) ., p.9>0, (2)

with initial conditions x(s) = y(s), ye C (-7, 0], R,). These equations were
proposed in 1977 by Mackey and- Glass [1], as models of hematopoiesis (blood cell
production). Here, x(f)= P()6~" is proportional to the density P(z) of mature cells
in blood circulation at the time r; 8,0, n and p are some positive constants, and T is
the time delay between the production of immature cells in the bone marrow and their
maturation for release in the circulation blood stream.

Recently, these equations have attracted a lot of interest. There is a number of
analytical results concerning oscillations, global attractivity, periodicity and
bifurcations of solutions to Egs. (1), (2) (see, for example, [2 — 7]). Here, we
investigate the attractivity properties of equilibrium points of these delay differential
equations. The delay difference equations which are discrete analogs of Egs. (1), (2)
were investigated in [8] and [9].

Taking into account the form of the right-hand sides of (1, 2), we can obtain at most
two constant solutions x(t)=0 and x,(t)=x, >0 of them. Below, we study the
global asymptotic stability of x,(r). To stress the importance of investigations of this
sort, we recall the following sentence from [1]: “In normal healthy adults, circulating
levels of granulocytes are either constant or show a mild oscillations with a period of
14 to 24 days.”
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The principal results of the paper are presented in the following two theorems:
Theorem 1. Suppose that one of the following conditions is satisfied:
(i) ne (0,11
2
(i) n>1; 8¢ (0,8,(n,1)], where 3,(n, 1) def llnn7—+1;
T n-—n
(iii) n>1, 8>8,(n, 1) and

2n(1—a)[l+m]l/,,
[271(1 —a)— 1 —_\/m]l+l/n

Then the positive equilibrium of Eq. (1) is a global attractor.

Remark 1. The sufficient conditions for global attractivity of (1) given in [2] were
proved only for (p +81) < 1. In [4, Theorem 3.3] Karakostas, Philos, and Sficas
proved that, under assumptions

r: {nZl and n2(§)2”(1+[—§]")“43s 1}
r, {nem,u ana (2] < (H[g]"]””‘{[g]"+(l+[g.]’)”}""},

x, attracts all solutions. Moreover, if

—512 < L 08,1, n), o= exp(-81).

or

[0<n<1] or [n>1and §<[n—_]’]’mﬁ], 3)

then x, is uniformly asymptotically stable. Clearly, the restrictions in (3) are weaker

than corresponding inequalities in I'; and I';. Note also that the global attractivity
conditions given in [8] for discrete version of (1) and transformed for the continuous
case have the form

) P 4n
[O<n<1] or [n,>l and g<[n+1]l+””[n—1]1_”":I' )

However, conditions (4) are weaker than (3) due to the inequality
n - 4n
[}’l _ ]] I+1/n = [I’l + 1] l+l/n[n _ ]]]—]/n
where equality holds only for n=3. Since 1(8, 1, n) > nn—11""""", the third
estimate of Theorem 1 is sharpest here.

Theorem 2. Let g > 1. Then the positive equilibrium of Eq. (2) is a global at-

forall ne (1, +e0),

tractor if one of the following conditions holds:
(i) ne (0,2];
2
(i) n>2, 8e (0,8,(n, 1), where 8,(n, 1) & 1 1n%§;
@11)) n>2, $>98,(n, 1) and

. 2no—1) © oy ), o oexp(-81).

5 1+2(n=1)(0— 1) +/1+40(1 - o)

Remark 2. Let us compare these conditions with before known. The
corresponding result [2] has implicit form and is valid only in the case where 871 €

€ (0, _«/_5_2_—_1) In (4, Theorems 4.4 and 4.5], Karakostas, Philos, and Sficas proved

that, under conditions
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. 4 n 1
Fg.{n>1andl<§sn_1'} or F4:{ne(0,1] andl<—§£1?;},

any solution with initial value ye C([-1,0],R,) tends to x, as t — +oo,
Furthermore, if additionally to I3, % < (n+2)n-! then x, is uniformly asympto-

tically stable. It should be noted that attractivity conditions of [7], transformed for the
continuous case, have the form

ne (0,1] >1
n>1 < n
n>1 4n

—~
S
|
—
~
N

S
|
N

n>n,>1, where n, < 1,25 is some real number

Tl ol |os o)
Vv
3
|
—_

n

These conditions improve assumptions of [4], but are less exact than condition (iii) of

