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FORCED FREQUENCY LOCKING OF ROTATING WAVES

BUMYIIEHE 3AXOIIJIEHHS YACTOTHU XBUJIb,
IO OBEPTAKOTHCs

We describe the frequency locking of an asymptotically orbitally stable rotating wave solutions to
autonomous S '-equivariant differential equations under the forcing of a rotating wave.

Onucanio 3axonentis YacToTn acHMITTO THUIO op6iTaiLio CTRKUX po3n’#3KiB THIY XBWIIL, wo obep-

TAIOTLCH, ABTOHOMITMX S'—emsiuapialri'lmx Jmdbeperniiannuux pisnsunL npu 36ypeini XBuiielo, 1o
obepraerncs.

1. Introduction and the Main Result. Consider the ordinary differential equation
(@) = f(x(0) + ey(or). (M

In (1) and in what follows, the vector field f: R"— R" is supposed to be C*-smooth.

Further, y: R = R" is C*-smooth and periodic with period one, ® > 0 is a control
parameter, and €2 0 is a small perturbation parameter. Suppose that, for € =0, there
exists an asymptotically orbitally stable periodic solution x,(#) to (1) with period one.
Then, generically, for each pair p and g of relatively prime natural numbers, the
following statement is true:

There exists €45 > 0 and € *'_smooth functions ®_ and w,, mapping the
interval [0, gy) into R, with ®_(0) = w,(0) = p/g and w (g) — w_(g) > 0 for
all e e (0,€,), such that, for me (w_(g), w,(g)), there exists at least one
asymptotically stable p/w-periodic solution to (1) which moves close to the orbit
{xo(t): re R} If  is fixed and & is changed in such a way that @ _(g) < ® <
< o, (¢) remains to be satisfied, then this periodic solution changes Ck—smoolhly. but
its period remains to be equal to p/w. This phenomenon is the so-called forced
frequency locking (or synchronization) of the periodic solution xy(¢) under the small

periodic forcing ey(wt), cf., e.g., [1] (Sec. 7.5.5), [2], [3] (Sec. 11.2), [4] (Chapter
7), [5]. The set

{(0,8): w_(g) < ® < w,(g), O<e<gy}

is the so-called locking region branching off from (w, €) = (p/q.0).

In this paper, we consider forced frequency locking in a special situation: First, we
suppose the vector field f to be equivariant with respect to an Sl-represematicn e’
on R", i.c., we suppose

e f(x) = f(e¥x) forall ye R and xe R" (2)
where A #0 is a skew-symmetric real n X n-matrix such that e” =/. And second,

we suppose the periodic solution x,y(¢) and the forcing y(r) to be so-called rotating
waves, i.e.,

Xo(1) = e"& and y(1) = e'*n with &,me R"
We will show that, generically, all the locking regions, branching off from (p/gq, 0)
with p>1 and g > 1, disappear. In fact, they degenerate to curves. Only the
“prime” locking regions, branching off from (p, 0) or (1/g, 0) with natural p and
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FORCED FREQUENCY LOCKING OF ROTATION WAVES 95

g, remain to exist. If (w, €) belongs to the locking region, for example, branching off
from (w,€) = (1,0), then there exists at least one asymptotically stable rotating

wave solution e®A& w, €) which moves close to

0 :={e'4: te R}.
This solution has the same period as the forcing, that is 1/w. Moreover, for (w, €)
close to (1, 0) but not belonging to the “prime” locking region, there exists an

attracting family of quasi-periodic solutions e®'4&(t + 1T, ®, €) (so-called modulated

waves, cf., e.g., [8]) near 0. Here, T € R parametrizes the family and &(t¢) is non-
stationary and periodic.

Let us formulate our results more exactly.

Thus, we consider the equation

x(1) = f(x(0) + ee®n. 3

The assumption that e'4&, is non-stationary periodic solution to (3) with € = 0 is
equivalent to

Without loss of generality, we assume that one is the minimum period of €4, i.c.
&y # &, forall re (0,1). (5

Note that it follows from (2) and (4) that
(f(§o) — A)Ag, = 0.

