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TO THE PROBLEM ON PERIODIC SOLUTIONS OF ONE
CLASS OF SYSTEMS OF DIFFERENCE EQUATIONS

OO IIMTAHHSA ITPO NEPIOJUYHI PO3B’A3KHU
OJHOTI'O KJIACY CHCTEM PIBHHUIIEBUX PIBHSIHb

The scheme of the Samoilenko numerical-analytic method for finding periodic solutions in the form of a
uniformily convergent sequence of periodic functions is applied to one class of difference equations.

Cxema uncebHO-aHasiTHYHOro MeTomy A. M. Camoiinenka sHaxXo[KeHH MepiolHYHHX Po3B’ ASKiB y
BHrJIAAi piBHOMipHO 36iXH0l nocnigonHocTi nepiognusux yHKLIH 3acTocoBaHa L0 OJHOrO KJlacy
PisHHIEBHX PIBHAHL.

In [1], the scheme of the Samoilenko numerical method for finding periodic solutions
was applied to the following system difference equations with A > 0O:

xﬂ = xxil'l + f(xlll' yn)?

(D
Ynel = Ya it gu(xn’ yn)'
In this paper, we consider similar questions concerning the system
Axn =Xy Xy = Axn"" fn(xm yn)!
@

Ayu= Ypse1 = Yn= &n(Xp ¥y

for all real A, but A#—-2,-1,0.

Note that the case A =0 was considered in [2].

We consider system (2) in the domain x e [o, B], x € 311, ne Z, where f,(x,y)
and g,(x,y) are scalar numeric sequences periodic in n with period p and satisfying
the following conditions:

| fulxs )] S M, |gu(x,y)| £ M,
| F(xs ¥ =Fux” ) £ Ky | x" x| + K|y =y"], (3)
| g, y)—gu(x", ") < Ky|x"=x"| + Ky |y —y”|

for x,x',x" e [o, B, ¥, ¥, y"e R!, ne Z
By

l'pi[l ~ A pil(}. )p i 1f 4
B 28 b= +DFTT A, 4)
! Piish ; ’ (7\‘_;.])1’..,1.‘_20 .

we denote the mean values in n calculated over the period.
‘We search periodic solutions of system (2).
Consider the sequence of functions
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Xn +ltx0! Yo) = Xo +
——F——.-.-——-.--—--""i—h
+ 5 - "[ﬁ(xf%xo, 30 3 Cx 300) = A G 300s 7P J’o)):'a
i=0
(5

¥+ (x0, 30) = yo +

n-1
+ Y [S:(x?l(xo’ ¥0)s Y (%0, ¥0)) — &i(x" (X0, Y02 " (%0, J’o))]-
i=0

Each function in (5) is p-periodic in n and if we assume that sequences (5)
uniformly converge to functions x,’(xg, yp) and y; (xp, ¥p), then it is easy to see
that the limit functions will be periodic solutions of system (2) which pass, for n=0,
through the point (xg, yp) if (xq, yo) are solutions of the system

8n (%7 (xg, Yo)» Y5 (%0, ¥0)) = O,
(6)

‘._._—-'"'-.-.-—.-‘-‘-"'-‘--h._.'
f;l (x:(x()» )’0),)’:(150, J’u)) + lxo = (.

So the problem of the existence and determination of p-periodic solutions of
system (2) is reduced to finding conditions that imply the uniform convergence of
sequences (5) and make system (6) solvable.

As already mentioned, the functions x; (xg, yy) and y, (xo,Yy) are p-periodic
in n.

For ne [0,p—1], we have

| % (%0, ¥0) = Xo| =

2 A+1Pi" f,cxo.yo)]

n—i _ A
i=0 [ﬁ(xu,yo) A+1)P -
n—1

Y A+ 1" £, yo) -

i=0
n-1 . y
L e & E(MDP sl
i=0
n-—1 =
nei A+D"-17% i
= A : Laml = p—i ¢ <
EO( +1) ﬁ(x"’y"”(mnf’q%(“n (0, %)
n-1 n =
n—i A —i
< [Z 0D ff(xo-)’o)—%’:i%)-‘;— Emnp o
A+1)" = - nl‘l'—l -
’((__““;LII; 2(7““)‘” fixo, )| £ | A +1)" Y, A+ 1) £i(xg. o) —
i=0
(K-i'l)" n—1 3
—E A+ DP Y A+ 1)
Dy = ( ) ;Zo( )" fi(x0. ¥0)
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l | PE. p=1 . 5
%3”_—1 E( +1DP" £i(x0, ¥0)
a (A+D" =1 n=1 y
A+A)" = = o= A+ 1P | 3 A+ D7 fiCxou 30)| +
[ A +1P -1 ; }E—G 0- 70
?l; n
’ ’5_7\4:‘-—}))“’0_*_( +17 E(R'-FD !f(xt):}’o)
A " n—1 N
[asr _Eyfi_]l;ﬁ_'(l”)'v} 3 047 i
n__qqn—l . '
%%%p—:% X, O+ 5

