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A PRIORI ESTIMATES FOR SOLUTIONS OF

THE FIRST INITIAL BOUNDARY-VALUE PROBLEM
FOR SYSTEMS OF FULLY NONLINEAR

PARTIAL DIFFERENTIAL EQUATIONS

We prove a priori estimates for a solution of the first initial boundary-value problem for a system of fully
nonlinear partial differential equations (PDE) in a bounded domain. In the proof, we reduce the initial
boundary-value problem to a problem on a manifold without boundary and then reduce the resulting
system on the manifold to a scalar equation on the total space of the corresponding bundle over the
manifold.

Joueienio anpiopiii OIUIKH JiIsi pO31°s(3KiB NEpILOT MOYaTKOBO-I"PAIIIYIIOT 33/1aui JUIsl CHCTEMH MoBli-
CTI0 NeJHIHIIX JdpepeniuinLiuxX pisiisii, 3 YACTHIIIMMK TOXIIHME B obMexeliii obstacri. [lpu
ILOMY MOYQTKOBO-I'PAITMUIIAL 32/Ia4a 3BOJUTTHLC J10 3a/1adi 1A MITOI'OBH/L 6€3 1'PAIIHLL, K4 13 CBOI0 Ueply
3BOJIMILCSE JIO CKAJISIPIONIO PIBISIIIISE 112 TOTAJLIOMY MPOCTOPI BIJUTOBIIIOIO PO3LIAPYBAIII 1)L
MI101'OBH/IOM.

1. Introduction. In this paper, we prove a priori estimates for a solution of the
Dirichlet problem for a system of fully nonlinear elliptic equations in a smooth

bounded domain G < R"
Fyx,u,D.u,Dyay) =0, uyx) =0, xedC,
[=1,2,....,m, wu= (up,...,u,)

Problems of this type appear in various ficlds of mathematics and sciences such as dif-
ferential geometry, the theory of optimal control, the theory of differential games, and
others. For last three decades, numerous papers and some monographs were devoted (o
this topic [1—4]. Some of them were motivated by diffusion theory, and our approach
follows and exlends thc way suggested there. Namely, we combine the ideas of the
papers of Yu. L. Daletskii and the author [5-8], where the probabilistic representations
of the Cauchy problem for systems of fully nonlinear parabolic equations on linear
spaces and vector bundles were used (o study a solution of the problem, and the
approach due (o Krylov [9], which shows the way (o reduce the first initial boundary-

. os o 4 .
value problem in G to a Cauchy problem on an auxiliary manifold U < R™“. In this

paper, we exlend the results duc to Krylov (o the case of systems. We assume here that

F, smoothly depends on ils arguments. In the other case, we will need some special
I y dep g P

assumptions which allow us to derive an equation for V. Note thal, throughout the

paper, we assume that for F[ul=F (v, u,p,r), pe R"® R", re R"® R", we
have D, % 20 either everywhere or al least on solutions of (1).

The approach presented here is based on two reductions described in Sec. 2.

First, we use the obscrvation duc to Yu. L. Daletskii [10] according to which a sys-
tem of m second-order parabolic equations in the phase space R" can be reduced to a

i , , .
scalar second-order parabolic equation in the phase space R"™". Note that this obser-
vation, though quite natural [rom the probabilistic point of view, appears (o be very
useful for deriving a priori estimates ol solutions of parabolic and elliptic equations
[9] because it gives the way to use the maximum principle in the context of systems of
equations.

Next, following [9], we reduce the initial boundary-valuc problem in the domain
Gx R"™, G R" to the initial problem on a total space € ol a vector bundle over U.

The probabilistic background of the results and technique developed here are ex-
posed in Sec. 3. In fact. we need them (o provide the natural explanation for rather
bulky calculations and condilions on the coefficients of the problem.
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Section 4 deals with a priori éstimates of a solution of the equation on U derived
in Sec. 2. In the last section, we prove the xequu ed a priori estiamates for a solution
of the system under consideration.

2. Reduction of a system of equations in a bounded domain to a scalar equa-
tion on a bundle over a manifold without boundary. In this section, we first recall
that a certain class of systems of parabolic (or elliptic) equations: defined on a linear
space or a maniforld can be interpreted as a scalar equation defined on a new linear
space or a vector bundle over a manifold [7, 10]. Next, following Krylov [9], we
reduce the first initial boundary-value problem for a system of nonlinear parabolic
equations to a Cauchy problem on a maniforld without boundary.

To explain the approach, we consider the simple case of a system of linear para-
bolic equations and start with introducing necessary notation and definitions.

Let X =R" orlet X be a smooth manifold and denote by C*(X) the space of
continuous bounded functions having continuous bounded derivatives up to the kth

order on the set X. Assume that G is a bounded domain in R” with the smooth
boundary 3G = {xe& R™ y(x)=0}, where ye& C*(R") and y(x)>0 for xe G.
Given real-valued functions Af (x), a;(x), BkI’(x), el (x), o(x), and fy(x) de-

fined on R", consideér the first initial boundary-value problem for a system of para-
bolic equations in G

Doy + Lu)y+ou +f =0, xeG, N
I=1,2,...,m, w=(up,..,uy),
where
" (Lu), = %D(?'A'A)Ll/ + D,y + B Dy y + &f tys (2)
w;(0,x) = ug(x), xeG,
u(x) =0, xe€dG. 3)
Here,

1

n
¢ 02 9 4k duy duy
D U = A; A D u = a—-, Du = —*.
(AA)] IJ%—] 1 a\ a a“] [g:l (4 axl [t at
In (2) and bellow, we assume the summation over all repeating indices and denote by
(), the inner product in R", omitting index n if this does not lead to confusion.

Let us explain the first reduction. Given he R™ and a set ofreal functions

n+m

u/,(t, x), xe R" p=1,...,m, wedenote y= (x,h)e R and introduce the scalar

function
©(t,y) = (h,u(t, x)).

It is easy to check that if (¢, x) solve (1), then ®(z,y) solves

‘98#?+M°q>+aq>+g=o, ()
where M° is an elliptic operator,
) 0 k 92 (I) 0P
M P = : — 5
Ql a a [ ay, ( )
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340 Ya. BELOPOLSKAYA

with the coefficients Q(y) and ¢q(y), y= (x, k), given by
0f ) = Af(x), i=1,..,n, Qf() = BPh,, i=n+1l,...,n+m,
g () = a(x), i=1,....,n, q) = cfh,, i=n+1,..,n+m, 6)
8(y) =(h,f).

The importance of this simple observation is connected with the fact that it gives
the way of using the maximum principle and comparison theorems in the investigation
of the systems of equations described above. Note that, in studying a scalar parabolic
equation, one can easily check that the gradient of its solution is governed by a system
of this type. The same is also true for systems in the class under consideration.