Theorem 2, since y(8, T, n)> (n-2)"'n.
There is an interesting distinction between Egs. (1), (2) and such well-known
models as Lasota and Wazewska equation [10] or Nicholson’s blowflies equation (see,

e.g., [11]), namely, Theorems 1 and 2 imply the existence of 8; =3;(n, T) such that

steady state of Eq. (*), j =0, 1, is a global attractor for all de (0, 8;] independently
on By, 6. It should be noted that this effect couldn’t be proved within approaches
of [4, 8].

The criterion for local asymptotic stability of the equilibrium x, of Egs. (1), (2)
can be obtained by application of the Hayes criterion [12] to linear parts of these
equations at x(¢)=x,. Below, Fig. 1 and 2 show the domains of the parameter space

(8, 3) where the solution x(f) = x, is a global attractor and where it is locally

asymptotically stable. The view of these pictures suggests us the following.
Conjecture 1. The local exponential stability of the positive equilibrium in Egs.
(1), (2) is sufficient for its global attractivity.
2. Proof of the principle results.
2.1. Preliminaries. The following theorem given by Gyori and Trofimchuk in [11]

is used in proving our global attractivity results.
Proposition 1. Let us consider delay differential equations of the form

xX'(t) = =dx(t)+pf(x(t-1), p,0,1>0,
®)

with the initial condition x(s)=7y(s), ye C([-7, 0], R,),

where either
H,) f: [0, +e0) = (0, +o0) is a strictly decreasing function or

H3) f: (0, +00) = (0, +°0) is a unitmodal function (that is, has a unique critical
point x*; we shall write also x* =0 if H, is true). Moreover, f(x)= xf(x),
pfi1(0)> 98, where f|: [0, +00) — (0, +e0) is continuous.

Suppose that x, is a unique positive fixed point of the map @(x) def gf(x).
Let us denote by y: (0, @(x*)) — [x* +o0) the map which is inverse for @(x) on
[x* +e0) and set 0(x)= x —exp(-=91)Q(x). Then, under one of the conditions H,
or Hy [11] the maps
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pd1(h)
pd2(h) 2

po3(h)

0 1 2 3 4 5 6 8k

pd(h)
pdi() 10 1=
pd2(h)

pdc(h) s

Fig. 2
Po(x) = gf(x): R, >R, and

C(x) = (1-exp(-81))@(x): R, oR,
E(x) = 87 1((1-exp(-81) 9(x) : [a, bl > [a, b],

are well defined and unimodal for some a,b>0: a<x,< b and @Q(x,)={(xy)=
=&(x,) = xo. Moreover, if x, is a global attractor for one of these three maps,
than the equilibrium x, of Eq. (5) is globally attracting.

To analyze attracting sets of some one-dimensional map, we can apply various
tools. For example, in [11], the theory of one-dimensional maps with negative
Schwarzian derivative was used.

ISSN 0041-6053. Ykp. mam. xypn., 1998, m. 50, N® ]



A NOTE ON GLOBAL ATTRACTIVITY IN MODELS OF HEMATOPOIESIS 9

Definition 1. Let f be a real function having at least three continuous
derivatives. The Schwarzian derivative of f at point x, denoted by (Sf)(x), is
given by

_ fm(x) 3 (f”(x))Z
SHx) = - = .
(SH)) f'(x) 2\ f'(x)

The following formula can be checked by direct computation:

S(fog)(x) = (SFg(x)(g"(x)* + (Sg)(x). (6)
Proposition 1 and Singer’s results ([13], see also [14] imply the following statement
deduced in [11]:
Corollary 1. Assume that one of the conditions H| or Hy is satisfied. If f(x)
is three times continuously differentiable and
1) 2f(x)f"(x) < 3(f"(x))2 forall x>0, x#x*, with

(i) 0 > (1~exp(—5‘c))§f’(x2) > -%(1+J1+4 exp (-87)(1 - exp (-81)) ),

then the equilibrium point x, of Eq. (5) is a global attractor.