In other words, zero is cigenvalue of f'(&,) — A with eigenvector AE,. We assume
that, moreover, this eigenvalue is simple and that all other eigenvalues have negative
real parts, i.e.,

ker (f'(§g) — A) = span{A&,},
R" = ker (f'(&) — A)@im (f'(§) - A)

(6)

and
max {A € spec(f'(Ey) —A): A#0} < 0. (7
It is easy to show (cf. Section 2 of this paper) that (6) and (7) imply that the rotating
wave solution e/4&; to (3) with & = 0 is asymptotically orbitally stable with
asymptotic phase. This means that every solution x(z) to (3) with &= 0, such that
x(0) is sufficiently close to O, exists and stays near G forall 2 0 and that x(r) —
— eU+tDAE 50 as t > oo foracertain Te R
Let {-,-) be the Euclidean scalar product in R" and let f’{io)r denote the
matrix transposed to f'(&,). Then, because of (6), there exists a unique v € R" such
that

FE)Tv = —Av and (AEyv) = 1. ®)
We denote

D) := (e ®n,v) for 9e R,
©)
@, = max ®(¢), P_:= max ®(9),
[} P
and assume that the following statement is true:

ISSN 0041-6053. Ykp. sam. xypu., 1998, m. 50, N* |



= L. RECKE

There exist @,, ¢_e [0, 1) such that
@, = ®(¢y) and DY (@) # 0, and P(@) # 0 (10)
holds for all @ € [0, 1) with @#@..

Note that (10) implies that one is the minimum period of the forcing e'4m.
Now we formulate our main result.
Theorem. Suppose that (2), (4), (6), (7), and (10) hold.

Then there exist €45 > 0, 8y > 0, neighborhoods U and V of O, (ol

functions @, ow_ and &,, &_, mapping [0, 1) into R and R", respectively,
such that the following statements are true:

(i) ©.(0) = 1, @,(0) = ®,, E.(0) = e9AE,, and
1-8p<w_(e)<w,(e) <1+ 8, forall e (0,¢).

(ii)) Let w € (w_(g), ®,(g)). Then there exist two solutions x;(1) =
= e®"&(w,€), j = 1,2, 1o (3) in U. The vectors § j(w,€) depend ck
smoothly on ® and €. The solution x,(t) is asymptotically stable, x,(t) is
unstable. Further, for all t1ye R and all solutions x(t) to (3) with x(1;) € V,

x(t) exists and belongs to U for all t 21y, and if (t,x(t)) does not belong to
the stable manifold of x,(t), then

x(t) — €€ (w,€) 5 0 as t—> oo,

(iii) Let me (1 -8y, w_(g)) or we (w,(€), | + 8y). Then there exists a
family of solutions e®' E(t +1,w,€) to 3)in U (te R is the family
parameter). The vectors & (t, , €) are periodic with respect to t with period
T(w,¢g), E(t,w,€) and T(w, €) depend Ck-.s'm(m.rh[y on w and €. Further,
for all ty e R and all solutions x(t) to (3) with x(t)) € V, x(t) exists and
belongs to U forall t=1,, and

x(t) — e E(t+1,0,8) > 0 as t—eo

for a certain t€ R (which depends on x(0), ® and ¢€).

(iv) T(w,e)> e for olw,(e) or o To (e), §(w,e)> &, (e) for
oTo,E), and §j(w,e)>&_(e) for olw_(g) (j=1,2).

(V) e®AEt, w,e) = eUVAE) for e 1 0 and a certain Tty (which does not
depend on ).

The motivation for our investigations comes from problems in laser dynamics. The
corresponding mathematical models are, as a rule, systems of nonlinear real (for the
carrier densities) and complex (for the complex amplitudes of the optical field)

. . . I . 1
differential equations. Moreover, the models are equivariant with respect to an § -

representation on the state space (e'Y works trivially on the carrier densities and by
multiplication on the complex amplitudes). In [7], the physical nature of this
equivariance is analyzed. The rotating wave solution e’4&, describes the so-called
“stationary lasing” state of the laser with frequency normalized to one. For a
description of the bifurcations of such states from trivial ones (non-lasing states)

see, e.g., [8,9]. The forcing €e®4n describes an external optical signalinjected into
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the laser and coming, for example, from another stationary working laser with
frequency ®.