Let ®(t,x,h,E) = Dg®(t,x, k). Then ®(t,2) = &, %,k solves the
equation
acp ¢ 0%® = 0P

Q Q,+¢La

d+ g =0, 7
En ’aa ™

AN

where z=(y, &) e R*""™ and
Q{-((z) = Qf(y), i=1,....,n+m,
Qf(z) = DéQf-‘(x), i=n+m+1,...,2(n+m),
gi(@) = q;(y), i=1l,....,n+m, (8)
Gi(z) = Deq;(y), i=n+m+ I,....2(n+m),
& =Dgg + Dga®.
Below, in fact, we consider the function ¥ (¢, y, E) =Dg®(t,y) + Eo@(t,y) =
= Dg®(t,y) governed by the equation

2
a_\PJri@/FaLP I .a—\{J+a‘P+§=O, €)
Z. .

where
k Ak : k
O = 0, i=1...,2(n+m), Oypum+ = T,

0, =¢q, i=1,....,m+n, (10)

pe k_k . _ . _
em+n+i = dmsn+i — Qi Ty, = L....n, e2(n+m)+l - Dﬁa'
Note that one can continue this consideration starting from W (¢,z) = Dg®(¢,y) and
arriving at a new function

(g 5 PEY) = D-CD(t y) + Dy®(t,y) = %(f E. 4}

Following this way, we can show that 9¢ should be governed by a scalar equation of
the same form if one takes

k _ P2 Ak ko
®2(/1+m)+l+i = D& Qi + DnQi= i<n,

e’7(n+m)+l+1 = D§ g; + D - 2D§Q1 7'l:l Q:'cn?li’ i<n, (1n
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k k 2 2
63(n+m)+2 = T, e3(n+/n)+2 === [I” + D{-,O( + D"ﬂ a.

To explain the second reduction, we introducé a new vector function v (¢, x) given
by u(t,x) = y(x)v(z, x). It follows immediately from (1) that v (z, x) gives a solu-
tion to

1 .
\VDr'Ul -+ E[WD(A,A)UI + Z(DAW)DA Ul) + D(A‘A)\Vvl] + Du\lf'l)l -+ \VDH'U[ +

+ (B, Day)v, + welv, + you, + f = 0. (12)

It is easy to check that it has a unique bounded solution in G and, hence, we need
no more boundary conditions. Actually, if both v! and v? solve (12), then w =0v! —
v2 solves the system

1
\[/DIW[ + 5 [\{/D(A.A)VV[ + 2(DA \]/,DA VVI) + D(A,A)\le] iy DaVVl +

+ (B, Dyy)wy, + yefw, + yow, + fi =0,

which is equivalent to

+

1
Di(yw) + E[D(A,A)(\VWI)] + Dy (yw)

+ (BP Da(uwy)) + cf (yw,) + a(ywy) = 0

in G. Eventually, yw;=0 for xe dG and, hence, the uniqueness of a solution of
(1), (3) yields yww;=0 for xe G. Since y(x)>0 for xe G, we get w;(x)=0 for

xe G.
The considerations p1esented above show that one may consider the parabolic sys-

tem (12) by using the technique developed in [7] after some additional transformations
which lead to a system of the required form.

We succeed to get the necessary form of the system following the way indicated
in [9].

Introduce a new function w; (x, y(x)) =v;(x) and consider it as a function defined

on a surface in the space R™! given by the equation y(x) =72, xe R™* Mean-

while, system (12) should be treated as a system on this surface. To derive the explicit
form of the system that governs functions w; (x, r) we should use the relations

Dy v = ( i 2\/_D \yD)wl, (13)
D\2 VU = | Dy * —'I—D,vi\VD/‘ Dy, + _'I__Dj\VDr w =
! 2y i 24y

2 1 2 1 2
= Dx,-xj wp + EDA’, WijrWI + i’;ij \VDx,-rwl +

+ —1—2Dx, v D, \V[D,?,. W, —lD,. w,} + lDf.,x, VW, (14)
4r ! ¢ r 2r T

Let us substitute (13) and (14) into (12). As a result, we derive the system with
singular coefficients

1 1
VD wy + E[\VD(zA,A)Wl — (Do, Dy W)le'wl + gD(ZA,A)\VDrWz +
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342 Ya. BELOPOLSKAYA

| .
NDAA yAf D2 w1+ 2 (Da ¥, Dy ¥) D% +2(Dyw, Dyw)) +

1 2 Jv
+ W(DA Y, Dyy) D.owy + D(A.A)W’Vl:l + WD, w, + ——Z—DL,\VD,.W, +

+ Y(Bf, Dyw,) + —g (B, Day)D,w, + Dy ywy + (B, Dyy) w

+ yef w, +oyw + f = 0. (15)

To overcome this obstacle note that the singular part of the system has the form

é [D:‘,. w, + 3 D, w,] (D4, Dy W)
p

and the expression in square brackets coincides with the radial part of the four-dimen-
sional Laplace operator. Hence, putting
\/—Zn+4
—u+l

and treating the system above as a system on the manifold

n+4
U= {xeR™: 0<y,.ax) = 2 xop

v=n+l

we derive a system with good coefficients having the required form. To this end, re-
write (15) keeping in mind the relations

n+4

2 3
D;w + ;D,. wy = Z D\v-xv
v=n+l
and
n+4
Z xy Dy wp = rD,wy.
v=n+]

As aresult, we get the system

xyxyD,wy + ;[,\VA D\ % w,,xVA + leA‘ \}ID w; Dk +

Xy Xy
X,
+ ?ngA,A) \]!D'\'V VVl Xy D/\“ \.VD\ Xy “)IAA\I‘( + Z(DAL \U, DAL VV[) + D(zA,A)\VyVI:I +

+ yD,w + %xv D,y D, w; + Dyyw; + x,(Bf', Dyw,) Xy +
+ xy (B, Dy y) Dy, wy, + (B wy,, Dy W) + Wel'w, + ayw, + f; =0,
which can be rewritten in the form
xyxy D,w; + (L0w), + Qw, + f; = 0,

=0 k97w, 75+ 7 Iwy
(L W)] - A\'V ax a + a.\' ax.\‘

s, g=1,...,n+4, k:l,...,n., p,l=1,...,m, v=n+1,...,n+4,

cfw,,  (16)

¥
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where

Tk _ . o4k 7k _ 1 - k

AiV = "\'VAI‘ 5 ALLV = aDA/\ \;[5“\,, a; = ya; + DA/\' \VAf )

Xy ¢ ki S .
a, = 2Ly, BY = x5 B = 5D, v, an

) ~

~ _ o |
ef = wef +(Bf.Day), O = vyo+ly, Ly = -Diuyy+Dy.
Finally, reduce the last system to the scalar equation

xyxy D, D + M°® + GO + g=0, s,g=1,...,m+n+4,

with respect to @ (¢, y) = (h, w(t, x)), where
M@ (y) = %Q.'Fv Dy, ®Qp + 4Dy, @ (18)
and
040 = XA, OlyO) = 3 Du wBy,
O easiO) = BP D wh,, Ofiariy () = x, B4,

Qlikv ()‘) = Blkp D.\','W/I]J’ . (19)
Xy #
%) = Wa; + Dy AL, g,(9) = 5 Ly

Unra+1(¥) = \VC[,]) /71; + (B[p /111, Dyvy),

Lk=1,...,n, \,v=n+1,...,n+4, p,l=1,...,m, and 6}1\, is the Kronecker-
symbol.

