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ADMISSIBLE VECTOR FIELDS AND RELATED
DIFFUSIONS ON FINITE-DIMENSIONAL MANIFOLDS"

IOITY CTUMI BEKTOPHI IIOJISL I ACOIIAOBAHI IADY 311
HA HECKIHYEHHOBUMIPHUX MHOTI'OBUJAX "

A variation on the notion of ..admissibility™ l'or vector felds on certain infinite-dimensional manifolds
with measures on themn is deseribed, [t Teads to the construction of associated diffusions and Markov
semigroups on these manifolds via Dirichlel forms. Some classes of concrete examples are given,

Poarapsaerhest Baplairt notsrirs ,JIOnYCrHMEX"™ HEK TOPITHMX noJiil 1a NesnHX JHeckiiyenonHMipinx
Muorounlax 3 Mipamu 1 X, e npusojurins jio xonerpysitii aconifonumix jiupyaiil T4 MAPKOBCHKHX
niBrpyn i fEx MHoroBuymx 3 ylonoMoroio gropst Jipixne. Tojani nenni KJweH KOUKPETHIX NPHK-
Jralin.

1. Introduction. The late 1960°s saw (he remarkable paper of Dalecky and
Shnaiderman [1] constructing measures on certain infinite-dimensional Lie groups via
stochastic differential equations (with infinite-dimensional noise) and discussing their
quasi-invariance properties. Analysis on infinite-dimensional spaces was also
developing with discussions of differentiability of measures (cf. e. g. [2. 3]), a topic of
increasing importance with continuing work by Professor Dalecky and his co-workers.
In both of those advances, the idea ol “admissible” derivatives plays an important role:
in the curved space case the “derivalives” are given by vector ficlds, Such ideals are
now fundamental to infinite-dimensional analysis having been joined wilh
developments in the work on H-differentiability by Gross [4] and on Malliavin
calculus [5], with Driver’s work [6] leading the way to recent advances in analysis on
path and loop space.

There have been many variations on the notion of “admissibility”. Here we will
describe that given in [7], showing how it leads lo the construction of associated
diffusions and Markov semi-groups on the state space. We will also show often
infinite-dimensional stochastic differential equations appear naturally: however in
practice the coefficients are not regular enough for existence theorems in their present
slage of development, so we have to rely on Dirichlet form theory (cf. [8, 9]) to
construct our processes. We give a class ol concrete examples using results from [10,
11] to exteng earlier work such as [12].

2. Admissible vector fields on C-F-manifolds. In this section we assume that M
is separable C' manifold modeled on a Banach space and equipped with a given
Finsler structure T [13, 14]. Let TM:= U‘_EM T.M denote the tangent bundle

of M.

We write |v|y=1(v) for ve T M. Then T M equipped with the norm ||, isa
Banach space. Let f bea & map from M to another Finsler manifold N. We set

I 5l := sup Jdf(x) ”f-(?}M-'-‘}U-JN)' D
xeM ) ’

We write fe Ch(M;N) if ||df]| <. In particular we write fe C/(M;N) if
[l df|l < 1. We introduce a pseudo metric pj, (Carathéodory metric [15] ) on M as
follows:
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ADMISSIBLE VECTOR FIELDS AND RELATED DIFFUSIONS ... 411

pulxy) i= sup{f(y)—f(x): fe C(M:R)}. )

Definition 1. We say that M is a Caratheodory-Finsler manifold (C-F
manifold in short) (wr.t T)if py is an admissible metric on M (e, py
generates the original topology on M) and is complete.

Below we collect some facts and examples concerning C-F manifolds without
proof. For details see [7].

Proposition 1 ([7], 2.2). Suppose that there exists a C-F manifold N and a
closed embedding map J € C;J,(M i N), then M isa C-F manifold.

The following results was communicated to us by C. J. Atkin.

Proposition 2 (Atkin). Suppose that the separable manifold M is modeled on a
Banach space with a separable dual, then p, =dy where d, is the metric
induced by the given Finsler structure. Thus if in addition d g, is complete, then M
isa C-F manifold.

Example 1. (i) Let M be a separable Banach space with Finsler structure given
by the Banach norm. Then M isa C-F manifold.

