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STABILITY OF STOCHASTIC SYSTEMS
IN DIFFUSION APPROXIMATION SCHEME

CTIAKICTh CTOXACTUYHHX CUCTEM _
Y CXEMI IM®Y3IHHOI AIIPOKCAMAIIII

By using the solution of singular perturbation problem, we obtain the sufficient conditions of stability of
a dynamical system with rapid Markov switchings under the condition of exponential stability of the
averaged diffusion process.

Ojlepaiio locTaTii YMOBH CTIHKOCT] JIMITaMivIIol CHCTEMH 3i LUBHJIIKWMM MaPKOBCLKHMH NepeMHKall-
HAMH MPH YMOBI eKcrolienilialibioi cTiikocTi yeepejiienor o jindpy3idioro npoiiecy 3 BHKOPHCTAHIIAM
PO3B’sI3KY MpobJieMu CHIITYJIspHolo 36ypelis.

1. Introduction. The asymptotic analysis of stochastic systems is developed mainly in
two directions:

I. The analysis of stochastic systems in the series scheme — average and diffusion
approximation.

II. The investigation of system on increasing time intervals — stab...ty problem.

The first type of problems leads to the average theory created by N. N. Bogolyubov
[1] and devolved by Yu. A. Mitropolskii and A. M. Samoilenko [2], I. I. Gikhman [3,
4], A. V. Skorokhod [5] and many others.

The second type of problems leads to the stability theory founded by
A. M. Lyapunov [6] for deterministic systems and by H. J. Kushner [7],
N. N. Krasovskii and J. Ya. Kac [8], R. Z. Khasminskii [9, 10], A. V. Skorokhod [I1],
E. F. Tsarkov [12, 13] among others for stochastic systems.

Naturally, one can consider a mixed stability problem, the analysis of stochastic
system on increasing time intervals under averaging or diffusion approximation
conditions.

This is the problem of stability of an initial stochastic system under the stability
condition for an averaged system.

A problem of this sort was first stated by N. N. Bogolyubov for deterministic
evolutional systems. The best possible result was obtained by A. M. Samoilenko [2].
The stability of stochastic system with wide band noise disturbances under diffusion
approximation conditions was stated by G. L. Blankenship and G. C. Papanicolaou
[14] and, later on, by E. F. Tsarkov [12, 13] for stochastic systems with delay. The
mixed stability problem for dynamical system with rapid Markov switchings was
considered in [15] and with semi-Markov switchings in [16]. It is natural that, for
sufficiently small values of the parameter series , the stability of the averaged system
provides the stability of an initial system. The basic approach consists of Lyapunov’s
perturbed function is considered by using a solution of singular perturbation problem
for a reducibly invertible operator.

The remarkable fact is that every solution of singular perturbation problem can be
utilized in the stability mixed problem under average, double average and diffusion
approximation conditions.

2. The method of Lyapunov’s functions. The method of Lyapunov’s functions is
widely used in the analysis of stability problems. As is well-known, the trajectory of
dynamical system processes the semigroup property which in an abstract form can be
formulated as follows. Let the trajectory of dynamical system U(r) be determined by
a solution of the autonomous differential equation

dU(1)/dt = C(U(D). (1)
The semigroup of operators C, is defined by
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STABILITY OF STOCHASTIC SYSTEMS ... 37

CV) := C(U,), Uy =u, )
in a Banach space B, of measurable real-valued bounded functions V(u), u € U,

with sup-norm: || V()| : = sup,c yl V(u)|. The generator of the semigroup (2) acts
in the following manner:

CV(u) := lirr(]J t='[C,-NV(u) = C(u)dV(u)/du.
1=
The integral equation for the semigroup

!
V(U,) = V(u)+ J’ CV(U,)ds
0
can be rewritten with the derivative along a path of a dynamical system

V(u) := CV(u) = C(u)dV(u)/du (3)
in the following form:
]
V(U) = V) + [ VU,) ds. @
0

In the stability theory, derivative (3) is called the Lyapunov operator. Now the stability
conditions for the deterministic dynamical system (1) can be formulated in the explicit
form. There is existence of Lyapunov’s functions V(u) satisfies the following two
conditions:

(C1) V(u) > 0, u=0; V(O)=0;

(C2) V(u) = 0.

The source inequality

V(U,) £ V(u) (5)

can be obtained from the integral equation (4) for the semigroup. The stability of the
trajectory is the simple corollary of this inequality (5).