Note that (16) should be treated either as a system on the manifold U e R”+4 or as

n+4

a system in the linear space R . In a similar way, (18) should be treated as a PDE

on a vector bundle € over U oras a PDE in R™"** The first approach is more
bulky while the second one might be less evident. In fact, we can prove the existence
of a solution of the Cauchy problem for the system only in the class of functions with
supportin U and, hence, we have to check that L° acts in this class. To explain some
ideas and illustrate further calculations we would like to describe the probabilistic
background of the entire approach.

Let us make one more remark. In Secs. 4 and 5, we consider a system of nonlinear
elliptic equations. Evidently, all considerations presented above are valid in this case
as well. The only change will be the absence of terms with time derivatives.

3. Stochastic approach. Denote by (Q,%,P) a probability space, i.e., a
mesurable space with measure P such that P(Q)=1 and by wy,(2), k=1,...,n,
v=n+1,...,n+4, afamily of independent scalar Wiener processes.

Consider the system of stochastic differential equations (SDE)

d; = [ICOIP & (€M) de + AF (EO) Dt ey wE®) di + &y (AL (E(2)) dwyy
(20)

i . 1
dgy = %Cu (DLW E@) dr + 28y (1) Dak gy W (E®) dwy

Lk=1,....,n, W,v=n+1,...,n+4
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We construct a solution z(#)= (&(z), {(z)) of (20) that satisfies the conditions
£:,00) = x;, §,(0) = x,. 21

It should be noted that the coefficients in (20) are smooth functions which grow too
fast. Thus, a solution of (20), (21) exists up to the blow time, which could be finite.
n+4

Nevertheless, if z(z) startsat x=z(0)e U={ye R"™": ¥(y) =0}, it will live
for infinite time and never leaves the manifold.

Lemma 1. Let z(0)=xe€ U. Then for all t 2 0, a solution z(t) of (20),
(21) does not leave U forall t=0.

Proof. Applying the Itd formula to the function W and process z(t), we get

AV (z(®) = dly(E®) - 1E011*] =
= [LyEM)IICOIP + Dar w (&) Dyt yw(E®)]dt +
+ [Dar w(E®) Gy (8) dwyy — E@OIP LW (D) — Dar w(EE) Dar w(EE)] dt -
— L () Dyr w(E®) dwyy = 0. (22)

This proves that y(E(#)) =] £(£)||* forall ¢ that do not exceed the blow time. Since

v is a bounded function, it follows that || {(#)||? is bounded for all >0. Now given
bounded {(z), we should consider the equation for &(z) and deduce from the general

results for SDE that EI]EJ(t)H2 is finite for all re [0, T] as well. Thus, the unique
solution of (20), (21) is defined for all >0 and all the time (a.s.) liveson U.
Note that there are two ways of studying (20), (21). One of them is to regard it as a

systemin R™* and study its solution with initial values in U, which is proved to stay
in U forall ¢, and the second one is to give an invariant description of the SDE that
governs the process z(¢) e U. First, following [9], we consider (20), (21) in the entire

space R"** and then describe the other approach.
Applying the standard technique of the theory of stochastic differential equations,

n+4

given a smooth bounded function wg(x) defined on R™ ", one can easily derive the

equation to govern the function

1

w(t,x) = Ewgy(z(r)) exp {J a(z(r)) d’c}.

0

The corresponding equation has the form
1 1 ,
Diw + 7 [\]f(x)A,." (x) D:fixj wA;c (x) + i DAk(x). W(x)szvxv WDk ¥ +
1 | S
* Af (X)D} . Dak () \[I(x)] + 5% Ly D w +
+ Y (x) a (x) Dy, W+ A,!‘ () Dgk(xy W (X) Dy, w + 0(x) w = 0. (23)

Next, we denote 1 ()= D,E(z), B (#)=D,L(2), v(£)=(n(z), B(#)) and, by the
formal differentiation of (20), (21), derive equations to govern 1 (¢) and B(z)

dn; = 2(5), B®) a; €M) dt + SO (D a; (E(), M) dt +

+ %([Dx AFEW®) Dyt W(E®) + Af (&(t))DDxAk(i(f))W(&(’)) +
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+ Af (E(®) Dak ey D wEM)], n()) dt + By, 0 Af (E(8) dwy +
| + Gy ()(Dy AF(E®), () dwyy., |

iyk=1,.0.,n, K, V=n+ 1,....,n+4,

BBy = 2By ® Ly E@) dt + 28, 0D Ly E®). M) dr +

1 e
+ E(Dx (Dt ey WEMLN@®) dwyyy . » (24
System (20), (21), (23), (24) describes the process ¥(f) = (z(2), ¥(1)) e

e R*"4) 1t is easy to check that

B(xy) = E(Y(t), D, {w(z(r)) exp{J o(2(7)) d'r}D

0

solves .a parabolic equation similar to (22) as well as
O, x,5) = Bt,x,7) + yw(tx)

does for x=z(0)e Uc R™, y=v(0)e R™* yoe R', 5=(, -
The corresponding equation is

1 : : s
D,® + -0 (2) Dy @ oY + ¢;D,® + a® =0, @5
where
O @) = xy Af (., ny), OF (@) = 5 S DaF W ey )
O%41i@ = D,OF (D),  Ofu@ = D, 0 (@,

k
Qo (nad)+1 = T s

@6
2 = V)@ + 5 AF () Dyt W0,
Ghias1® = Dy, W(x) + Y(x) Dy a + %D.,., [A* (%) Dak () W ()] = OF 7,
- _ -‘Lz+4+v(z) = %3’\' ﬂ\]f(x), B "42(1_1+4)+>I = D_\,oc(x),
Vs g . p,,tv=n+1',...,n+4, ‘k,‘i=l,...,n. ,
T }I.Sinﬁl*ai?"'ﬁé@,bne can show that system (20), (21), (23), (24) along: wil;h;::':,_: :
doi; = 2[BOIE + 2(v®, L) & € ) dt +
4 2(B@, ) Doy (E), (@) dt + NIEOIP D oy () dt +

+ %([Dx Af (ﬁ(l‘))DAk(g(x))h\V(g(1‘)).-".' Alk ifﬁ(t))DD_‘.A"(a(z))\V(é(.f)) +
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6 Ya. BELOPOLSKAYA
+ AF(E®) Dakeoy De WED)], o) dr +
1
+ ED\ [Dy Aik (E(t))DAk(E(r))‘V({;(t)) + Aik (&(f))DDxA"(g(,))\V(é(t)) +

+ Af (E@) Dyt ey D w ()M, M) dt + By, () AR (E (1)) dwy +

+ & (VD AF(E®), M (D) dwyy @27)

dry = v LV ED) de + Ly, DLy EO)Inde +
+ 216, D, LW EONNOIB@ dr +
+ 2D, 16, D, Ly EON @) (), (1) e +

+ = (D[ Dar ey W E@] B() dwyy +

N | —

+ %D,xg [Dak ey WE@IM @), M (1)) dwyy (28)

describes the process ¥ (£) = (&(t), {(1), n(£), B(2), ou(t), y(1)).
Here, D(Zv \ll)g(x) = D.\z,g(x) +Dyg(x), Z=(x,9, )”’l). Denote

I ! k
Da(n+ay+1+i(2) = D(Z.‘,,.‘,I)Qi(x)» Qinsays2(@) = 73,
@2 (n+d)+1+i(2) = D(Z\v. oy @i () = 27 D, Of - Of 73, (29
n k12
3 (nedy+2(2) = — Z | + Dyy, yt 0L(x).
k=1
Then ¥(z,%) = D‘g w(t, x) + Dyt w(t, x) solves the equation
DY+ 0ID2 WO + gDy ¥ + 0¥ =0, (30)

L, j=1,...,3(n+4)+2.

