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HECKIHYEHHI CUCTEMHM CTOXACTHYHHX
JUOEPEHIIAJIHUX PIBHAHD TA TEAKI 'PATIACTI
MO/JEJII HA KOMITAKTHUX PIMAHOBHUX MHOI'OBHIAX

Stochastic dynamics associated with Gibbs measures on an infinite product of compact Riemannian
manifolds is constructed. The probabilistic representations for the corresponding Feller semigroups are
obtained. The uniqueness of the dynamics is proved.

TNo6y ioBano croxXacTuuny JIHIAaMIKYy, acolliffonaly 3 116eiBChKHMM MipaMu 114 lecKinyeniux JobyKax
KOMMAKTHHX piManosux muorosu/tin. Ojepsxanio iiMonipuiciii sobpaxens elrnepiBehKux MiBrpyn.
Hosejieno euiicts JIHIamMiki.

1. Introduction. Constructions of the stochastic dynamics associated with Gibbs
measures are connected with so-called stochastic quantization methods. In the case of
a linear single spin space, such constructions can be covered via the general theory of
stochastic differential equations (SDE) on infinite dimensional linear spaces. This case
has been actively studied, see, e.g., [1] and the review given in [2].

The case of a compact Riemannian manifold as a single space has received a great
interest in recent years. The construction of Feller semigroups is given in [3, 4]. L,-
stochastic dynamics has been considered in [5]. These works contain also an overlook
of previous results. For an alternative approach, see also [6, 7]. Most results in these
papers are devoted to interactions of a finite range.

. In the paper [8], the construction of Glauber dynamics is given for some lattice
models on compact Lie groups and their homogeneous spaces equipped with invariant
Riemannian structure, including the case of infinite range of interaction. In the present
work, we extend the approach of [8] to the case of a general compact Riemannian
manifold M. In order to be able to investigate an infinite system of SDE on M, we
use an embedding of M into a Euclidean space. This gives us a possibility to apply

the general theory of SDE in Hilbert spaces.
' In the first section, we study a stochastic differential equation on M in terms of the
embedding of M into a Euclidean space. This section can be considered as an adapta-
tion of well-known results (see, e.g., [9]) to our framework. In the next section, we in-

vestigate a system of SDE on M Zd, where Zis the d-dimensional integer lattice. In
particular, we construct solutions to these SDE and study their dependence on initial
data. As a result, we obtain probabilistic representations for corresponding Feller
semigroups. In the third section, we apply these results to lattice models associated

with Gibbs measures on M Zd‘ In the last section, we prove the uniqueness of the cor-
responding stochastic dynamics.
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2. Stochastic differential equations on compact manifolds via embedding into
Euclidean spaces. Let M be a compact complete connected N-dimensional manifold
and let TM be its tangent bundle. We will consider the following stochastic differen-
tial equation (SDE) of the Stratonovich type on M:
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d&(t) = a(E()dt + B(E(2) - dw (o), (M

where a isa Cl-vector fieldon M, B isa C?mapping M xRN — TM such that
B(x)e &£ (RN, T.M) forany x € M, and w is a Wiener process in RN

It is well known that the Cauchy problem for this equation has a unique solution &,
for any initial value x € M (see, e.g., [9, 10]). The aim of this section is to show, fol-
lowing [9], how this result can be obtained by the embedding technique.

Let ¢@: M— R" be a smooth embedding of M into a Euclidean space R” It is
well known that such embedding exists if n>2N+ 1. We will identify M with its
image @(M) CR™ Then the tangent bundle 7M is a submanifold of R”"xXR”" Let
us define the normal bundle vM with the fibers v M being the orthogonal comple-

ments to the corresponding fibers 7. in R"™

Lemma 1 [9]. There exists r>0 and a neighborhood U, CvM of the zero
section (M, 0) of VM, U,={(x,v): |v|<r}, which is diffeomorphic to a neigh-
borhood N,= UxeM{J’E R¥: |y—x|<r} of M in R".

N, will be called the tubular neighborhood of M with radius r.