(ii) Let M be a finite-dimensional complete Riemannian manifold and the Finsler
structure be given by the Riemannian metric. Then by Nash’s embedding theorem M
has a closed isometric embedding into a Euclidean space EY Hence by (i) and
Proposition 1 M isa C-F manifold. See also Remark | below in this connection.

(iii) Tt follows directly from Proposition | that any closed submanifold of a C-F

manifold is again a C-F manifold.
The manifolds we are interested in will be C-F manifolds by the above results.
They will be spaces of maps of compact melric space § intoa C-F manifold M. For

example path or loop spaces if S=[0, 1] or S'. Set E=C(S; M) the space of all

continuous mappings with the compact open topology. Then E isa C ' manifold
(e.g. see [14, 16] lor the case of M a Hilbert manifold and [17, 18] for more general
M). Morcover, spaces of based loops and based paths are closed submanifolds of

C([0,1]; M). For oe E, the langent veclor space T;E can be identified with the
space of all continuous map v: §—TM suchthat v(s)e Ty, M forall se . A
natural Finsler structure on E is given by
[vly = sup |v(8)|yy. VoeE ve TE (3)
ges
One can easily check thal T4E equipped with the norm |- [, is a Banach space.

Proposition 3 ([7], 2.6). The mapping space E constructed above is C-F
manifold with respect to the Finsler structure given by (3), as are all its closed
submanifolds with their induced Finsler structure.

In what follows let E:=C(S; M) be the mapping space specified in Proposition 3

or a closed submanifold of it. Let o€ E and ve T E. For fe CI(E; R) we shall
write 24f(0) i=df(v)(c), the Fréchel derivative of f at ¢ along the direction v.
For a vector field v on E we write dyf(0) for dy(o1f(o). Let &F C,I,(E) be the
space of cylindrical functions in C}E,(E; R); so they are compositions of evaluations at
a finite number of points of § with a C,[, function on a product of copies of M with
its product Finsler. A monotone class argument shows that 97(:}! is dense in

L2(E; ) for any finite Borel measure L on E.
We shall always use the Borel g-algebra of our manifolds. A vector field be called

measurable it d,f is measurable for all ¢! functions f: E—=E. From now on we
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412 K. D. ELWORTHY, ZHI-MING MA

assume a finite measure L is given on E. As usual we use f to denote the p-a. s.

equivalence class of a measurable function f on E. :
We need to specify a class of test functions for our Dirichlet forms. The standard

example will be ?C;’,(E) but other choices could sometimes be more useful (e.g. see
[7] and below).

Definition 2. Let B be a linearsubspace of C,f,(E; R) N I’(E.W) such that
D is dense in I>(E, ). We say that a JB-measurable tangent vector field v is
D-admissible, if the following three conditions are satigfied.

() fe D, f=0 p-ae. implies d,fL-a.e.

(i) 9,fe [X(E, W) forall fe D.

(iif) 9, is closed operator in I2(E, LL).

The above definition goes to [l-a.s. equivalence classes of vector fields. In our
examples the vector fields will only be defined off some p-null set in E and

admissibility will mean admissibility for some (and hence any) measurable extension.
Below is a sufficient condition for v to be @-admissible,

Proposition 4 ([7), 3.5). Suppose that 9@ is an algebra with pointwise
multiplication. Let v be a W-measurable vector field such thar 9,f e LA(E, 1)
forall fe @ and there exists an element divv (called the divergence of v) in

LX(E, W) satisfving

[ 3ufu(do) = ~[ fdivop(do), Vfe 3, ()
E E
then v is D-admissible. In this case we say that v is strongly D-admissible.
Proposition 5 ([7), 3.6). Let v be a strongly 9D-admissible vector field. Then
Jor any bounded element fe D, fv isagain a strongly D-admissible vector field.
Remark 1. In the situation of Proposition 3 and Definition 2, let & be a
countable or finite family of 2-admissible vector fields. Suppose that

| T 1o, fPudo) < =, Vfed. )

E veA

Then one can easily check that the symmetric form (%, @) defined by
Bfig)= | 2@ @8N do) <= YfgeD (6)
E ved

is closable in [*(E, ) and the closure (%, 9(%)) is a Dirichlet form on [2(E, ),
(see [7], 4.1).
The following theorem plays an important role in our further discussion.