To explain the second approach recall some notions of differential geometry. Let
[=n+4 and let the manifold U be given by

n+3
; 2 2
x=u, i=1.,0-1, yy,...,u) - 2 wy = Xj.
v=n+l
Linear independent vectors D, x;, ..., D, x; determine a tangent plane T, U at

each point x € U. Denote by n' aline orthogonal to T, U at x. Let g;;, {,j =

=1, ..., I, be ametric tensor of the Euclidian space R, let Gap = 8;j Dy % Duﬁxj de-

note a metric tensoron U, let V and r;‘ﬁ denote, respectively, the covariant deriva-

tive and Christoffel symbols, and let expV: TU — U be the exponential mapping
corresponding to Ggg.
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It follows from the general theory of stochastic differential equations on manifolds
[7] that, given

n+3 172
IMEOE (W(é(t)) -y c%mJ ALE®), Ol = AL ®),

V=n+]

the system of SDE
deg = w(E®) ag (&) dt + AL (E®) Dareeeny W (E®) dt -

— AIB (Z(t)) dW4k + @2,/[3 (Z (t)) dw'YV +
# %[I“é‘a (A% (2(9), A (2()) + T (O (), O (2] e, (31)
dgy = %Cv Ly (&) de + %S,W Dyr ey ¥ (E®) dwyy — .

1
-3 Te By Dar ey W (E(), 8y Dar ey W (E(1))) dt (32)
gives a coordinate representation of SDE of the form

dz = exp,y(q(z(1)) dt + Q(z(1)) dw) (33)

with respect to the stochastic process z(t) = (§(¢), {(#)) e U.

By using the standard technique of the theory of stochastic differential equations on
manifolds, given a smooth bounded function wy(¢) defined on U, one can derive an
equation to govern the function

At x) = Ewy(z(®)exp {J a(z(1)) cl'c}.

0

The corresponding equation has the form
. 1
D} + E[VQ(x) Vow = Voguow)t + Vam A+ a(dh = 0. (34)

Next, denote 1 (¢) = D, E(t), B(¢)=D,L(r), and y(r) = (n(2),B(r)) and let

exp’: T>U— TU be the exponential mapping on the manifold TU. Let V'Y de-
note the corresponding covariant derivative [7]. By the formal differentiation of (33),
we can derive the following equation to govern y(t)e T U:

dy = expyy[(r () di + O(y(®)) aw]. (35)
Note that o

&, x,y) = E.['Y (1), Dywq (z()) exp {J o(z(T)) d’t}} +

0

!
+ E®(t, x) Dy cxp{j a.(z (1) d’t}
. ' 0

solves a parabolic equation similar to (34) as well as
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O, x,y) = &)(t,x,y) + yow(t, x)

does for x=z(0)e U, y=v(0)e TU, yoe R cz=(x,y) € TUXR'.
The eouespondmg equation is

D,® + T1 [V2' v’ - Vilp]@ + Vgl @ + a0 =0, (36)
where Q(z) and q(z) are determined by

n+3 1/2
0¥ @2) = [w(x,,...,x,,)— 3 .\-3] Ay %),

v=n+l

Q{.‘V(z) = x, AF(x,nx), Lk=1,..,n,
Q (2) = SquAkW(xlv'ﬂxn)’ L,v=n+l,..,n+3,

Qﬁ+3+,-(z) = D,0f@, Chan@ = DO (),

7 k
Ont3+p () = D\,Q (x), Q2(11+3)+I = T

@37

2@ = V@ a() + 2 AF () Dat W (),
Gnr3+1@ = Dyy(x) + y(x) Dya; (x) + %D_v [Af (x) Dy (y W ()] = OF mf

1 R ~
Gp+3+v(2) = 5‘[xv D_\-[LW(X) + )’VLW(x)]],
q2(11+3)+1(z) = D.‘,O((X),
By VB Ly s B35 K b= Livss o

In a similar way, one can describe the stochastic process ¥ (f) € T4% 4having the
local representation

K (1) = (§(1), £, n (), B(1), n(2), B(x), (1), ¥(1)) € T*U

as a solution of the equation of the form (35) with exp”V replaced by exp” UV and the
coefficients O and g given by (37) and

| 1 A k
Q.]'Z(n+3)+l+i(z) = D(Zé m) Qi (x), Q3(,,+3)+2 (Z) = nlzc,
g2 (n+3)+1+i@ = D(}; m 4 (%) — 27t] De Qk Qlk 7‘.’75 , (38)
43 (n+3)+2(2) = — Z et + D, my 04 (x),
k=1

where Dfrg(x) = DZg(x) + Dyg(x), Z = (x.£, 7).

. One should mention another apploach to describing a stochastlc process on a sur-
face U in R which may also be useful. ]

Given the s_urface U determined by x' = x'(u!, ..., ul“-l),liz;l,'.'.. , 1, let e& =
= Duax,-, o= 1,...'. , = 1,' and let n' be a vector orthogonal to efx, 1:€:; 8ij e& nl =0,
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Denote by & = {byp} the second fundamental tensor of the surface U, byp =
=g; Voegn’.
Consider a system of SDE in the Stratonovich form [7]
. dx' = efx o dw?,
del, = [~Top () el + baﬁni] o dxP,
dn' = = G%by el o dx®.

It follows from the general results that there exists a unique solution of this system that
satisfies the conditions x(s)=xge€ U, i=1,...,1-1, ey (s) =d;4 n i(s) = i and
deteumnes a diffusion process on U. Actually, one can replace the process x(t) S

e R in this system by a quasimartingale y(z) € R’ to construct the diffusion on

U with required diffusion coefficients.
Our further considerations directly follow (9], though we consider equations on

charts of the manifold U rather then in the entire space R™**. Given §e (0, 1), k =
=[2- 8]_1, denote

m(x,y) = [M(Kx)y, y)+Iyl*+1]% (39)
where K (x) is the field of a positive definite linear operator in 7, U, and (X,Y), =

= GO,_ﬁ(x)XmYB for X,Ye T, U. Let Q(x), g(x), a(x) and Q(z), q(z), a(z) be

given by (26), (37).
Denote VJ-, w(x) = VJ. w(x)+yow(x), (x,y)e T U, and introduce the operator

M acting on functions ®(x)= ®(x, y) = V_‘-, w(x) as follows:
M® () = —T1 [Vt Vot — Voo 0w] 2@ + V5 2.
It can be checked by direct calculation that
M®(z) = Dy[Lw()],
where
Lyv(,u) = %Tr [VQ(_\.)VQ(_\.) — VVQW Q(x)] w(x) + Vg wix).