Let us choose some positive r; <r and a smooth function F: R"— R! with
support in N, thatis equal to 1 on N, . Having such a function, for any mapping ®

of M into some linear space P, we define a mapping O : R"— P as follows:
®(y) =0, yeN,, 2)
and
®() = PxNFG), ye N, 3)

where (xy,vy) is the image of y in U,.
Let us consider the SDE

d&(r) = A(E()dt + B(E()cdw(®) @
in R" orin the It6 form,
dE(n) = [ AEw) + %tré’(&(r))é(&m)} dt + B(E)dw(). s)

This equation obviously has Lipschitz coefficients with compact support and,
therefore, it has a unique solution &, for any initial data y € R”. The process &
generates a Markov semigroup T;, £=0, in the space Cp(R") by the formula

Tiu(y) = E(u(Ey(1). ©)

The generator H of this semigroup is given on the space CE(R”) by the expression
1 B
Hu(y) = —teD*u(y) + (A0), Va( g, )

where Du(y)= B*(»)Vu(y) (V means the gradient) and (-, ‘)gn is the Euclidean
scalar product in R".

Theorem 1 [9]). For any xe M, the process &, does not leave M a. s. and
gives the unique solution to the corresponding Cauchy problem for equation (1).

Proof. Note, first, that any solution of (1) also solves (4) and, conversely, any
solution of (4) that does not leave M solves (1). The uniqueness follows from the uni-
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" 328 S. ALBEVERIO, A. DALETSKII, Yu. KONDRATIEV

queness for (4). Therefore, it suffices to prove the first part of the theorem. It is easy to
see that it follows from the Ité formula applied to the function D(y)= [v_\.12 on N,

D) = D(y) + [ HD(E()dn + | BE®)' VD(E() dw(t) (8)
0 0

and D(E,(¢)) =0 because the vector fields A(y) and B(y)X, X € R¥, are tangent
to the level surface {ze R": D(z)= D(y)} of the function D.

Corollary. The formula T u(x)=E(u(E.(1)) defines a semigroup T, t20,
in the space C(M). It is the unique Markov semigroup with the generator coin-

ciding with the restriction of the operator H to C*(M) (see, e.g., [9, 10]).
Let as assume from now that M is equipped with a Riemannian structure given by

the operator field G(x): TeM — T, M. ‘We denole the corresponding scalar product
in TeM by ()g,» (% YV)g®)=(G(x)X,Y). Let Ag, dg, and J; be the corre- -

sponding Laplace-Beltrami operator, gradient ( d g f(x)= Gl x)F (x)), and the co-
variant derivative, respectively. We will omit the lower index G if possible.
Let us suppose that the diffusion operator B satisfies the equality

_ G~ (x) = B(x)B"(x). ©)
Then the generator H of the corresponding process &, has the form
Hf(x) = Af(x) + (a(x)+ b(x), df (x)). w " (10)

where the vector field b is defined by the expression [9]
T -%u- (B'(x)B (x). an

We understand the expression B’ (x)B(x) as a linear operator A : RN S RN®@T .M

defined by (Ah,, hy)= (B(x)hy) B(x)h;. )

Note that, for each metric G, the diffusion operator B satisfying (9) exists for
some N.

Let us consider a probability measure [t on M of the following form:

du(x) = %em_’ " {8 (12)

where dx is the Riemannian volume measure on M, E is a twice differentiable real
function on M, and Z is a normalization constant. For this measure, the following
formula of integration by parts is true:

[ w X dp) = - [ [(AGX) g + divgX@Ju(x)dp(x),  (13)-

where
A(x) = dGgE(x)e TeM

is the vector logarithmic derivative of W and divg X (x)= trdg X (x).
We consider a pre-Dirichlet form E associated with the measure [L:

y -
E(u,v) = 3 [ (du(x), dv(x) gdu(x), (14)
where u; v € Cz('M). It follows from the formula of integration by parts (13) that
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INFINITE SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS ... 32¢
E(w,v) = [ Hyu(e)w(x)du(x), 1s;

where
Hyu = lmc l(A du) | (16
i 2 g G s

Let B satisfy (9) and let @ = A — b. Then the operator H associated with the pro-
cess &, coincides with H\, .