The same approach can be used in the stability problem for a Markov process 1,
=0 [10]. Now semigroup of operators P, is given by a well-known relation with a
conditional expectation

P V() := E[V(n,)mp=u]
using the generator

QV(u) := lim '[P, - V()

=0

ol the Markov semigroup and the martingale characterization of the Markov process
N, t20, inthe form [7]

!
v -V - [ evnyds = u,.
0
We can conclude that the derivative along a path of Markov process is defined as

V(u) = QV(u).
Again, the stability conditions for the Markov process can be formulated for
Lyapunov’s function V(u) in the following form:
(Cl1) V(u) > 0, u=0;, V0O =0
(C2) V(u) < 0.
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38 V. S. KOROLYUK

The source inequality has the form
Vn, £ V(u)+u,
The last step in the stability problem for the Markov process is realized by using the

well-known inequality for the supremum of supermartingales.
3. Ergodic Markov switchings. The initial stochastic system is considered in the

following form:
dUt(1)/dt = €' C (U (1), x(t/€2)) + Co(UE(2), x(t/€?)). (6)

“The velocity functions Cp(u, x), 1 e R% xe X, k=1,0, satisfy the conditions which
provide the existence of a global solution of the deterministic dynamical equations for
every €>0:

dUt(n)/de = e_'C,(U_f(r), x) + Co(Ui(r), x), xe X. (7)

The switching process x(t), += 0, is a Markov jump process on a measurable phase
space (X, X) with the generator

Qo) = g(x) [ P(x.anlo(y) -] ®)
X

The stochastic kernel P(x, B), x € X, B € X is supposed to define the imbedded
Markov chain x,, n 20, uniformly ergodic with the stationary distribution p(B),

B e X. The stationary distribution of the Markov process «(r), r = 0, is defined by
the relation
n(dv)g(x) = gp(dx). g = [ m(dx)g(x).
X
The intensity function is supposed to be bounded:

sup g(x) £ C < + oo,

xeX
The main property of the generator Q is the reducible invertibility [17]. The
stationary distribution m(dx) defines the projector Il on the null-space of the
generalor Q as

Me(x) := [ m(d)e(x) =: ¢,

X
where
$ = j n(do)ex), 1:=1(x)=1 xeX
X
There exists a solution of the equation
Qo(x) = y(x), IHyx) =20
which can be represented as
@(x) = Ryy(x), IMy(x) =0,
where the potential operator Ry, is determined by
Ry := [ [M-Pldt = [Q+11)" -TI )

0
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STABILITY OF STOCHASTIC SYSTEMS ... 39

here, P,, n20, is a semigroup of operator determined by the transition probabilities
of the Markov process k(r), t=0. The potential operator R, is a reducible inverse to
the generator Q:
QRU = RUQ = l—l'l.
The solution U®() of stochastic system (6) coupled with the switching process form
the two component Markov process
U o= Ut), X; =x(t/e). £=0,

which is determined by the generator

LE@(u,x) = [e72Q+e7'C | (x) + Co(x)] @ (u, x), (10)
where the generators C(x), xe X, k=1, 0, associated with deterministic system (7)
are acting in the following way:
Cir(x)p(u) 1= C(u, x)9 (), k=10,

Note that, in the case of ue R%

o
Clu, x)p(u) := Z C'(u, x)0Q(u)/ du;

i=1

by definition. The generator L® in (10) has a singular perturbed form with the
reducible invertible operator Q and the perturbing operators C,(x), x€ X, k=1, 0.
The stability mixed problem for stochastic system (6) is realized in the following

statement:
Theorem 1. A (Average). Let x(t), t =2 0, be the Markov jump process

uniformly ergodic on a measurable phase space ( X, X) with the stationary
distribution n(B), B € X, and the potential operator R defined by (9). Let the
balance condition

| m(ax)c (u,x) = 0 (11)

X
be satisfied. Then the solution U®(t) of stochastic system (6) converges weakly to
the diffusion process {(t) as € — 0, which is determined by the generator

Lo(u) = a(u)@’ (u) + B>(u)¢” (u),
where
a(u) = [ m(dx)a(u,x),
X
a(u,x) = Co(u, x)+ Cy (1, x)Ro CJ, (u, x),

B> (u) = [ m(dx)Co(u, x)RoCo(u, x).
X

S (Stability). Let V(u) be Lyapunov’'s function for the limit diffusion satisfying
the exponential stability condition

LV(u) £ —cV(u), c¢>0.