As a result, we get the elliptic operator M and the maximum principle and com-
parison theorem can be applied to studying the equation M®(z) +od(z) = 0.
To this end, consider # [m(x, )]"*, put nf = A (K(x)y, 0"), and introduce

k=1

!
L) = —K{M(K(X)y,y) Y, (K y, Q) + (2—5)0€(K(X)y,y)}

: 1
where M(D(Z) = —i Tr [VQ(Z) VQ(Z) = VVQ(:) Q(Z)] @(Z) + Vl/(Z) (D(Z) ¢

The following assertion can now be verified by direct calculation:
Lemma 2. Let

T(»)>0 and (Ky, v)l/“V a < ply(y)
forany x,y € U’.
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Then there exists a constant A = A(3, ). =2 1 such that, for (39) with € =
=(2-9)" ! the estimate Mm <0 holds on the set '
U'N{(Ky.7) 2 Iyl*+ 1},
provided mf =A(Ky, oY in L.

The function m(x, 3) plays a role of a barrier function for Vsw. Note that the
function
“ 2 4
M(x, 5,5 = [P (K, )" + MK Ry, ") + Iyl + Il + 115 @0)

can be used as a barrier function for the second derivatives of w(z, x).

In the next section, we extend the considerations presented above to the case of sys-
tems of parabolic equations. For this purpose, we need one more stochastic process to
describe the so-called multiplicative operator of a Markov process z(t). This process’

is constructed as a solution of the linear stochastic equation in R™
dG. = IK@OIPc? (&) G, ¢) dt + (BY, Day¥) G, (1) dt +
+ Cy (B (E(2)) G, () dwyy + B (E()) D, w(E®) G, (1) dwy,  (41)
k=1,...,n, p,r=41,...,m, v=n+1,...,n+4.

Remark. For z(t)e U, it follows from the general results that there exists -a uni-
que solution of (41) and positive constants [L;, C, C; such that

2 -C
Ellginll* = ¢ e
if one imposes the additional assumption on the coefficients B and ¢

yx) O IBX ) A2 + IDey I Y, 1B () All* + 2y (x)(c(x) b, B) +
k=1 k=1

n
+ 2 (BY(x) h, B) Dty W (x) < —py Al (42)
k=1

A procedure similar to that described above allows us to check that the processes G’ =
D, G solve the equation

dG; = 2(5(0),B®) e (E(1) G, @) dt + I50)IP Dy [c? (E®) G, () dt +
+ IEOIPe? €@ G, () de + [By (2) BE (1) G, (6) +
+ &y () Dy (B (EM)] G, (1) + §y (1) BE (E(D) Gy ()] dwyy +
+ {D,[B (£() D, w(EM)] G, (1) + B (£(5) Dy, w(E®) G (0} dwyg

and to derive the corresponding equation for Gy =D, G".

In this case, m(z,§) and JMM(z,,5') for z = (x,h) e R™"M*4 should have the
form )

m(z,5) = [AM(K@)y,y) + Iyl> + 115
Mz, 5,5 = [M(K@y,y)* + MK (2)y',9") + Iyl* + []* + 115
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4. A priori estimates for solutions of equations on a manifold. To derive
a priori estimates for the solution w;(x) of the system

F)(x,w,Dw,D*w,) =0, I=1,...,m, xeUcR™, (43)

we treat it as a system in R™**, assuming F, to be defined for x € R™* and using

the equivalence discussed in Sec. 2. Recall that we assume that either F is a smooth
function of its arguments or, at least, there are reasons to ensure that D w satisfies a
system of the same kind. Note that, for the system of Bellman equations

F/(x,w,Dw, D> w;) = inf [A,k (r,x)D2 I A}‘ (r,x) + a;(r,x) D, w; +
re® e !

+ BfP (r,x) AF D, w, +.cf (r,x)w, + o(r, ) w + fi(r,x)] = 0,

we have a situation of this type. Actually, let ry(x) be the function that corresponds

to the solution of (43). Then, for each I=1,...,m, s;(3) = (L(ry(x),y)w(¥)), +

+ f1(ro(x), y) is a smooth function of y which attains its relative minimum value

(equal to 0) atapoint x € U. This allows us to conclude that Dy s;(y)=0 and to
derive an equation for D, w,(x).

Let
n+4 , If2
= 3 %
i v=n+l
- and let

G(p) = {xe G: dist(x,3G) 2 p},
Ap(G) = G\G(p) = {xe R": 0 <y(x) <p},
V(p) = {xe R™: (x,....x)€ Ay(O), [x]<1},

Up) = {xe R™: Jx)=0}NV(p).

Denote by %(p) a vector bundle over U(p) with model space R™. We treat
% (p) asasubsetof R™, ny =n+m+4. Given 8 e (0,1), £ e (§,&y), €«
e RM*! x=(2-8)"!, and a positive linear operator K(y), y € R™, actingin R",

consider a function N defined in R™ by

NGB = [MKOEE) + 11> + 115 (44)
Let us estimate
MJ\(‘(): &) l Ny —— O*N + g aN+oc.1\f Lis=1,...,2n+1, 45)
a a[ az\

where N, = Ek " Qd.'}l Qlu, ges sil=1,...,2n+ 1, k=1, ..., n, are given by
1
0N (@) = xyAf (s x), Quu(@) = 8D,
k K k
Q(n+4+r)i(z) = Dx,-\V_Brp hp’ Qln+d+r)v (@) = xy B,pr hp’
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R, v=n+1l,...,n+4, k,i=l,...;n, r,p=1,....m,
O +iyv (D) = Dg Ok (%), Qi +v @) = Dg(Qiy (),
Q{C,,l+,l+4+r),-(z) = Dg Dxi\Vpr hy

k
Q(n,+/z+4+r)v (z) = Dg (XV B,I.(p hp), QIZNIJIH = n{‘v’
(46)

1
2:(2) = y(x) a;(x) + EA"k Dk y(x),
Xy o~
QV(Z) = 'EVL\V’ Qn+4+r(z) = \Vcll?hp + (Br?hp»DA \V)»
1|
dn+i® = Dgya; + Y Deay + - D [A* Dy y] - O m”,

ny4v(2) = %[xv Di[i‘lf(x) + &, f,'q!(x)]] — Ol nf“,

Gnysnrasr@ = Dyl by + De(BY by, D) = Optae,
dan,+1(2) = Dgot(x).
Since M is an elliptic operator, one can easily check that
W9y < MONVE 4 o E, 47)
where M°N = MN - oN. Choosing ¥ = A(K(y)E, Q%) in (46), we derive
MONS 4 tal % = A[(IMK (D) E,E) + 2(DpK(»)E, DeQ) +
+ (K(y)DgQ, DeQ) + 2(K(»)E, Deg)] +
+ X3 [(KME QY + ax ™ [MKME.E) + 1&l* +1] -

. kv

- 22 (KM & (K &, 0%) 0) + 2(&o. Dg ) ]
Denote by I'; (&) the function given by

-T1(8) = (IMK(N] (€. 8) + 2(DgK(»)E,DeQ) +
+ (K(y)DeQ, DeQ) + 2(K()E, Deq) +

+ B, (KOE Q) + ax™ (K()E,E).