Remark 1. By virtue of the smoothness of the embedding of M into R” and the
compactness of M, the following estimate holds for any C : (R™M):

' ; arz
RH

0 d
ué-;f(xy) [RH < eilldr@lly y < ol fxy)

where the constants ¢; and ¢, do not depend on f and y € N,. In particular, fo
xe M,

NVFE)Ign < el dfC gy < eall VI gn- (18)

3. Systems of stochastic differential equations on M. The aim of this section is
to extend the approach discussed above to the case of an infinite system of SDE of ¢
special type.

Let us consider the integer lattice Z“r, d =1, and define the space Mzd, which is
an infinite product of manifolds M:

MZ =x M, M,=M, keZl. (19)

We also introduce the space M4 =X, 4M, for any A CZ< Let us define the

space (R”)Zd similarly to Mz

The elements of these spaces will be denoted by x=(x;), y=(y,), etc., where
X Yp etc. are their k-components, ke Z4. We will write A, d,, etc. for operators
A, d, etc. acting in the corresponding spaces with index k. For'example,

d f(x) = G"l(xk)%f(x), (X(x), Y(x), = {G(xp) X1 (x), Y ().

Let & be the family of all finite subsets of Z< For any ke Z“', we will consider
a family V= (VA‘,Q)AE i of C‘-mappings Var MA S TM such that V4 (x)e
= Tkak 3

We will assume the following:

sup sup D [IVa@llg, plAl < =, (20)
kez! veM? Aca

where |A] is the number of elements of A and ||V, ()|, My is the norm in
: T,
Ty M, associated with our fixed Riemannian structure,
sup Y, sup > Nd; vy, &)l T M < oo, (21)
kez! jezd erMZ Aed

where || d; Vs (x) Il Ty MOTy M is the corresponding norm in the space S‘j\.jM ® Ty M.
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330 ' S. ALBEVERIO, A, DALETSKII, Yu. KONDRATIEV

‘We will consider now a system of SDE of the following form:
dE, (1) = a,(E())dt + BYE, (1) -dwy(t), £,(0) = x,e M, ke 294,
where

ag(x) = Y, Vaux), (23)

Aefl

the mapping B,: Mx RN — TM is C? uniformly in k in the sense that

sup (” Bk(x)”_ﬁ(RN_ Ty M) g2 || B};(J‘) ”L(I{N‘L(RN, TeM)) +
xeM, keZ!

+ | Be(x) “L(R”‘L(RN.L(R‘\’.‘&M}}I) = o

and w;, are independent Wiener processes with values in R,
In order to use the theory of infinite-dimensional SDE, we will rewrite this system
in the form of an SDE in a Hilbert space. For this, let us introduce the Hilbert space

22.‘,,(7_."~—> R") C (R")Z" with the norm ||- Hp given by the expression

2
”x“i = 2 [xk] P]k[’ (24)
kez! '

where p = (p;)sez 20 s SOMe weight sequence, p € [;. Obviously, JZ_‘,,(Z“’—:» R™)
contains the space of bounded sequences and, therefore, contains Mz (as in the pre-
vious section, we identify M with its image @(M) C R").

Similarly, we define the space l;,ﬂ,,(Z“’—} RY) and assume that the spaces
[,(Z9— RY) and [,(Z9— R") are defined in the usual way (which corresponds to
p,=1). Below, we will use the notation

I (Z/>RY) = H,, 1, (Z/5RV) = X
As above, let us extend the coefTicienls a, and B to all (R”)Zd. We set
Ve = Vo) [T FOs _ (25)
jed

where x,= {(xj)\-}fefl = MZd’

Ak = 2 f‘})‘l..k’ (26)
Aed
Bi) = Bi((x0),) Fyp)- 7
Let us consider the equation
dg(r) = A(E(n)dt + B(E(1) -dw(r), (28)

_in the Hilbert space ﬁ{P, where A(y) is an element of 9{;, with components & (y),
B(y) is the Hilbert—Schmidt operator X — 5'{,, generated by the block-diagonal ma-
trix with nonzero blocks f?k () = Ek(y w) (the space of such Hilbert—Schmidt oper-
ators will be denoted by S,(X H,,)), and w(¢) is the Wiener process in X.
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Lemma 2. 1. There exists a weight sequence p € | | Such that the mapping
Hy= x> A(x) € H, (29)

is bounded and satisfies the Lipschitz condition.
2. The mapping

Hym x> Bx) € S, H,y) ' (30)

is twice continuously differentiable with bounded derivatives for any weight sequence
Proof. A candidate for the derivative a’(y), if it exists, is given by the block ma-
trix with the elements -

ay(y) = —-a() € L(R).