Let the velocity functions Ci(u, x), k=1, 0, satisfy the following inequalities:
) | Cplu, )V (u)] < ¢, V(u), k=1,0;
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(i) | Colu, X)R[C,(w, )V (u))'| < & V(u), k,r=1,0;
(iii) | Cplu, x)| Ryl C; (1, x)RH[Cy (u, x)V' (u)]')’]| € c3V(u), k=1,0.

Then, for every sufficiently small € < g, the stochastic system U®(t) is
asymptotically stable with probability one:

2{ tim |U*] =0} = 1.
[—doo

4. Diffusion approximation with merging and averaging. The initial stochastic
system is considered in the form

dUE(t)/dt = €' C(UB(r), xe(8/€3)) + Co (UE(2), ke (2/€3)), (12)

where the Markov jump process ¥ (t), t =0, satisfies the phase merging condition
[18]. Therefore, we have the generator

Q:0(x) = g(x) [ Pe(x, d)9(»)-9(x)].
X

The stochastic kernel Pg(x, B) is represented as
P.(x,B) = P(x,B)+¢eP(x, B).

The stochastic kernel P(x, B) is coordinated with the splitting of phase space

X=|JXx, XNX;, =@, ve=v, (13)
veV
as follows:
I, xelX,;
ol {0, xeX,.

The support Markov process k(r), t 20, given by generator (8) is supposed to be
uniformly ergodic in every class X,, v € V, with stationary distributions 7,(dx), v e

e V.
Under the condition
po= [ m(d)P\(x,X,) <0, veV,
X

v

the Markov process K. () spends a long time in every class X, forasmall €¢>0 and

sooner or later leaves each class X,
The asymptotic behaviour of the Markov process K¢(r), t 20, as € — 0 can be

investigated by using the martingale characterization of Markov process x%(¢):=
:=¥K(t/€) in the form [19]

ME = 9(5(0) - [ Lfo(x%(s)) ds,
0

Lf@(x) = [e7'Q+ 0 10(x),
where

Q,9(x) := g(x) [ Py(x,d)o(y)
X
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The phase merging effect is realized by Proposition 1 (Section 5) for test functions

O (x) = @(v(x)) +£9,(x),
where v(x)=v, x € X,, is a merging function on X corresponding to splitting (13).

The martingale characterization for the limit Markov process

K(r) = P-lim v(k5(r))

£=()

on the merged phase space (V, V) is as follows:
I
o= GRM) - [ Qd(R())ds
0

with the generator
06) = 4w) [ Po, d)[§0) - )],
v
where

Pw.T) 1= [ m(d)P (X)X = | X,
X vel

v
q) = ¢y Py
qgl i j m,(dx)/ g (x).
XU
The analysis of stochastic system (12) in diffusion approximation scheme with
merging and averaging is realized by
Theorem 2. A (Avcrage). Assume that the switching Markov jump process
Ke (1), 120, satisfies the merging conditions and the merged Markov process K(r).

t =20, on the merged phase space (V, V) is uniformly ergodic with the stationary
distribution w(dv). Let the velocity function C | (u,x) satisfy the balance
condition

_[ n(dv) j T, (dx)C, (u, x) = 0.
v X

]

Then the solution Ut(t) of the stochastic system (12) converges weakly to the
diffusion process {(t), t=0, determined by the generator

Lou) = a@)e’ () + B> ()" (1), (14)
where

alu) = j n(dv)a,(u),
1%

a,(u) = J' m, (dx)a(u, x),
XI?
a(u,x) = Cy(u, x)+ Cy (u, x)Ry CY (u, x),

By = [ n(dv) [ m,(dx)Cy(u, x)RoCo(u, x).
v X

v
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S (Stability). Let V(u) be Lyapunov’s function for the limit diffusion process

C(1) satisfying the exponential stability condition
f,V(u) < -cVu), c¢>0.

Let the velocity functions C,(u, x), k=1, 0, satisfy the following inequalities:

(i) | Co(u, )V ()| < ¢, V(u);

(i) | Ce(u, x) Ry [ G, (1, )V (1))’ | < ¢,V (w);

(i) | Cp(u, x) Ry [ Cy(u, k) Ry [ Cy (u, )V (u)1’']’| € 3V ().
Then a solution of stochastic system (12) is asymptotically stable with probability
one:

?{rli}nl |Us @) = 0} = 1.

Remark 1. The inequalities in Theorems | and 2 can be simplified with an
additional conditions of the velocity functions Cy(u, x), k = 1, 0. However, the

combination on the left-hand side of Lyapunov’s function and the velocity functions is
essential. That is, for the linear stochastic system, these inequa'ies are valid
automatically for a square defined Lyapunov’s function.