It is easy to check that
0 - = 2
MONY® o taN e = AT (8) + ax ' [|&)* + 1] -

+ XY (KOE QM) + 260 Dgo + Ap Y, (KGE, 03)°. 48)

‘We say that condition C.1 is satisfied if
1 I >o,
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2) (K& &) *[Def + DeT] < pIy(8),
3) (K®EE)Ifl spul(E), (KMEEa < ul'(8).
Since, for A > L, the right-hand side of (46) does not exceed

ATV (E) + ax (KO EE) + Mu—2) Y (K()E, Q%)% + 260 Dg o

on the set

TEN{(KOE,E) > E* + 1},

where

76 = {0 eR™™: yes, E=(£,&), EeRY, & eR', DY (y) = 0}.
We get
MN < (40T (&)

due to C.1. On the other hand, given A > 1, on the set T%€, we have
N < 205(K()8.8)",
N0/ o 2(1—K)/K‘xl—-k(K(y)&yEJ)l-—K < 47»1—K(K(y)§,§)”2,
WD < 8O TN(K(5)E, €)1 D f] +
+ (KOEE) A1) < 16pA T (6).
This yields
K [MN + D fINTO < (ap-+16 A T (E) < 0

for a suitable choice of A (W, d)=1.
Thus, we have proved the following statement:

Lemma 3. Let condition C.1 be satisfied for y = (x, h)e €, (y, E) e TBxR'.
Then there exists a constant A (8, L) > 0 such that the function

N, B = [MK)EE) + [Eol* + 117
with x=(2— 8)"l satisfies the estimate
MN +Deg <0 49)
on the set
TBN{(K(E.E) 2 & + 1} (50)
if one chooses .n’f" = MK@O)E, ). .
It should be noted that Lemma 3 gives a possibility to use N as a barrier function
for the first-order derivatives of the solution of the equation .
MO® +ad + g =0, (€2))
where M is given by (18), (19). '
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"To derive estimates for the second derivatives we should introduce some additional
notation. Denote E=T% andlet T>€=TE be the second tangent bundle for %. Let
7€ = VTE denote a vertical subbundle of TE,

9 = {(mEbm,c)}
Note that, for (§,n)e VTU,

D:¥(x) = D’ee)¥(x) + D¥(x) =0.
Let n(x) = D, \,U(x)[D V)", D, = D, —n;(x)D,, andlet
' H(x) =5, (1.i(x)nj(x)5 R = HKH,

T, (&) = T (&) - 8(KD:0", Dng),

n+4 p
N = KOO + (1-2Jare y] - 1 % 3, (prKE + 2KD; 04, 2.
v=n+lk=1

One can easily see that H (x) is the operator of projection onto the plane tangent to U
at x. Let

D = Dg(i'n(x))D”(\.), Dy = De Dy + Dy,

Note, in addition, that, for (y, & n)e VTU, wehave Dy = D,v; and D@ = D@ -
Consider Lhe function

M ER) = DEKOIEE? + MROMM) + &+ o+ 15 (52)

- defined on 9€x R* C T?% x R
We say that condition C.2 is satisfied if

LE) >0,  (KEE? < pTy(E), a<0, [gl<p,
| (M Rn,n)" + (KDgn. Dggn) < 1
(MRE ) < ury (o),
(Dgn. &) + (RDE 0%, DR O}) < RT5(8),
(K& &)| Do < pT ®), ((K'DE g, D2 q) < pIy(&),
e o|BRaf < pr@. (K &)(ngoc|2+|Dgg|2) < uIy(8),
(DgsKE,, B QF) < pIyEnrd @), '

Lemma 4. Assume that condition C.2 is satisfied. Then there exists a constant
A6, W)= 1 such that :

53)

MM+ Dgng<0 (4
on the set

= xRN {(KEE) 2 (K'mm) + & [ + o +1}.
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Proof. Compute
. 4
LO./M,”K - Z‘g).v’
y=1

where

$, = WT3(®) - 222220 + ulm P - 8(ROIDS. D) | (KOIE.),

$, = M(4° RoIn,m) + (KO)DG y OF, D my OF) +
+ 2(Dgs Ky), D,y @) + 2(ROIM. Dy 9)]-
Fy = —4X(KOE 7ty De 0F) — M2(R()m, Qimh, ) +
+ 6]m Pl& [P + 4nf, (RO, D ) — 4(Dr &, )],
4 = Imy 2 + 2m (Dm0 =]y ).
Fix A2 1 and (y,& ) e &, denote

£ =1 + (Dgn(x) E)n(x) = Hn,

and note that, for (x, &) € TU, we have D(g, n = Eg + Dﬁx' To illustrate the consi-

derations necessary to obtain the required estimates, we consider one of the terms in
9,. Using the Cauchy-Buniakowski inequality, we can prove that

(Do RGN, D,y @) = (Dot R, D, %) + (D E){ (R Dggm, D, 0F) +
+ (R Dgn, DE Of )} + (Dt R(»E, DE Q) <
< (Dot RE D 0F) + e{(R De, OF, D, OF) + To(®)} + Ne™'T3(E).
Similar considerations combined with estimates from C.2 yield

kTN MN + Dg 5, 8] <
< MNe -2AL®) + (22 -M(2e-82)(KE D) Y, | (KOK X)) +

(N —g—an@+ -0 Y, (KokE)).

It follows from the last inequality that one can choose € =€(8) and A = A (5, L) so
that its right-hand side will be negative, which completes the proof of the lemma.
Theoxem 1. Suppose that the conditions of Lemma 3 are satisfied and ® €

Cﬁ)c (IFL"’). Assume, in addition, that there exists K (y): R™ — R™ such that
(K(NEE)>0 for ||E]|#0 on TE and '
a<0, |®|<plrll, |D@P < C(KEE)| Al

on E’ forsome C>0.
Let ®(y) be a solution of (51) and assume that there exists a nonnegative func-

tion | € CIZOC(R”M) such that My, <0 on U. Then
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Deof < [12 + N[(KOEE+EP] (55)

for (v, E) e T8XR!, where N de,ben.(_ls onlyon & and L.
Proof. Let >0 andlet N(x, h, &) be given by (45). For y=(x,h)e R", we
. define
AGE) = Do) - N E) —ey, (). (56)
. We have to consider three possible cases:
.A<0 on T¥xR. .
2. A>0 atsome points from 7%x R' but it does not attain its upper bound on
TEx R : . :
.3. There exists a point (yo, EO) e TéxR! at which A takes its maximal value

and A(yo, EO) >0
First, we consider the last case. It follows from the maximum principle that the es-
timate MA(y0 EO) = ( &0) < 0 holds at. (yo,go) and, since o is negative,
we derive MA <0. Hence, _
My, + MN 2 MDgg.
On the other hand, ' ‘
 MDe® + Dig = 0
yields o '
eMy, + MN + Dgf 2

which contradicts (49).
Thus, it follows from (49) and (50) that

(ROHEE) < &l vt - 57
Let us differeﬁﬁate A with respect to E along U’. Then
DiA(y°,E%) = NN (50 go)[zx(K(y )E, L) + 2t8E3] + D@ = 0,
which implies
- D@(°) = 2Ax NV ()0, E0) (K ()€, §),

(I)()’ ) _ ZKN(K l)/K( &0)

and
A, io) = 2k N0, &0)[ (K&, €%) + | &9 |2]—
NGO E) - ey, (69 € 20c-DN(EY)

because N'>1 and
NI (50,8%) = [MEOMES,E) + [ +1] > 1.
Finally, the last relations lead to o

N”“.():O,EO) < (5@4—1)[]&8 |—2 5 1],
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s 2K§8[(x+1)|§8 >+ 1]’(_1,
and
|€0] < N, 8).