oy;
Then
o = X %{Vf ] T F((J’);)J = Y [a—?,—_vAlk(x“,)] T 7)) +
Aea 4 ied Aea=""t ieA
5 VA.;‘(X_\J[%F((}');)} IT 7). @1
Aefl Vi ieA,iz]

where, for any P, Q € R", the expression P-(Q means an nXn matrix with com-
ponents (P - Q);.szfQj.
Then, by virtue of (16), for some constant ¢ and any y e (R") Zd,

Il a@O) Nl ymny < ¢ 2 [Nl VA.k(x_;.)linjmnkM + I vA.k(x_\‘)llTka]. (32)
Aed ’

Let us consider the matrix r with elements ry; = Sup e gz ||@;(») || . By vir-
tue of conditions (20) and (21), the sum 2}_ Tkj is uniformly bounded in k. This is

sufficient for the existence of the positive sequence (p )€ [ such that Ek Tkj Pkt <
< Cpm for some constant C [11]. By Schur’s test, the matrix r generates a bounded
operator in 13_;,(Z‘f—> R!) with norm less than C (see, e.g., [12]). It is easy to see
that, for any y e (R”)Zd‘ the matrix @"(y) generates then a bounded operator in J{P
with norm bounded by C uniformly in y. Thus, mapping (29) is differentiable in any
direction h e H, with the derivative @’(y)h. This implies that this mapping satisfies

the Lipschitz condition with Lipschitz constant C.
The proof of the second statement can be obtained by a similar argument and is, in

fact, simpler because both first-order and second-order derivatives of B have a block-
diagonal form. '

Now let us fix some weight sequence as in Lemma 2 and consider SDE (28) in the
space H,.

Lemma 3. The Cauchy problem for equation (28) is uniquely solvable for any
initial data y e }f},, and its solution &, continuously depends on y in the
sSquare medan sense.

Proof. This statement follows from Lemma 2 and the general theory of SDE in
Hilbert spaces (see, e.g., [13]).
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We can now introduce semigroups 7 acting in the space C;,(S‘{',,) :
T () = E(F(E,(0)). (33)

o
Let us denote by Mf the space M z equipped with the topology induced from
Iy, P(Z‘“’—) R™). This topology coincides with the topology generated by the metric

. 12
pplx, x) = [ Z P]k|P(xksxfc)2] ) (34)

kezd
where p is the metric on M that corresponds to our fixed Riemannian structure.
We will denote by C;,(M.fd) the space of bounded continuous functions on Mfﬁ i
Let us fix a weight sequence p from Lemma 3.
. Theorem 2. The solution E.(t) of equation (28) in ﬂ-[p with an initial value
xe M2 does not leave M%" a.s. The process &, defines the semigroups T,,

T f(y) = u(t,x) = E(f(E,(2)), (35

i zd
acting in the space C;,(Mp )

Proof. Let us prove that the process &,, x € Mz, stays on MZ“. For this,
similarly to the proof of Theorem 1, we can apply the It6 formula to the functions
D(y)= D(y,) and show that D, (E,(¢)) =0 forall ke Z4

The process E“.(r) is continuous in y € }[P a.s. and, therefore, &.(¢) is continu-
d o
ousin x € Mf . Hence, for fe Cb(Mz ), the function wu(¢, -) also belongs to
o .
Cy(M%).

Our next goal is to establish the invariance of some spaces of smooth functions on
MZ%“, Let us suppose that, forany A € 4 and any ke Z, the function V., belongs
to the class C2*!'(M4, TM), Qe N, 022, and _

sup Y, sup 2, N, s di Vau®|l < o=, - (36)

kezd igessaly seM? Aca
fbr any g < Q (||-]] denotes here the natural norm in the space ?:"hM ®..® LWM ®
® Ty M).