Theorem 1. In the situation of Remark | suppose that in addition to (5) the
following three conditions are also fulfilled:

() If pe Cr(R), 0)=0, then @ofe D forall fe D.
(ii) If f, g are bounded functions in D, then fge 9.
(iii) D ge D and there exists © e [*(E, W) such that for all ¢ € C;', (M, R),
se S,
> e @ @)f < ldefd*e),  pae, ©
ved

where | do| is defined by (1) and
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Dy := {fe FCL(E): f(o)= ¢(o(s)) forall oe E,
forsome @e CHM,R) andsome seS}. (8)

Then there exists a diffusion process (§,),5¢9 on E properly associated with (%,
D(€)). Thatis, if (L, D(L)) is the generator of (%, D(%)), then

E.[f(E)] isan $-quasi-continuous p-version of e™f forall fe [F(E, ).

Moreover, (€,),5q is conservative and hence | is un invariant measure for e®.

The proofl of the above theorem goes back to [19] but relies heavily on the fact that
E:=C(S; M) is a C-F manifold. For details see ([7] Th. 4.2).

Theorem 2 below is a consequence of the above theorem; see ([7], 4.8) for ils
proof.

Theorem 2. Let X: EXH — TE be measurable with, for p-almost all o
with X(o,-): H—= TGE continuous linear and satisfying |X(c, h)|; < ®(0)| k],
where H is a separable Hilbert space and ® e I[*(E, ). Suppose X(-,h) is
D-admissible for all he H.

For f: E=R in C) define, for p-almostall o, Vf(c)e H by
(Vf(o)h)y = df(X(o, h)).
Set

x(f,8) = [ (Vo) V(o) y(do), VfgeD.
E
Then (%x,9D) is closable in L*(E,p) with closure (%y,D(%x)) a Dirichlet
form. If also conditions (i), (ii) of Theorem 1 hold then ( €y, D(%y)) is quasi-
regular and local and in particular there is a properly associated diffusion as in the
conclusion of Theorem 1.
Remark 2. In Theorems 1 and 2 we could equally say that there exists a diffusion

(€,);20 associated with (%, D (%)) (ie. E.[f(E&)] is an p-version of ek f)
instead of saying properly associated, because by the last assertion of V. Theorem
5.1 of [9], which exlends an earlier resull by Fukushima [20], association always
implies proper association in our context.

3. Dirichlet forms and diffusions on path spaces.

A. Preliminaries. In this section let M be a CTn-dimensional compact
Ricmannian manifold and 7> 0. Let E:= C, ([0,T]; M), a based path space for
some fixed point xp e M. Then, being a closed submanifold of the C-F manifold
C([0, T, M), E isa C-F manifold (c.f. Proposition 3). For ¢ € E, the tangent
space TgE consists of all continuous paths v: [0, 7] — TM suchthat v(0)=0 and

v(rye Tg(nE. A natural Finsler structure on T E is given for v as above by
lvle := sup vy, u- ©
01T :

We choose a Borel measure [t on E to be the law of a M-valued diffusion
{&,;: +20} starting from xy with generator A/2 + Z where A is the Laplace—
Beltrami operator on M and Z asmooth vector field. In particular if Z= 0 then L
is the usual Wiener measure on E which has been considered by many authors.

Let {x,: 0<+<T} be the coordinate process on E (i.e., x,(c)=0,), and F'o
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4 K. D. ELWORTHY, ZHI-MING MA

={ F9: 0<+<T} the natural filtration generated by {x,;}. Then {x,} isa semi-
martingale on the filtered probability space (E, “ﬁ;f’ B LL).
Let V be a smooth linear connection on M of which the dual V is a metric

connection for the Riemannian structure of M. There is then another vector field A
on M with

%(A-l‘z:}f = %craceﬁ’df +Af (10)
or equivalently
%(QHLZ)f = élraccﬁgradf + Af «(11)
It follows from a result of [I1] that one can always construct a stochastic
differential equation
dE, = X(E)odB, + A(E,)dt (12)

for some m-dimensional (m is not necessarily equal to n), Brownian motion
(B,;);»¢ on a probability space (£, %, P) and some C™ map X: R" XM — TM.