In these applications, the Euclidean norm || x(#)|| of a solution x(z) is of special
interest. Let us discuss the assertions of our theorem in terms of this quantity.

If x(r) is an attracting solution near €, then || x(¢)|| is stationary or periodic
depending on whether w € (®_(g), w,(g)) or not. In particular, if ® ¢ (w_(g),
w,(€)), then ||x(¢#)]| oscillates regardless of the fact that the norms of the unforced

solution e &, and of the forcing €e®'"n do not oscillate.
Often, one is interested in modulated wave solutions x(t) such that the frequency

of |lx()]]. the so-called modulation frequency, and the so-called modulation
oscilation

max||x(2)|] = min]|x(0)]]
1 !

are large. Our theorem states that (in the described situation) the possibilities to come
up to these demands are quite limited:

Let, for example, @, > 0. Further, for @ > 1, let € = £,(®w) be a solution of
equation @ = w,(g). Then, for small €, the modulation oscillation is small because
of assertion (v) of our theorem. If one tries to increase the modulation oscillation by
increasing €, one has to pay for this by a decrease of the frequency of |[x(1)]|,
because this frequency tends to zero for € T ¢, (w).

In other words, if one tries to get modulated wave solutions near a given rotating
wave solution of an § '-equivariam differential equation by forcing this equation by an
(unmodulated) rotating wave, then one obtains the following result:

For small forcings (i.e., for 0 <& <<g,(w)), small modulation oscillations are
created and the modulation frequency is close to the difference of the frequencies of the
unforced solution on the forcing, that is 1 — @ (because of assertion (v) of our
theorem). On the other hand, for large forcing (i.e., for 0 << & < g,(w)), large
modulation oscillations occur, but the modulation frequencies are small. If € tends to
¢£,(®) from below, then the modulation frequency tends to zero and the modulated
wave solution changes into two (if (10) is satisfied) rotating wave solution. These
rotating wave solutions are close to certain phase shifts of the unperturbed rotating
wave solution and have exactly the same frequency as the forcing. One of them is
asymptotically stable, the other is unstable.

If € isincreased further (i.c., € > €,(w)), then the following facts take place:

In the case of ®_ < 0, the locked rotating wave solutions change quantitatively,
only. No modulated wave solutions occur.

But in the case of @_ >0, there exists a positive solution € = €_(w) of equation
w = w_(g) with > 1. Inequality €_(w) > €, (w) holds and the locking region

{(w.&8): o (e)<cw<w,(e)} = {(w,€): g,(e)<e<e_(w)}

is located above the axis w=1. If € tends to €_(w) from below, then the two
rotating wave solutions coalesce and disappear, and, again, a family of modulated wave
solutions with small modulation frequencies occurs. Hence, if one wants to get a large
modulation frequency and a large modulation oscillation, one has further to increase €
(as long as the local description of the solution behavior given by our theorem is valid).
The bifurcation scenarios in the case with @, <0 may be described analogously.
2. The Proof. For xe R", we denote Qx :=x — (x,v)A§;. Because of (8),
Q is the projector corresponding to the direct sum in (6), i.e., kerQ = ker (f(§q) -

—A) and imQ = im(f'(§y) - A).
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Let us introduce new coordinates ¢ € R and £ e imQ in (3) in the following
way:

x = e(@HOME 4 h). (1

Note that the map (@, h)+> e®4 (E, + h) is injective for ¢ € [0, 1) and small A
(because of (5)), and its image is an open neighborhood of O. Inserting (11) into (3),

weget (@+@)AEy+h) +h = f(Ey+h) + ee A y. Here, we use assumption (2).
Hence, near the orbit O, equation (3) may be written in the standard form