We also assume that the mappings B, belong to the class q§2+2 uniformly in &
in the similar sense as in (22).

First of all, let us introduce the spaces RC‘f(Mfd), g=1, of functions u on MZﬂr
which are restrictions of functions & e Cf (H P) to MZ* (the space of ¢ times con-
tinuously differentiable functions on H,, bounded together with derivatives up to the
gth order). Let us remark that RC} (MZH) contains the space of cylinder functions

P
FCI M2,
Lemma 4. There exists a weight sequence p € || such that the semigroup T,
d d
preserves the spaces RC] (MI% ), g =< 0, as well as the space Cj, (1’1&‘?r ) :
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Proof. Generalizing the construction given in the proof of Lemma 2, one can
show that there exists a weight sequence p e [ such that the mapping

H,s x> d(x) € H, (37

is Q times differentiable and its Q-derivative satisfies the Lipschitz condition.
The mapping

Hyo x> B(x) e Sy(X Hp) ' (38)
is Q +2 times continuously differentiable with bounded derivatives for any weight
sequence p € [ by virtue of the Q + 2-differentiability of B,. It follows then from

the general theory of SDE in a Hilbert space that the semigroup ’f} preserves the

spaces Cf(H »)» 4 < Q. This obviously implies the statement of the lemma.
4. Stochastic dynamics for lattice models associated with Gibbs measures on

MZ". Let us consider a family of potentials U= (U4),. 5, Where A is the set of all
finite subsets of Z¢ Uy e fCE(MZd).

Let A(k) be the set of all sets A € A that contain a point k € Z9 We will as-
sume the following:

Y, [Ua(x)] < e (39)
Ae k)
forany xe MZ and ke zd
sup sup 3 N diUa) I 1A] < e, (40)
kez xem® Aeﬁ
sup 3, sup 3 [ldjdila@)ll < = (41)

kezd jezd xem®™ Aca

Let T"(U) be the family of Gibbs measures associated with the family of potentials
. Heuristically any e I'(U) can be given by the expression

d(x) = %eﬁmdx, s (42)
where dx=®dxy is the product of invariant measures on M} and
E(x)= Y, Uax). , (43)
AeA

For a rigorous definition, see, e.g., [5].
Let us mention that, for u e I'(U), the following formula of mtegratron by parts is

true: For any u € }‘(’L‘“’(MZ ) and a finite number of vector fields Xye TMy,
[ (diulx), Xu(x)) dp(x) =
k .
= — [ [(Ar(x), Xu(x) + diveXax)] u(x)dp(x), (44)
k

where Ap(x)=dUs(x), Up(x)= Eﬁem) Us(x), (Ag(x) and Ug(x) existby
virtue of conditions (39)—(40) [5]).
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We will call A= (Ay) the logarithmic derivative of L.

The set I'(U) is not empty under conditions (39)—-(40) (see, e.g., [5]). Let us fix
some Le I'(U).

For u,ve fC‘Z(MZd), let us define a pre-Dirichlet form

Eu,v) = éJ‘Z (dgu(x), dgv(x)) du(x). (45)
k

Obviously, it has a generator Hy, acting in Lg(MZd, i) on the domain }'C‘Z(Mzd)
as

Hyu(x) = —%Z Agu(x) — %E (Ax(x), diu(x)),. (46)
. k k

Remark 2. In the case of finite range of interactions, conditions (39)—(41) are
obviously satisfied.
Theorem 3. There exists a weight sequence pe€ || and a Markov process &,

o
with values in Mf such that the associated semigroup Tyu(x)=E(u(§.(1))

acts in the space C;,(Mjfd) and its generator coincides with Hy on FC*( Mffd i

Proof. Lel us consider system (22) with By=2B given by (9), V, =d U, for
A#{k}, and V, (xX)=dUsx)-b(xy) for A={k}, s dcfined by (11). Condi-
tions (20) and (21) are satisfied by virtue of (40) and (41). The statement of the theo-
rem now follows from Theorem 2.