5. Problems of singular perturbation. The diverse scheme of asymptotical
analysis of stochastic systems can be reduced to the problem of singular perturbation of
areducible invertible operator, which can be formulated in the following way: For a

given vector y € B, the asymptotic solution
9° = 9+

of the equation
[e'0+ Q19" = y+6°
is constructed with the asymptotically negligible term 6%

[| 6%l = 0 as & — 0.

A problem of this sort arises due to an asymptotic inversion of singular perturbed
operator:

[e'Q+0,]7 = Q% +€Q' +....

There exist many situations which cannot be classified (see, for example, [18]).
Meanwhile, it is possible to extract some logically complete variants [16, 19].
The classification of problems of singular perturbation is based on properties of a

contracted operator Q| determined by the relation
0,1 = MnQ,I. 15)

The contracted operator Ql acts on the contracted null-space ﬁQ.
Example [19]. Let Q be a generator of the Markov ergodic process with a finite

number of ergodic classes X = U::;;Xk and let m,(dx), 1<k <N, be stationary
distributions on Xj, 1< k< N. The projector IT onto null-space N, acts as follows:

N
Me) = Y ¢plp(x), & = [ @o)m(dx)
k=1 X

here,
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I, xelX;

l(x) = {0 xeX
) k-

The contracted null-space ﬁQ is an N-dimensional Euclidean space of vectors ¢ =
=(@p, 1<k<N).
Let a perturbing operator Q, get as follows:

2,9 = [ 0,(xdy)p(y), xeX
X

Then the contracted operator Ql on NQ is defined according to relation (15) by the
matrix

Ql = [qkr: lSk,rEN],

where

G = [ m(d0)Q) (% X,)
X

and
N
0 := [qur(pr’ 1sks N]-
r=|
There are three logically complete variants:
(1) in is invertible: there exists (:)f';
(ii) in is zero-operator: Q,(b =0 forall § e ﬁ'Q;
(iii) QI is reducibly invertible: there exists null-space ﬂf@] C N‘Q such that
No = Nj © Rg,

-

There exists also the potential operator ﬂ’o 1= [Ql + l"\l]_1 - 11, where T is a
projector onto ﬁr’él which is defined by the relation
e = ¢1, ¢e KFQI.

Here, 1 is a unit vector in N’QI.

The solutions of singular perturbation problems in these three variants are given in
the following three propositions (see [16, 19]):

Proposition 1. Let the contracted operator Ql be invertible: 3 Ql_ . Then the
asymptlotic representation

[e'0+ 0 ](9+eq) = y+6°
can be realized by the following relations:
06 = ¥,
¢ = Ro(y-0,9),
0% = eQ\Ry(V-0Q,9)
Proposition 2. Let the contracted operator Q, be a zero-operator:

Qﬂb =0 V(?J € &Q‘
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44 V.S. KOROLYUK

Let, in addition, the operator Q 4 = Q, — Q| RyQ, after contraction on the space

Ny have the inverse operator Qo_ L
Then the asymptotic representation

[e20+e7'0,+ 0, ] (@ +£0, +£2¢,) = y+0°
can be realized by the following relations:
b = ¥
¢ = -RoQi0,
(‘p?. = RO(W_QO(I)J’
0% = e[Qy0, +[Q) +£0,]1 ,].

Proposition 3. Let the contracted operator Q, be reducible invertible with
null-space A}Ql c Ii"Q defined by the projector I1. Let the twice contracted

operator Q2 on Kf@l, defined by the relations

»

L = 10,11, G0 = N,

be invertible: 3 Qz_]
Then the asymptotical representation
[e20+e7'0,+0,](p+eg, +e29,) = y+6°
can be realized by the following relations:

Qz‘b = v,
§ = Ry(§ - 09),
0 = Ro(y-00-0,0)),
0 = €[00, +[Q, +e0,]19,].

Moreover, there exists a more complicated situation of singular perturbation
established on the combination of the already considered facts.