¢ =a(g, h oz¢),

) (12)
h = P(p,h,w,e)h + eF(p),
where
(Ag+h,v))a(p, h, @, €)=
= (-wAEg+h) + f(Eg+h) + ee™94n,v) =
1
= <(1—m)A{§n +h) + (j f (& +sh)ds - f’(&o)]h + ee“‘“n.u>,
0
and, hence,
a(p,h,w,g) =
]
s s <[j f' &y + shyds — f’('c'm)]h 2 Ee—"’"n,v> (1 + (An, )L
0
(13)
Here, we use (4) and (8). Further, we have
|
P(¢,h,0,8)= (I-0Q) <[J (&g +sh)yds — (0 + a(, h, o, E))A],
0
F(9) = e %"n.
In particular, a(¢@,0,®,0)= 1-® and’
P(9,0,0,0)= (I-Q)(f'(&) — A). (14)

Now, we are going to apply Theorem 1 in [10] (Chapter IV.4). In order to verify
the assumptions of this theorem, it suffices to show that there exist f > 0 and a
symmetric, positive definite, real n X n matrix S such that

(SP(,0,w,0)x,x) < —B{Sx,x) forall ¢ and x=#0.

However, this property follows easily from (7) and (14) (cf., e.g., [11] (Chapter X,
Lemma 1.5).
The theorem asserts that, for all ® near one and € near zero, there exists a one-

dimensional invariant manifold
h = eu(p,w,€)

to (12). The map u is ¢*'-smooth and 1 -periodic with respect to ¢. Moreover,
each solution to (12) which moves near @ is asymptotically attracted by a
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corresponding solution on the invariant circle in the following way: For each solution
©(), h(t) 10 (12) such that min{|@(0) - y| + ||2(0) - eu(y, ®,€)]: ye R} is
sufficiently small, there exists a solution Wy(¢) to equation
Vo= a(y,eu(y,w,€),w, &) (15)
such that
fe-wOll + lh(t)-eu(y(r), w,e)]l > 0 as 1.

Thus, it remains to investigate Eq. (15).

Obviously, either there exist stationary solutions to (15) or all solutions are
periodic.

In order to determine the parameters ® near one and € near zero such that (15)
has stationary solutions, we introduce a new scalar parameter o by

w=1+¢eo0.
Then (9) and (13) imply
a(y,eu(y, 1 +eo,e), 1 +ea,e) = e(~o + D(y) + b(y, o, €)) (16)
with
b(y,o.,g) =

((J'{: £/ (B +seuly, 1 + €0, €))ds — f’(gg)] u(y, 1+ eo, €), v>
1 + e{Au(y, 1 + €0, €),v) '

In particular, equality 6(y, o, 0) = O holds forall y and o.
For €> 0, y is a stationary solution to (15) iff

—o + O(y) + b(y,o,e) = 0. (17)

Moreover, this solution is asymptotically stable (unstable, respectively) if ®’(y) +
= awb(w, o, €) is negative (positive, respectively).
First, we determine the singular solutions to (17), i.e., the solutions to (17) with

O (y) + awb(\p.a.a) = 0. (18)

Because of assumption (10), system (17), (18) with € =0 has exactly (up to the 1-
periodicity with respect to y) the solutions oo=®,, y =@, and aa=D_, y =¢_,
and, in both solutions, the implicit function theorem works (with respect to (v, a)).
Hence, the solutions to (17), (18) with small € are o0 = o, (g), ¥ = Yy, (¢) and o =
= o_(g), ¥ = y_(€), where the maps o, and y. are c* -smooth, o, (0) = @,
and y.(0) = @;.

Using (10), it is easy to verify that, if o¢ decreases from o (€) or increases from
o._(€), then exactly two regular solutions wj(a, €) (j=1,2) to (17) grow out of the
singular solutions y = y,(g) or y = y_(g), respectively. The first one corresponds
to an asymptotically stable stationary solution to (15) and, hence, to (12), the second to
an unstable one. The first solution attracts all points of the circle with the exception of
the second one. Hence, the first stationary solution attracts all points of a
neighborhood of the circle with the exception of the points on the stable manifold of
the second stationary solution.