Remarks. 3. It is easy lo impose conditions on the derivalives up to the Qth order
el
of the functions U, thatensure the invariance of the classes RC";’(M'f ) g=<0,
with respect to the semigroup T for some weight sequence p € [5.
4. In particular, let us suppose that the potentials Uy are 4-differentiable and

:,up Z sup z [l d; (:'“deA(r)” < oo, (47)
kez! fiaia reM" Aen
sup ¥ sup > ld; iy di dpUp ()] < oo (48)

kez! fj-fy. iy \EMZ Aed

Then the semigroup T leaves the space RC‘E(Mﬁ'd) invariant. Hence, the operator
H\ is essentially self-adjoint on RC;?(M?J). It can be shown by analogy with [1]
that it is also essentially self-adjoint in }‘CZ(MZJ ). The last result has becn proved in
the case of finile range of interactions in [5].

5. Uniqueness of dynamics. The aim of (his section is to prove the essential sell-
adjointness of the operator Hy; under weaker conditions than in Remark 4.

Theorem 4. For any family U of potentials satisfying assumptions (40), (41),
and any Gibbs measure | € T'(U), the pre-Dirichlet operator Hy defined on

FC2(M 21 ) is an essentially self-udjoint operator in Lo (M zd, 1.
Proof. We will essentially follow the scheme of [I, 5].

Let us approximate the potentials U, by smooth functions Ul e C”(M" ), ne
€ N, such that .

|05 =Uallcagzny < e, S
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where d(A)=max, 4 |[k|. Itis easy to see that the potentials U} satisfy conditions
(40) and (41) and

sup  sup_ E | US| [A] < e, ' (50)
keZ"‘xeMz Aea
sup Y swp 3 |4 Ui ()] < = (51)

kez! Jsz"xeMZ Aen

uniformly in .

We set
Vi(x) = Y, Ui (52)
Aekyd(A)Sn
and
Y(x) = d Vi (x). (53)

Let us remark that U} € C=(M*An), where A,={ke Z%: |k|<n}, and, therefore,
=0 for |k|>n.
For any ne N, we define a differential operator H, on the domain
sz(Mzd) = Lg(MZJ, ) by the formula
Hu(x) = - 2 Au(x) - = Z (Ne(0), dgu(x)) - (54)
. keé“' kez*’
We will use the parabolic criterion of essential self-adjointness [15]. Lel us con-

sider the following Cauchy problems:

d '
Z‘Tr“u(f) + Hyuy(t) = 0,

(55)
un(0) = f, te[0,1],
where fe TC‘z(MZd) is arbitrary. If we prove the existence of strong solptions
s 10, 11— La (M%) ) " (56)
of (55) such that
up(t)e D(HY) (57
forany ne N and te [0, 1], where D(H,) is the domain of Hy, and
j ICH, — H,)u, (0 @(Mz'f.u)dr = 0, n-—eo, (58)

then the operator H, is essentially self-adjoint in LZ(MZJ, L.

Let us remark first that the Cauchy problem (55) with fixed fe SCCZ(MZM) is fi-
nite-dimensional. Hence, there exists the classical solution u, of (55) and, moreover,

wy(t)e FC? (MZ Yandisa C!- functlon in t. Therefore, conditions (56) and (57)
are salisfied.
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In order to prove the third condition, let us consider the system of SDE
dey = a;(§(0)dt + By(&(1) - dwilt),

ENO0) = x,e M, ke Z4

(59)

with B,=B as above, a; = ZAEA VA k(x), where V{, is constructed similarly to
n

the proof of Theorem 3, i.e., Vi ,=d U} for A#{k} and Vj,(x) = d,Uj(x)-
—b(x,) for A={k}. '
Obviously, the coefficients of this system satisfy conditions (20) and (21) uni-

d
formly in n. Then, by Theorem 2, it is solvable in M‘f with some weight sequence

p forany n. Let T"(t) be the corresponding semigroup. Then u,(t)=T"(¢)f. Let
us remark that the coefficient &, in the framework of Sec.2 belongs to the class

o
.}'C;((R")Z ) and [[(.?z,,)’(y)||Jf‘(:,{ﬂJ < C for some constant C uniformly in y e ),

and n. ;
It follows from the general theory of SDE in Hilbert spaces that

liiy (8,) k| < const e 2| Al )l fllc)- (60)
We can now check condition (58). We have