Unfortunately, the first condition of Corollary 1 doesn’t hold for all values of
parameters in Egs. (1), (2). Therefore, we need other methods to analyze a global
attractor of one-dimensional maps associated with our delay-differential equations.
The following proposition is sufficient for this purpose:

Proposition 2. Let g: [a,b] — [a,b], g(x) € Cla, b] be such that the
equation g2(x) = x has the unique solution x =x,. Then x, is a global attractor
of the discrete dynamical system x, .= g(x,).

Proof. First of all, we note that the ®-limit set ®([a, b]) =[0, B]= x, of the
discrete dynamical system x,,, = g(x,) is global attractor (lemma 3.1.2 of [15]), so
we need only to prove that [o, B]=x,. By contrary, suppose that o < . Since ®-
limit set is an invariant set, we have that g maps [o, B] onto itself. Thus, the
uniqueness of fixed point x, for g/, i=1,2, implies that g/(x)> x forall x € [a,
x,) and gi(x)<x forall x € (x5, B], i =1, 2. Moreover, there exist v € [, x;)
and p e (x, B] suchthat g(v)=1, g(u)=0. Finally,

gz([vaxz]) 2 g([X2, 1]) 2 8([)‘2»11]) 2 [O’XZ]

and, therefore, g2({) = 0 for some { € [v,x,] that contradicts the inequality
g2(x)> x being valid for all xe [a, x;).

Proposition 1 and 2 imply the following consequence:

Corollary 2. Assume that the equation ©2%(x)=x, x >0 has a unique solution
x=x,. Then x, is a global attractor of Eq. (5).

2.2. Global attractivity in Eq. (1). Let us apply Corollaries 1 and 2 to (1). This
system has only one equilibrium x,(#) =x, >0 satisfying the algebraic equation

n+l P

Xy t+Xy = g @)

To indicate the dependence x, on g, we write x, = xz(‘g). Obviously, x,(z) is
an increasing function in z > 0.
Lemmal. If n>1 then (Sf;)(x)<0, where f(x)= "
+x

Proof. We note that f,(x) = r(x"), where r(x) is a fractional linear
transformation. Since (Sr)(x) =0 for any fractional linear transformation [13], we
obtain from (6)

n’

ISSN 0041-6053. Ykp. sam. xkypi., 1998, m. 50, N° 1



10 K. GOPALSAMY, S. I. TROFIMCHUK, N. R. BANTSUR

2
(Sfx) = (SxM)(x) = (:”—;’1) <0 forall x>0 and n>1,
i. e., lemma is proved. Thus, if n> 1, we can apply Corollary 1. Let o = ¢~3% Then,
if

n—1
0> —(l-ay2 2 —%(1+«/l+4a(l—a)), (8)

8 8(1+ x})?

then x, is a global attractor of Eq. (1). Taking into account relation (7), we transform

(8) into the inequality
_
o & 3[1_1+«/l+4a(1 o) | ©)

d 2n(l — o)

2
Since x, > 0 and the right-hand side of (9) is nonpositive for & (O, lln nz hi : }
T n -

n> 1, we obtain the second condition of Theorem 1.
Letnow 8>98,(n, 1), n>1. Since x,(z) is an increasing function, we have that

inequality (8) is satisfied for all gp <z with

n-1
(1-exp (-5 2o 2_(Zo) % (1++/1+4 exp (=8,7)(1 - exp (-8,7) )

1 2 -
B0 (1+x5(z9))
and x4 (z9) + x,(z0) = g_o = 2.
0

Solving these equations, we find

Do 1+ 1+40(l1-a)
= | 1= and zy = N(S, 1T, n).
x5(z¢) 80[ Il =) o = N( )
Thus, the global attractivity condition for Eq. (1) has the form
g, < zo =N 1, n) (10)

and the third condition of Theorem 1 is established.
Now let us apply the Corollary 2 to investigate (1).

Lemma 2. Let ¢,(x) < ’g’f,(x). If ne (0;1], thenthe map ¢,: R, >R,

has a unique positive periodic point x, and @ ,(x;)=x,.
Proof. Let us consider the set of all positive 2-periodic points of the map ¢ .