We have shown that, on T8 X R l, the following estimate is true:

AE) < AB°E) < 2(K—1)(x+1)K[|§8 ”+ 1]K <SN@WS).  (58)

By taking N(, &) > 0, one can establish that the last estimate also holds in the case 1).
To investigate the situation in the case 2), let us choose an arbitrary sequence of

points (yk, E") in T8xR' to maximize A(y, E) on this set. Note that, by the con-
ditions of the theorem,

|De@| < M(KOE B + p[E°]

and k2 1/2. Hence, if A(yk,ék) does not tend to oo, then (K(yk)ﬁk,?';k), I&g],
and DE(D(yk) are bounded. Furthermore, A())k,gk) 20 and Dgk CIJ(yk) > ey, (xk)
starting with a number k.

Assume that U, = {xe U: y;(x)<p} isabounded set and denote U,={x e
e U: y,(x)=p}. Then U, is a compact set and, by assumption, (K(»)E, &) 2
2§, ”E||° for ye 8, = {(x.h)e 6: xe U, || All=1}. Inaddition, it follows from
the boundedness of (K(y)ék,ﬁk) that both || y¥|| and || E*|] are also bounded. We
can now assume that there exists (y% £9) = lim (yk,Ek). Evidently, (yo, EO) 2
¢ TéxR' (we consider the case 2)) and Dyov(xo) =0 if x%¢ {xe R™*: 0<
<Y =p}

This implies the required estimate on T8 x R':

A E) < lim A ER) < Iu)) = sup [ps=(s2+1)7], (59)
~¥oe §20 ’

where

s> = A(K6*)E%EY) + [E3T. (60)
The investigation of three possible cases above leads to the following conclusion: At
each point of the set € X R I either (58) or (59) holds, which implies that A(y, E) <
SNvI(K,). Since e can be chosen arbitrarily, we get

Di® — N S NvI()

on T¥xR.
Let us rewrite the last inequality in the equivalent form

Ps — (s2+ 1) < NvIW)),
where s is given by (60) and

P(3E) = s~ [DE ().
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- As éconsequence we have [(P)SNvI(k, ); To complete the proof of (55), which

. is equivalent to & <N v u”’, it remains to note that, since o.(s) = (s> + 1)F isa
strictly convex function, there exists anumber [, suchthat /() strictly grows in W
for i . Inaddition, W, can be defined by

2xs(s2+ 1)1 = Ko

i.e., the line [ ,s is the tangent line to the graph of (s2+ D)X
Let us return to the estimates of second derivatives and start with some useful nota-

tion. For (y, E) e T%, we denote

D ®(y) = Dg®(y) - (n(x), E)D”cp(y)
» and o
D(‘E » = DeDg+ Dy,

Theorem 2. Suppose that ® (y) solves (51) and the conditions of Lemma 4
are satisfied. Also assume that

|60 < no |[Dzemf < N(kMEE),

and. IDE(DO’)I < N(K(y)?;, E) for some constant N and (K(y)&, E) >0. Let
there exist Y| € Cl%,c (U) such that \|fl(x)> 0 and My <0. Then, on U”,

|pEacy| < NG, u)(K(y)& £).
. The proof of this theorem is quite smnlal to the proof of the previous one. In fact,
we havc to consider the function
2(nE7) = By 1y P0) = (3 & ) e ()

and mvest1gate three cases similar to those considered in the proof of Theorem 1.

5. A priori estimates for solutions.of a nonlinear system. In this section, we
return to the problem we have started with and show what sort of results can be de-
duced from the estimates obtained in previous sections.

Assume tha_t K p,0e (0,1), u=1, n,m=1 areintegers, y e CIZOC(R”), G =
={xeR": y(x)>0} is anonempty bounded domain, y & Cj.(G), and ||D y|| >
>0 on dG. Assume that the real-valued functions
AFGLx), ainx),  BE), d(rnx), a(mx), fi0,x)
are defmed for any xe G and re R, where R is a givenset, i,k=1,...,n, and

s, p=1,...,m
Our goal is to prove a priori estimates for the solutions of

F}(ulx‘,_\.j, by s Uy x)‘ = (61)
in a bounded domain G with the boundary conditions «;(x)=0 on dG. Here,
Filx) = By, thy %) = ir;f[(Lo(r, X)u), + alr, )uy + fi(r, 0],
where
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(L2u), = %A,-k D.\.’_'\.ju[Af + a;Dow + B,I‘”A,-kaiup +.clu,.
As it has been done before, we change (61) for
A[P] = A (D;®, D,®, @, y) = 0 (62)

where
@(y) = (hux), o(ny)=o(rx), grny)=(hfrx),
A[®] = (h Flul) = inf[MO0, DO0) + alr, 1) DO + 80 ),
and M° is determined by (5), (6).

Given operators L and M°, we denote (Lu); = (L°u), +ou;, M =M°D +

+0.®, and 03(A) = TrAA*.
We say that condition C.5 is satisfied if the following groups of estimates are valid:

5.1. a) The functions A, a, B, ¢, o, f are continuous in G forany re R,

xe G, EeR" heR" |Ell=1, ||k]=1,

i" B*n “2 + (ch,h) £ -3,
k=1

63(DeQ) + 03(Q) + | Deg| + gl < n,

+ | Dés

o3(DE(Q)) + | DEq| +|DEa| + gl + | Deg £ 1k

b) There exist matrix functions Ki()'), i =1, 2, twice continuously differentiable
in G x R™ and such that, forany xe G, Ee R", he R™, y=(x, h) with ||E||=1,
[l Al =1, we have

KN+ 1D KNl + | DEKT] < .
52. a)Forany re R} and xe 9G, ||D,y|[=8 and L(r, x)y(x)<-8.
b) There exists a function W, (x) such that, forany re ® on G,
| W ()28, L(nx)y (x)<-8.
c)Forany re R, xe G, and £ R™",
(K8, &) = S|IEI%,
M (r) (KOE, E) + 2(KOE, gg) + 2(Dgs K%, DQ*) + (K°Dy 0, D Q") <

4n

< -8lIEN* + Y (K%, Q%)

v=1

2

d)Forany xe G, £e R", ELD v, ||Ell=1, ||all=1, re @,

(K'E, &) 2 8,
Ly + TePK' < -8 + W(PDy, D), Py = > .0F0F,
k
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(K1 E)My + 3 (DeDpry)* + 2(K'E, 05 DeDypry < =8 + L(PY,, ).
: k
Denote S|, = {he R™: ||h]|=1, hkz‘(_), k=1,...,m} and () =@ (»)/y(y)

and recall that M (®) = M® for M® = M°® + ad with ‘M° given by (18), (19)..
To derive a priori estimates for the solution to (61), we prove the following assertions:

Theorem 3. Let 5.1 and 5.2 a), b), c) be satisfied and let & € C>(G x R™)
be a solution of (62) in G. Then forany xe G, he S,, and y e R"", we have

|®|+ [D,®] < Nk, 6)[1 + argax(|<1>[+]D,,<I>|)] (63)

Pr oof COnSIdel the function
De® +E,®
T)(y) = sup——— 2
é#o((K(y)é &) + &5

It can be deduced from Theorem 1 that. » T]2 (y) is a viscosity subsolution of the equa-
tion [P]=1 ontheset Gx S N {T, >N} Assume that the maximal value M

of T)(y) on 5 X S| is attained at a point y,. The function ®(y)= M is a super-
solution of $4[®]=0 and it follows from the definition of a subsolution that y, does
not belong to G x §; N {T, > N}. Therefore, y, belongs either to {7, <N} or to
0G x S;. Inboth cases, we have

(64)

)1/2'

M < N[l + amax(|(D|+|D§<I)|)], -
G

which proves the assertion of the theorem.
To derive estimates for the second mixed derivatives on the boundary we introduce

some additional notation. Given p > 0, denote G(p) = {xe G: dist(x, dG) >
>ph A,G={xeR" 0<y(x)<p} = G\G(p), and ©,(G)=A,GxS,. Let
Upp) = {xe R™: ¥ =0, (x,...,x,) ¢ c_;(p)} and T = {xe R"™: (x,...