(Hu'"Hn)“u = Z (Ag = A, diity )y (61)
k

and, by virtue of (60) and (17),
| (Hy = Huy(0)] < const- eS| AGx) = A"l I £l ) (62)

d
uniformly in n and x € Mff . Hence,

l i
{]1 (Hy — H)uy 0] 2yt < (63)
const- sup IIA(x)—A”(x)llﬂp, (64)
xeMZ'
By definition,
[A@) - Abx) | = | D dUs(x) = Y, dUix) + b(x)d(n k)| <
Aea Aed, d(A)sn

< Y |dUalx)- QUL | +
Aed, d(A)sn

+ > |dUs@)| + bG8 kD | (65)
Aed,d(A)>n
where 8(n, m)=0 if n>m, and 8=1 if n<m. Then, according to (49),

sup_ | (Ax(x)~ ()] <

xeM®
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Sey e A ¢ 5+ sup S, |dUa)| (66)
Acq reMZ Aea.d(A)sn

and

sup (| A=Al <

xEMZ‘
< Cge_” Z Plkl + ¢ 2 plkl +
kezd kezd |k|>n
+ sup Y |dUa®)] = 0, nee 67)

d
xeMZ Aed, d(A)=n

Albeverio S., Kondratiev Yu., Rickner M. Dirichlet operators via stochastic analysis // J. Func.
Anal. — 1995, — 128, N* 1. - P. 102-138.

Albeverio S., Kondratiev Yu., Rsckner M. Quantum fields, Markov fields and stochastic quantiza-
ti%n I Stgochastic Analysis: Mathematics and Physics, NATO ASIL — New York: Acad. Press, 1995.
- P, 3-29,

Stroock D., Zegarlinski B. The equivalence of the logarithmic Sobolev inequality and Dob-
rushin—Shlosman mixing condition // Comm. Math. Phys. — 1992, — 144, — P, 303-323.

Stroock D., Zegarlinski B. The logarithmic Sobolev inequality for continuous spin systems on a
lattice // J. Func, Anal, — 1992, — 104, P, 299-326. )
Albeverio §., Kondratiev Yu., Réckner M. Uniqueness of the stochastic dynamics for continuous
spin systems on a lattice // J. Func, Anal, — 1995, - 133, N® [, - P, 10-20.

Antonjuk A. Val., Antonjuk A. Vic. Smoothness properties of semigroups for Dirichlet operators of
Gibbs measures // J. Func. Anal. — 1995, — 127, N® 2 — P, 390-430.

Albeverio S., Antonjuk A. Val., Antonjuk A. Vic., Kondratiev Yu. Stochastic dynamics in some lat-
tice spin systems // Methods of Functional Analysis and Topology. — 1995. -1, N® . - P. 3-28.
Albeverio 8., Daletskii A., Kondratiev Yu. A stochastic differential equation approach to some lat-
tice models on compact Lie groups / Random Operators and Stochastic Equations. — 1996. - 4,
N3, - P. 227-237.

Elwarthy K. D. Geometric aspects of diffusions on manifolds // Lect. Notes Math. — 1988. — 1362.
- P. 276-425.

. fkeda N., Watanabe S. Stochastic differential equations and diffusion processes. — Amsterdam:

North-Holland-Kodansha, 1989. — 555 p.

. Leha G., Ritter G. On solutions of stochastic differential equations with discontinuous drift in Hil-

bert space // Math, Ann. - 270. - P. 109-123.

. Halmos P. R. A Hilbert space problem book. — Berlin: Springer Verlag, 1982, — 153 p.
. Dalecky Yu., Fomin S. Measures and differential equations in infinite dimensional space. — Dord-

recht: Kluwer Acad. Publ., 1991, -337 p.

. Holley R., Stroock D. Diffusions on the infinite dimensional torus // J. Func. Anal. — 1981, — 42, —

P.29-63.

. Berezansky Yu., Kondratiev Yu. Spectral methods in infinite-dimensional analysis. — Dordrecht:

Kluwer Acad. Publ., 1992, — 802 p.
Received 13.11.96

ISSN 0041-6053. Yip. sam. s#ypit., 1997, m. 49, N2 3



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012