These points are determined from the equation (plz(a) =a, a >0 that can be writen

as

Finally, we note that the functions b (a) and b,(a) are strictly decreasing for

ne (0;1]) and ae (O%)
Remark 3. Fig. 1 below depicts the curves
p . _ JP_ n
pd3(h) = {g=n(8,‘c,n)}, pd2(h) = {g——m},

and the neutral stability curve

ISSN 0041-6053. Yp. smam. sxypi., 1998, m. 50, N° |



A NOTE ON GLOBAL ATTRACTIVITY IN MODELS OF HEMATOPOIESIS 11

8(1) = —retg(r), pdl(h) = ’-g% =

- n cos (1)
(~1—n cos(r))! "

which is determined from the Hayes criterion [12].
2.3. Global attractivity in Eq. (2). Let us consider the delay-differential Eq. (2).

[+ncos ()], te(n/2,m),

In this case, f,(x)=px(1 +x")"", @,(x) = gx(l +x"~'. If p<8, we have only
one constant solution xy=0. According to Corollary 12 from [11], this solution is a
global attractor independently on 1. Let now p > &. In this case, x5 =0 1is an
unstable equilibrium (see Corollary 12, [11]) and the second constant solution x, =

I/n
= (g— ) is appeared.

Lemma 3. If n2>2, then (S¢,)(x)<0.
Proof. By direct computations, we obtain that

3 2
a4x4” +ayx”" +a,x”" +apx"

2x2(1+ )2 (1 + (1 = n)x")?

(Soy(x) = <0 forall x>0 and n=2,

where
a (n) = —2n3+2n = —211(/12+ 1) <0, ayn)= —n(n3+5n—6) < 0,
as(n) = n(=2n*+6n2-10n+6) < a3(2) < 0,
ays(n) = —n(n3—4n.2+5n—2) < 0 forall n=2.
Hence, if n =2, we can apply Corollary | to (2). Direct calculations show that if
on l1++/1+4a(l-a)
— >n-1- s
p 2(1-a)

then x, is a global attractor of Eq. (2). Since the right-hand side of (11) is nonpositive
2
for 8 e (o, Ly =Bt
T n -3n+2
Let now 8> x,(n,T), n22. Then (11) implies the third condition of Theorem 2.
To complete the proof of Theorem 2, we apply Corollary 2 to Eq. (2).
Lemma 4. If ne (0;2], thenthe map ¢,: R, =R, has a unique positive

(1)

j|, we obtain the second condition of Theorem 2.

periodic point x, and @,(x;) = x,.
Proof. Let us consider the set of all positive 2-periodic points of the map
¢@,: R, —R,, which are determined from the equation

p_a
93(a) = g 5)l+a” ~ =a, a>0. (12)
N
S1+d"
Setting @ =1+ a”, we can rewrite (12) as
2 n n
v (o Bo-2 <o

2
We note that y(1)=1- (g) < 0 and that

ISSN 0041-6053. Ykp. mam. sxypit., 1998, m. 50, N* 1



12 K. GOPALSAMY, S. I. TROFIMCHUK, N. R. BANTSUR

v(w)= (n- 1)m”*~‘[nm —(n— 2)(’5’”.

Now, Lemma 4 follows from the next simple observations:
L If ne (1,2], =1, then y’(®)>0. Since y(1)<0 and y(w,) =0,

where , =1+ xj, Eq. (13) has a unique positive solution.
ILIf n=1 or n=2, w21, then Eq. (13) has the unique positive solution ® = g

O If ne (0,1), @21, then ¥y’ (w)<0. Since y(1)<0 and y(w,) =0, so
Eq. (13) can have at most two positive solutions ® |, ®,. Accordingly, Eq. (12) can
have at most two positive solutions x,, X,. Since y,(x,) = x,, there is a unique
possibility for the second point, namely, y,(x,) =x,. However, Fix(g,) = {x,}
and Eq. (12) has exactly one positive solutions a = x,.

Remark 4. Fig. 2 shows the curves

pdl(h) = {§=y(8, T, n)}, pd2(h) = {gz 1 2}, pdc(h) = {§= l},
n-
and the neutral stability curve
3(t) = —tctg(t), pd(r) i %)%) = ncos(t)[l+(n~-1)cos (t)]‘l, te (n/2,m),

which is computed using the Hayes criterion [12].
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