With X(x)e L(E", ToM) all xe M, insuch a way that V equals the LeJan —
watanabe connection induced from (12), and consequently the law of the solution to
S. D. E. (12) starting from xg coincides with the prespecified measure |L.

In what follows we fix an orthogonal frame of 7, M and hence identify T, M as

Euclidean space IE". In this point of view a fibre of the linear frame bundle over x e
€ M is identified with

GLy(M) = {u: T, M — T:M | u is alinear bijection },

in particular G L (M) =GL(E".
For any smooth connection V., there exists a unique horizontal lift E of E,

starting from (xp, id) ([21], 13C), which gives a stochastic parallel translation /.
along p-a.s. paths o e E. There is also a damped parallel translation W. with respect

to the connection V, defined by the covariant equation
éf) I =4 =
a(wvo) = ‘—ERI(. (H{,U{J} -+ VA("VFUG) (13)
for vpe T, M. Here Ric": TM — TM is defined by R?c#(vg) = trace R(v,—)—,

wilth R being the curvature tensor of V. It is known that [11]

W, = E[T,&|F}] as (14)

iy

where ‘I}"F; , is the derivative [low generated by (12).

‘We shall use the following results.
Lemma 1. Ler W be specified by (13). Then

=} -1 P
sup‘l.f'.f', W"H.s.+ sup.lwF i, ‘H.S.EL (E,u), Vp=1.
0<i<T 0<I<T

Also for any smooth linear connection V, we have
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ADMISSIBLE VECTOR FIELDS AND RELATED DIFFUSTONS ... 415

sup Ia"f,“' /?,’

+ swp |07 e LB W, Ve 21
0<I<T H.S.

HS.  pgr<r

The proofl of Lemma | will appear elsewhere. Here we mention only that the facl
supuﬁ,sﬂﬁ," W, IH ¢ € L"(E;n) can be derived also from the fact that
2
supog <7 | Teo&i |y g € L7 (Bi 1) (seee.g. [22]) and (14).

B. Damped Dirichlet forms. Tet & = C}!,(E;]R}. Let H be the Cameron—
Martin space de’([ 0.7} TXHM) with the norm

T
lhln = [ (|4, \Ed:)'”
0

and let fe 9. For p-as. o= E we have
|df(W. h)(S)| < |df |[(W-h)(O)y < |df | D(HT? |1y, YheH (15)
where [ df| is defined by (1) and

D(c) = sup iW;(G}Iﬁ_s_- (16)
[

Hence there exists V f(o)e H such that
(Vflo)hh)y = dfiW. h.)(c), VheH. (17)

Wecall V f adamped gradienr of f (related to Lhe connection V and the drift A).
See e.g. [23] for the history of the notion ol damped gradienl. More generally, lel §

bea L(H:H)-valued random variable on (E, F" . 1b). Thenfor p-as. ce E, there
exists V°f(o)e H such that

(VEf(o) h)y = df(W.(Sh))(o), Vhe H. (18)
Lemma 2. Let V f and Vf- be defined as above. Then for l-a.s. c€ E,
V3f(o) = $(0)*V f(o)

where S(c)" is the adjoint of S(o).

Proof. For he H, we have

(VEf(o) k) = df(W.(0)S(0)h) =
= (Vf(0) S(a)h)n = (S(0)*V f(o), h) .

Definition 3. An H-valued random variable k is said to be T -adapted, if
it ean be regarded as an F-udapted process k: EX[0, T]— T.,M. An L(H;
H)-valued random variable S is said to be F'-adapted if Sh is adapted for
each he H.