](1+x)" A+DP|(IA+1]7"=1) + |[1-a+2)"|(1=|A+1/77")
[1-a+0P|(Ir+1]7"-1)
= Ma,(A), 0]

Wherc
[a+0)" = +DP [ (|a+1]™" 1) + |[1-@+ 0" |(1-|A+1]77")
[1-qa+0)P|(|a+1]""-1)
In the same way, we can get, for n e [0, p— 1], the following estimate
|J’n(xo»)’n) = J’ol Moy (A),
where og(A) = llm o, (A).

(8

an()") =

Since the collecnon of numbers (8) is finite we choose among them the maximal
number and denote it by d».

Since the functions in sequences (5) are p-periodic, we can use induction to show
that, forall m=0,1,2,..., all ne Z, and xge [+ d M, B +d M], the functions

xy (xg, ¥o) belongto [ct, B].
Let us denote

- no_ 1_(7"4"1)” P £, —ig
L) = @y - G G| S el ¢
I-(A+D" ,
’ 2“1;},1 2| H1pis | ©)

i=n
By direct verification, we can show that L, (1) = o ().
A straightfor ward calculation shows that

La(o, ) < 0, 22 41 ], (10)
where
max 7, < la,,(?\.), ' (11
0<n<p-1
A +1[P/2 41

o,(0) < fll“ll—li o,(A), (12)

rx |pf2
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a,(A) < a,0), ne[0p-1] (13)

Consequently,
La(o, () < a2 4 2g ,I(x)]. (14)
Lo(a,() < 0,02, + Lzm) as)
Lo(etaM) < Lo(@,(0)) £ @,(0)[50,(0) + 2T, a6
La(a,(0)) < fllx+1i—1l[{—%f—llL1(a,,(x)). an

Let us estimate the difference

’
| X3 (%o, 0) = % (X0, 30)| <

<

" A +1)" n-—=1 &
[(1*‘7») ETT};———(K 1)’”:[2(7“”) [Kl! “xo“FKzl)’:l;—)’ol]

A+1)" -1 i
W Z(x+1)p [Kllxu xﬁ['l"KZly}:.‘_‘yO‘] =
£ { Kllﬁ(an(x)) e KZLK(U'H(O)) ]M (18)
In the same way, we can get the estimate
Yo (X0 ¥0) = ¥u(x0 ¥0)| £ [KiLo(et, (M) + KaLo(0:, (0)) ]M. (19

In view of (14) and (17), it follows from inequalities (18) and (19) that

|x§(‘r0’ Yo) — x,il(.ro, yO)[ s I:Klau(l)[%an()’) + G,,(l)]]

PR 1 i _

+ By~ H7~+11—lim%(x)[§%@) +50¢n(7\')] -
- [;{ + K EHKHFHMEE}_JQ (ON
Ty A +1P72 =] 7

: _ (20)
|92 Geor ¥0) = YaCxor yo)| < [Kla,.(m[ 0, (0) + —@}] +

1 1
4 [KZO‘-"(O)[EGH(O) + ian(ﬁjJ] = (Kl i 5 Kz)a'n(o)gs
where

N= max [ 0, (M) + = ,l(x)}
nel0,p=— i]
The induction implies that

| %0 Ceor 30) = 27 (x0,30)| S af'Mo, () < gf"Md,,
|3+ (00 ¥0) = Yt (x0s W0)| € g5'Ma, (0) < g5 Mg, s B2y (21
where
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|A+1P72 +1
[A+1P72 -1

Thus, for sequences (5) to be convergent, it is sufficient that the following
inequalities hold:

q, = [KI + Kz%”?\a"'u—lr ]N’ qs = [K1+K2]§p‘

It follows from (21) that the limit functions x$™(xg, ¥o), 8™ (x0. yo) satisfy the
inequalities j

x -1
|er )(xo:_yo} - x,’,”(xg,yo)| < g'(1-qf") " Mdy,
(23)

1A

g5'(1 "QS’J"IMg.