Proposition 4. Ler the contracted operator Q, be reducible invertible with

null-space f{"él C IQQ. Let the operator Qg which is defined by the relations
QI = NG,M1, QN1 = NQ,I,

be a zero-operator: Q9 =0 Ve Ny.
Let, in addition, the operator Qo = Q; - szloéz after contraction on the space
- . A1
Ng, have the inverse operator Q.
Then the asymptotic representation

[e30+e20,+e7 10, + 03] (@ +e0, +£20, +€30;) = y+€6%  (16)

can be realized by the relations

Qd = ¥,

ISSN 0041-6053. Ykp. mam. sxypn., 1998, m. 50, N* |



STABILITY OF STOCHASTIC SYSTEMS ... 45

¢ = —RQQN»
02 = Ry(¥ - 0y,
903 = Ro(y-030-0,0,-0,0,),
6% = [Q1 03+ 05 (9, +£93) + O3 (9, +£0, +£20,)]. (17)

Proof of Proposition 4. As usual, let us consider the expansion of the left-hand
side of (16) with respect to degrees of parameter € and comparing the results with the
right-hand side of (16). We get the following relations:

Q¢ =0,
Q9 +0,¢ =0,
Q0+ Q10 +0,0 =0,
093+ 0102+ 2,0, + Q309 = v,

0193+ 0y (9, +€93) + O3(¢; + €y + £%0;) = 6° (18)
The first equality in (18) means that ¢ € Ny, i.e., [1¢ = ¢. Moreover, the vector
@ can be chosenin Ng , ie., I p=0.
Thatis Q¢ =0. Hence, the second equality in (18) gives Q¢, =0, ie., IIg, =
=@
Now, the solvability condition for the third equality in (18) has the form
00, + O = 0. (19)

However under condition of Proposition 4, the following solvability condition for
Eq. (19) takes place:

[Q,Me = O, = 0.
The solution of Eq. (19) is represented by the second relation in (17).
For the forth equation in (18), the solvability condition has the following form:

09, + 0201 + 030 = V. (20)
Using the representation ¢, = — &Oéztp and the definition of the operator Qo 1=

= Q3 - sz\’oéz, Eq. (20) is transformed as follows:
019, = ¥ — Q9. 21

The solvability condition for Eq. (21) gives the first relation in (17). The solution of
Eq. (21) is represented by the third relation in (17). The last two relations in (17) are
evident.

6. Proof. of Theorem 2. The scheme of the proof for both Theorems 1 and 2 is
the same. Therefore, let us consider the proof of Theorem 2. The starting points is the
martingale characterization of the coupled Markov process

US = U x :=xl/e®), r20,
in the form
!
ME = @°(UF, xf) - 0°(w, x) — [ LF°(UE, %)ds, 2)
0

where the generator L® is given by
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Lt = e3Q+e72Q,+e71C (x)+ Cy(x). (23)
The operators Cy(u, x), k=1, 0, are given by
Ci(x)o(u) = Cplu, )" (u), k =1,0.

The problem of singular perturbation for generator (23) is considered under the
conditions of Proposition 4 (Section 5) in the following form:

LE[V(u)+ €0, (u, v(x)) + €20, (u, v(x)) + €3 @3 (u, x)] =
LV(u)+¢6(u x),

where V(u) is Lyapunov’s function for the limit diffusion process determined by
generator (14). The contracted operator L is defined by the following relations
(Section 5):
il = A0, Oy = G - CiRGy.
The operator fio is the potential of the merged Markov process x(¢), + = 0, and the
projector I acts as follows:
o) : = j R(dv)Q).
v

Now we have to calculate the operator
~ -——

i =& - ERC,

First we obtain

Co@(u) = ag(u)@'(w),  ap(u) := [ #(dv)Co(w, v).
Vv

The following composite calculation gives us
——

é(p(u) = é]koé| = —Jﬁ(dv)é,koé',(p(a) = —jﬁ:(dv}é,]%oé'](u, U)(p’(ﬂ) =
v v
= [ &(a)C; [ Ry, v")C(u, )" (W) =
Vv v
= jf:(du)é,(u, u}j Ry, dv")[C,(u, dv')e” +Ci,(u, V)¢’ (w)] =
v v

= o2 (u) Q" (u) + a; ()@’ (u),
where

a () := [ #&(d)Ci(w,v) [ Ry, dv")Ciy(u, v").
Vv v

Therefore,
a(u) = ag(u)+a;(u).

By Proposition 4, the martingale characterization (22) is transformed to the form

t
e = V(UF) - v - [ Lv(US)ds + v§ (24)
0
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STABILITY OF STOCHASTIC SYSTEMS ... 47

with a negligible term vy} satisfying the pattern limit theorem [19, Section 3.4]. To
prove the stability part of Theorem 2, the negligible term in (24) is calculated in an
explicit form, which provides the inequality

V(UF) < cV(u) + puf

under condition (i) — (iii) of Theorem 2.

The standard scheme from [14] can be applied to complete the proof of Theorem 2.
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