Lemma 3. Let k be an F -adapted H-valued random variable such that
[ k(=) L3+5(E. W) for some &> 0. Then the vector field Wk := W.(=)k(=) is
strongly D-admissible in the sense of [7). If V is metric compatible for some

2
Riemannian metric on M, then it suffices to have |k(=)|y € L™ (E, ).
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Proof. Write v(c) for W.(0)k(c). Clearly we have |v(c)|, < ®(0)|k(0)|y
for p-a.s. o e E where @ is specified by (16). Thus

[ (o) 1do) < =

since by Lemma | ® ¢ L‘”(E, W) all p=1. Moreover, by [24] we have
T
_f dufildo) = J' f[ J’ (WJr kg, # dB, )T o ]p(dc)
E E “o o

where {Ex: Oé.s'.éT} is the martingale part of the anti-development of

{x;: 0<s<T} using /,, aBrownian motion on T, M. One can check that

T 1/2
[J’ | W,k,(0) \Tﬂ i ds] < D(0) | k(o) |-
U X

Hence if we set
A A
divy = — [ (W k;, I,dB, )
0

atx)

then divv e LQ(E, ). Thus by Proposition 7 v is strongly @-admissible. The last
assertion follows from the fact that if V is metric compalible for some Riemannian
metric, then ® € L™ (E, [L).

Theorem 3. Let § be an F'V-adapted L(H; H)-valued random variable such
that }S(_JIL(H:M e L2+S(E‘p)for some 8>0 andlet pe D and Le L(H,;
H). Define

€(fe) = [(LVf.LV%), p*(@)(do), fige D. (19)
£
3
Then (%€,% ) is closable in L™(E, ) and the closure (6, 9D (€)) is a quasi-
regular and local Dirichlet form on LE(E, Ww). In particular there is a diffusion,

with | as invariant measure. properly associated with (€, D (€)). If V s
metric compatible for some Riemannian metric on M, then it suffices to have

[ earmy € L (E. ).

Proof. For he H wesel k(- h) = L*S(=)h. By Lemma 3 W.k(—, h) is
strongly @-admissible. We now define X(o, h) = p(o)W.(c)k(a, h). By
proposition 5 X(— k) is strongly Sh-admissible for each 2 e H. One can check that

X satisfies all (he conditions specified in Theorem 2. Hence if we define fo;sf(c)

by requiring <VP"“SJ"(G}, h) = df(X(o,h)) forall he H, then the form
H

Ex(f,8) = I(V"L.sﬂ vPL g >H Wdo), fige D,
E

o
is closable in L7 (E, 1t). and there is a diffusion associated with its closure. Similarly
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to the proof of Lemma 13 one can show that vPLS - pLVS f for fe @. Therefore
%y coincides with % defined by (19), which completes the proof.

Corollary 1. Let k be an F'-adapted L(H; H )-valued random variable
such that k(c) (s nonnegative definite self-adjoint for W-a.s. o€ E, and

k(g € L I+8(E, W) for some >0 (if V is metric compatible for some

Riemannian metric, then & may be zero). Let p € 9. Define.

B(£8) = [ (kVf, Ve)p*(O)do), figeD. (20)
E

Then all the conclusion of the above theorem holds true.
Proof. Let S= k2. Then we can check that

B(fg) = [(Vf. Vg )p*(0)ndo), fige D,
E
and S meets the conditions specified in the above theorem. Hence the required

conclusion follows.
Remark 3. Note that in the above corollary & 1may be degenerate, e.g.

kernel k(o) # {0} for y-as. ce E.
C. Undamped Dirichlet forms. Let & and H be as in Subsection B. We now -
give a version of the integration by parts formula in the original form given by Driver
[6] for the torsion skew symmelric case.
Lemma 4 (integralion by parts formula). Let k be an F'V-adapted H-valued

process such that

)y £ L' E W forsome 8>0.
Then for fe D we have
| drll kxomdo) =
2 .

T ~ = -~ a0y - -
= [£] (%RTC#(G)J’K,&, — VAT & + Tk, //,d8,>u(dcr) @1
E 0

Proof. Letusset h,=a 'k, where a”' = W' /l,. Then W,h,=/k, and
Wk = %RT{;#(U) Ik, — VA K + 1K, (22)

Let
C = sup Ric#(.r) + sup VA(x) 2
xeM] |O'P' .\'EM‘ [O'P'
Then (22) yields
2

T . g 1
[J | Wiy () |TumM dr) =
0

X T va T N2
/f,(c)‘H'S[[_[ ]k,(c)[zdt] +[J' |k,(0')|‘dr] ] <
0 0

< C sup
0=<t<T

ISSN 0041-6053. ¥Yip. sam. skypi., 1997, m. 49, Nt 3



418 K. D. ELWORTHY. ZHI-MING MA

i 11231 5.
< Cozl.-lET';{r(c)‘H‘S(HT ]]MG)]H.