- Consequently, the problem of finding a periodic solution of system (2) is reduced to
the calculation of function (5) if it is known that such a solution exists and if we know
the point (xq, yg) through which it passes for n=0. But, as has been noted, for limit
functions of sequences (5) to be solutions of system (2), it is necessary that equations
(6) be solvable with respect to xq, ¥g.

A solution of system (6) is the point through which a p-periodic solution of system
(2) passes for n=0. Then the number of periodic solutions of system (2) is
determined by the number of solutions of system (6).

Let us denote the left-hand sides of equations (6) by A™(xq, yo) and A”(xg, ¥o),
respectively, and let A}, (xg, ¥o) and A}, (xg, o) denote the expressions

Y (%0, ¥0) = Y (%0s }’o)‘

e
K5 (x0,70) = Fu(x5™ (x0, ¥0)s ¥4 (%0, %)) + Ao,

Ay (X0, Yo) = & (xfam)(xn: Yo)s y,(,m)(xo, Yo ))-

Rewrite system (6) in the form

A¥(xg,%0) = 0, A'(xg, %) = 0. 24
Consider the equations
An(x0 %) = 0, A(xp.¥) = 0. (25)

It is not possible, generally speaking, to solve system (24) because it is not always
possible to find the limit functions x;, (xg, yo) and y, (xg, o). But it can be shown

that the functions A%, A},, A%, A” are continuous in (xg, yp), & +d<xy<B-a,
—oo <y, < e, and, by using relations (23), one can obtain the estimates

|a% - A% | < [Kig" (- g dy + Kpaf (1 - o) dy M,

m

(26)
|& - ] < [Kigl' (- q) ' dy+ Kagf (1= 05) ' dy M,

which imply that A%, — A%, A} — A as m — .

Here, we encounter the following problem: Prove that system (24) has solutions if
system (25) has a solution for some m. This problem is solved by the following
theorem:

Theorem 1. Let system (2) be such that

(1) inequalities (3) and (22) hold and the interval [o, B] is such that

(B-a)/2>dy,
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(ii) for a certain integer m, system (25) has an isolated solution (xu, yu),
(iii) at the singular point (.ro, _vo), the index of equations (25) is different from
zero,
(iv) there exists a closed convex region D belonging to the domain D 5=1 (x,
& 0 { 0
) O +dy, <x<B-—d, —eo<y<oo} and having the point (.ru, ¥ u) as a unique
solution of system (24) such that the inequalities
. X - -1
inf Jﬂ}n(i‘n, J‘o)l [Kial"(1—q)) 'y + Kagh' (1 - ¢3) " dy M,

Tp-Yp €1y,

v

(27)
inf | A% (xe 30| 2 [Kigl" (=) dy + Kags' (1= )™ dy IM

Xo. v €Ty,
hold on its boundary Tp .

Then system (2) has a p-periodic solution x =x,, x =y, for which ( x(0),
¥(0)) € Dy, ;

This solution is the limit of the uniformly convergent sequence (5). An estimate [or
the difference belween an cxact solution and its m-th approximation is given by
inequalities (23).

The prool of Theorem 1 is based on estimates (26) and can be carried out similarly
to [3].

It is not always easy o check conditions (iv) in Theorem | because this requires a
suitable choice of the domain Dy. However. for many systems, this condition is
satisfied lor a more or less arbitrary domain.

This is the case, for example, [or of the form

A":H - 1’.\' + Ef.if(x‘ J )‘
(28)
Ay, = gg,(xy)

Here, £ is a small parameter.

For such syslems, it is possible to find &, such that, for all 0<e<gg, the
conditions of Theorem | are satisfied and incqualities (27) with m =0 hold for a
small disk centered at the point the coordinates of which are solutions of system (25).
Taking this into account, we get the following theorem for systems of the form (28):

Theorem 2. Let the functions f,(x,¥), g,(x,)) satisfy inequalities (3). Then
there exists €y>0 such that, for all 0 <e<egy system (28) has a periodic
solution whenever the averaged system

Ax, = Ax, + &f(x,y), Ay,= gg,(x ) (29)

has an isolated singular point (xo, yo),

— e P ——
)“xc + Eﬁz(-roa}'o) = 0, agn(xo'yu) =0,

and the index is different from zero.
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