The solutions y;(x, €) can be smoothly continued (by means of the implicit

function theorem) for all small € and ooe (o_(g), o, (€)). For small ¢, other
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solutions to (17) do not exist. Hence, other stationary solutions to (12) with ® near
one and h and € near zero do not exist. Thus, assertions (i) and (ii) of our theorem
are proved with

w.(e) =1 + go(e),
Ei(e) = eV=BA(E + eu(y.(e), 0.(e), €)),

E;(1+ea,€) = e¥(*O4(E, + eu(y;(a, €), 0, €)).

Now, let € be a near zero and ® nearonebut ® <w_(g) or w > w,(g). Then
all solutions to (15) are periodic. Denote by w(r, Wy, @, €) the solution to (15) with
v(0, y,, w, &) = Y, and assume thatis T(w, €) is minimum period. Obviously, we
have T(m,e)— o for ol w,(€) or w T ®_(g). Moreover, because of (13), we
have y(r, ¥y, w,0) = yy + (1 —m)¢. Hence, the theorem is proved with £(r, o,
g) = eV V@04 + eu(y(r, Yy, ®,€), w,e)) and Ty =y, (where y, is
arbitrarily fixed).

3. Remarks. Let us complete the paper by four remarks.

Remark 1. The first remark concerns assumption (10).

A similar to our theorem but more complicated result holds if one assumes that the
map @ has not only two but 2/ (with /e H) local extrema in [0, 1) and that all
these local extrema are non-degenerate. In this case, there exist not only two but 2/
curves w;(g) (for j=1,...,2l) with 0,;0) =1,

®{(0) = max{e ®*n,v) and w5 (0) = min{e *"n,v),
¢ 9
such that the solution behavior of (3) can be described in the following way:

For we (w,;(€), w,(€)), there exist at least two (but a finite number of) rotating
wave solutions to (3) near O. All these solutions have the frequency 1/w. If (w, €)
intersects one of the curves ® = ®;(€), then the number of the rotating wave
solutions changes generically by two. If (w, €) is not located on one of these curves,
then the number of rotating wave solutions is even, half of them are asymptotically
stable, the other’s are unstable.

For ¢ (wy;(e), w (€)), there are no rotating wave solutions near O but a
family of modulated wave solutions as described in our theorem.

Remark 2. Using a more geometric language, the results of our theorem can be
formulated as follows:

For all @ near one and € near zero, there exists an asymptotically stable invariant
manifold M to (1) in the enlarged phase space R"x § ], which is close and
diffeomorphic to the two-torus O xSt oaf (10) is satisfied and if ® e (w_(g),
w,(€)), then rotating number of the flow on M is one and there exist one
asymptotically stable and one unstable 1/w-periodic rotating wave solution on M. If
we (0_(e), w,(€)), then the rotation number depends C*smoothly on ® and €,
and M is foliated by periodic (if T(w,€)w is rational) or quasi-periodic (if T(w,
€)w is irrational) solutions.

Remark 3. Our theorem implies “implicitly” that there are no locking regions near
(w, €)= (0, 1) others than {(w,€): w_(g) < ® < ,(€)}.

Let us show explicitly, why our proof does not work if one would try to construct a
locking region from (w, €) = (p/q, 0) with relatively prime natural numbers p > 1
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and g > 1. Indeed, in contrast to (5) and (10) assume that eA4E, = E, and e4Pn =
= 1. Then one can easily show that a(@, h, w,€) and u(@, ®,€) have tobe 1/g-
periodic with respect to ¢. Therefore, (16) implies that ® has to be 1/g-periodic

too. On the other hand, by assumption, it has to be 1/p-periodic (cf. (9)). Hence, @
must be constant and no arguments being based on the implicit function theorem can
work.

Remark 4. The frequency locking of modulated wave solutions under forcings of
modulated wave type is of interest in laser dynamics too. Here, one has to distinguish
two different phenomena: In the first case, there exist frequency bases of the unforced
solution and of the forcing which synchronize among each other “in pairs™ (cf. [12]).
In the second case, only the modulation frequencies synchronize. This case seems to
be the most important from the point of view of the applications, and some work is in
preparation.
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