Therefore by the Burkholder—Davis—Gundy inequality and Lemima | we have for some
T

constant C,
T 12
E]i (WA, J’,:LEQH < C,EMHW,E, |3csz } <
0 0

< o] ()"l <

0=l

Thus all the arguments of ([7], Th. 3.3) goes through in our case and the corresponding
resulls are available here. In particular we obtain (21) by ([7], (23))-
One can easily check that for pl-a.s. o e E there exist constants ¢(c)> 0 such

that for fe D

|ar(1.1))| < Ndflet@lhly, Vhe H. (23)
Hence there exists D f(G)€ H such that

(Df(o) hYy = df(l.h)(e), Yhe H. (24)

We call D f the gradient of f (related to the connection {7) More generally, let
S be an L(H, H)-valued random variable. Then for p-a.s. o e E there exists

D5f(c) e H such that
(DSf.h), = df(l.5.h)(0), Yhe H. (25)

The following Lemma 5 and Theorem 4 are consequences of Lemma 4. Their
proof are similar (o those of Lemma 3 and Theorem 3 respectively, We leave the

details to the reader.

Lemma 5. Let k be an F-adapted H-valued random variable such that
k() |y L2+5(E, W) for some &> 0. Then the vector field Tk is strongly 9D -
admissible. If V is metric compatible with some Riemannian metric on M, then it
is sufficient to have |k(-)|y € LZ(E, L.

Theorem 4. Let S be an F'-adapted L(H, H)-valued random variable such

that | S|y m € L2+§(.E, W) for some 8>0, andlet pe D and Le L(H,
H). Define

B(f,8)= [(LDSf, LDSg)p*(o)(do), Vi geD. (26)
E
Then (%, D) is closable in LIE(E, W) and the closure (%, D (8)) is a quasi-

regular and local Dirichlet form on Lz(E. W). In particular there is a diffusion,

with W as invariant measure, properly associated with (%, D (€)). If V s
metric for some Riemannian metric on M, then is suffices to have |S.(=)|yx. gy €

e L*(E ).

ISSN 0041-6053. Ykp. mam. sypie., 1997, m. 49, N* 3
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Corollary 2. Let K be an F'-adapted L(H, H )-valued random variable
such that K(o) is nonnegative definite self-adjoint for [-as. o e E, and
248 i
| KM pew. oy € }[..)+ (E, L) forsome &§>0 (if V is metric compatible for some
Riemannian metric then & may be zéro). Let p € 9. Define

8(f£,8) = [(KDF, Dglp*(0)(do), ViigeD. @7
£

Then all the conclusion of Theorem 4 holds true.
Remark 4. It is worthwhile to point out that the above results are related to the

connection V which is not required to be metric compatible as in [12]. Also our
conditions for K and p in (27) are differenl from those in the literature concerning
wgradient type” Dirichlet forms on infinite-dimensional spaces (see [25] and references
therein for historical remarks and a recent survey in this connection) where K and p
are assumed to be strictly positive for [l-a.s. o € E, while in our case we may allow

kernel K(c)# {0} for p-as. o€ E and p{p> =0} > 0. But for the price of this
degeneracy we have (o assume that K is adapted and p € C,’,(E)‘

4. Degenerate case. Lel M -be a compact €~ manifold with dimension n. As
before let E := C, ([0, T); M) be a based path space for some fixed point x5 & M
and some 7> 0. In this section we consider a Borel measure |t on E which is the
law of a degenerate diffusion {&,: +20} slarting from xo with a semi-elliptic

generator L based on a subbundle [ of TM. More precisely [/ is a smooth
subbundle of TM and £.:=&.(xq) is the solution to some S. D. E.

dE; = X(§)odB + A(§,)dt (28)

similar to (12) but with image X(x)=/,. Note that ifalso A(x)C [, forall xe M
(hen there exists a Borel subset Egq C E such that p(E\Eg) =0 and the paths in Ej
can be uniformly approximated by piecewise smooth paths which are tangential to /.
Therefore in some case L may be singular to the usual Wiener measure on E. But it
is dilficult to ind the exact ,,geomelric shape” of £y, which is perhaps even not a
manifold in general.