,x,)€ 0G}.
Fo1 our purpose, it would be convenient to shghtly change the description of the set

G by using a new function (x) = y(x) -1V (x) To verify that G = {xe R":.
P(x)>0} and A G = {xe R": 0< ¥ <x,} consider an infinitely differentiable

function % (1) defmed on (—oe, oo) by

3 @, if tS(8'r.)'l.,
x(0) = {(St)'[ if > 4n)7,

and x’(£)=0. Itisevidentthat G = {x(y)>0} and, given ¥, < (81)"!, we have
A, G= {0<y<x,;} ={0<x(y)<x(x,)} and, in addition, X (¥) = ¥ on
AKl G. Introduce the function

J = yM°(KE, ) + Doty (DgrKE, &) + Dey[(DrKE, Q) +(K 0¥, D 0F)] +

+ y[2(DgrKE Dy 0F) + (K Dg0F, D 0%)] + X | De Dpry [ +
k
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+ 2(KE De[Q*Dyry]) + 2(KE, De(wq)) +

+ = DgyD: (L) + s°[(KQ". Q%)+ L) ].

O]~

I can be checked that, forall 2 > |D€\;/ l2/41|/. 5.2 d) is equivalent to

J < 2(1-8)|&|((KE E) +57) +

2 1 X [ 2
+ Lll:\VE(KE, 0y + 5 Dew (K&, 0) Doty + 75 2Pyl }
k

A careful analysis of the right-hand side of the last inequality shows that, for such s,
onc can find &, € (0. ). p, e (0.x), and a positive constant C= C(H, §) such tha,
for ve A (G).

Py

J <=8 [ +IEP] + | Dev (65)
Next. consider '
Déa + é()—(—ﬁ

Ty(y) = sup T T L (66)
& neam ((K(IEE) +5° +Ej)

where

0t = {£4) Eer [efeo. 21 Z¥OL)

In what follows., we assume that the operators L and M are delined by (16),
(17) and (18), (19) with  replaced by \ =y - Ty~ though we omit the sign ~.
Denote by

G[D](xy) = sup(M(r.y)Dd(v)).

redt
B = ey ().

Lemuna 5. Suppose that condition C.5 is satisfied and (63) holds. Assume that
D e CI(WX R™) is a solution of (62) in Ap,GX R". Then there exist p e
(0.py) and C; >0 depending only on p . 8. W such that, on the set { T,(y) >
>N, N APG' X Sy, the function T(y) is a viscosity subsolution of the equation
Gly®@]= L. If in addition, we assume that, for any y € Ay GXS), equation (62)
is uniformly elliptic, then the function T, () is bounded above on ApnG X.S).

Proof. The assertion of the lemma is a consequence of Theorem 1. To explain it
we must choose | = v W, = L. usc the cquality M® = M P, which holds on
U(p)\I"x R™, and cheek that C.1 is satisfied. To this end. note that My, =M1 =
=®<-3, on U(p)xR"

[et z=(voy)e Cipr =20, Do [lollows from (63) thal, in this
case. '

N N 2 | 2
IS =8I Il | + N Dew [ - =8I
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Since, for ze U(p), we have y(x)=[|y]% 2(n,y)= Dy (x), and, as a result,

lDé\p(x) |2 <4y (x)||n % one can verify that, for sufficiently small p = p (5, [, Pods
we have J < —8, . To check the other assumptions note that if z = (XppeesXya) €

e U(p) and L= (& m)e R"XR?, then, for w,(z)=w,(x,, ..., x,), We get
(D.V, Dyw;) = (Dyy, Dewy),

n+4
IDGP = Doyl +4 3 5 = Dyl + 4y,
v=n+l
- , D.\f
Bou(o) = Do - (SR @y D).

Let (K0E.E) = (K'0EE) +lIml>+[[ 2>+ [6]|* for (0.8) =(x.h§b)e
e T%. To obtain the estimate for
Dpd +y®
§up 2l 2 2
Elerini=1 (K & &) +ImIP + 1Al +& |

we can use Lemma 5. To prove the boundedness of 7', we must meet the nonde-
generacy requirement for the diffusion operator on U(p). This can be done by “cor-
recting” Q,’f,, [=1,...,n+4, in a way simijlar to that used in [11] to ensure that the
resulting operator is nondegenerate and coincides with the original one on functions
depending only on (x,...,x,).

Theorem 4. Suppose that condition C.5 is satisfied and (63) holds for p,e (0,
1). Let ® e C*(A, GxS,) be a solution of (62) in Ay G such that ® (y) =0
if xe 0G. Assume that, for any x € A,,G, we have inf F;(r, y)&iﬁj > 0. Then

i

Ty(x) = 72
)

ieT%.

there exist constants p =p (8, W, p 0) € (0,pg), C=C(8 1, p) such that, for any
xe dG, he S|, and Ee R™™ &l =1, we have
| De®| + | DE @ < C|:1+acr(1’|1)2)1§Sl(]®|+[D§®I)}. (67)

Proof. Let y, T3, p be the same as in Lemma 5. Note that the function P =
E \p_] (x) is a viscosity supersolution of G [y®]= 1. If follows from Lemma 5 that
the function T is bounded and, for any &> 0, the function T32 - s\y"' attains its
maximal Valge over the set (A—pa\ aG> XS

Letus fix &> 0. Denote by y,e (A,G\3G)x S, (he point where T2 —ey™!
attains its maximal value Q.. Since Q, + E\;f_l is a supersolution of G[y®] = 1
and T is a viscosity subsolution of this equation on {7, > G, } N A, G, it follows
that y, does not belong to this set. Hence, y,€ dG(p) U {T;<C,} and

7}2—8\11—1 < C‘12+ max 7}2.
AG(P)XS)

Let € — 0 and let
W, =1+ max|®| + | D,®|.
o(p) ’
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For v e ApGxSl, we have
[0,®] + |®B] < ChIEl+|Dey|w™ +1] < CW[IE] + | Dew |y +1].
To prove (67) we choose E=1 LD v, E=(t,b)e R™™ ||E|l=1, toderive
[ D@ + |®| < CW,.
Finally, letting x — 9G, we get (67) due to
i [D,3] + 8] = [Py (D050 + D3]
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