The map X in (28) induces a Ricmannian metric {(, )y, x € M} and a metric

compatible connection V (the LeJan—Watanabe connection) on the subbundle /.
Taking any Riemannian metric and metric compalible connection on TM which

extend (, % and V respectively (they will be denoted again by (, ), and V in the
scquel), we may construcl a horizontal 1ift E of &, starting from (xg, id), which
gives a stochastic parallel translation . The restriction of J’?, to [, maps it
isometrically onto I . As in the previous section let W, = E[Tx"“;]?ﬁ'ﬂi’] be the
conditjonal expectation of the derivative flow T, E,. Then it follows from [10] that
there is a continuous version of W. satisfying the covariant equation:

DW, = VX(W,, X"ENXE)o dB,) + (VA " %R"ic) W, dt (29)

using the Levi-Civila connection for {, ). Note that X(&;)dB, can be represented by
.f?, dB, with B being the martingale part of the stochastic anti-development of
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{&€;: 0<t<T}, hence the solution to (29) is F%"-measurable. From (29) one can
show that

sup |/, W, + sup W7 e LP(B.p), Yp 21 30
os:sTl ! I’H'S' 05:57" ; 11”‘5'

The proof of (30) follows from the same argument used in the proof of Lemma 1 and

will appear in a separate paper. One can also describe W. using the adjoint of V.,
For details we refer to [10].

Let Q = Gy([0, T];R™). The solution to (28) (starting from x,) defines a
measurable map J: Q@ - E with J(0)=&.(w) forall e Q. Let Hm‘ be the
Cameron—Martin space L%‘l[[O,T};IR’"). By the Cameron—-Martin Theorem J is
differentiable along he H™ atas. o e Q. The differential is given by

s
(dIh), = To &, [ (T,8) " XEhds, 0<t<T. @31)
Q

The conditional expectation of the above differential gives a map S from H™ to the
space of vector fields on E. Using (31) and (29) one obtains

;
(Sh), := E[ (d.!(h))r]ﬁ’}"] =W J‘ W, X(o,)hds, poas. (32)
0

See [10] for the proof of (32).
We are now in a position to state the following theorem.

Theorem 5. (i) Let & = C},(E; R). Then Sh isstrongly D-admissible for
hE H”'l
(ii) Let fe D. Then for |-a.s. ¢ € E there exists D#f(o'}e H™ such that

(D" (o). h)
(iii) The bilinear form

%*(fe) = [(D'f. D) miido), fge®D,

qn = dShYG), VheH™

is closable in LZ(E, i) and the closure (%%, D @©") is a quasi-regular local
Dirichler form on LZ(E, W). Hence there is a diffusion process properly associated
with (8%, (%)

Proof. (i) Let he H™ and write v for Sh. From (32) and (30) we see that

o0, i=df(Shk)e LE(E, n) for all fe 9. Also by [10, 9] we have the integration by
parts formula:

[ 3.f1(do) = - [ fdivop(ds), Vfed,

E E

with

divy := -?jﬂ (X(o,)hy, [,dB,)

5 ToaM
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2 -
Clearly divve L (E; L) since B isa !x[}—valuad Brownian motion. Thus by
Proposition 4 v is strongly @-admissible.
(ii) For fe @ and he H™ we have by (32)

| df(sh)o)| < |dF] sup |Sh©)ly 4y < |dF1Q) | Alym (33)
02T
with
(o) ;= su WW.\.‘l(G) . (34
¥ osxsl?s:rl r lH‘S' &9

In the last step of (33) we used the fact that |X(0’,)Iil,. [T ” < [h, [R‘“ since the
aix)

Riemannian metric on /, is induced by X(x). By (30) we have @(0) < e for as.
o € E. Thus the desired conclusion follows from Riesz representation theorem.

(i1i) By (30) we have @ & LZ(E; i) for @ specified by (34). Hence if X(o, h) is
defined by Sh(c) for c e E and he H™, then X meets all the conditions stated in
Theorem 2 from which the desired conclusion follows.

5. Diffusion on paths of mapping groups. As another example we go back Lo the
sort of situation discussed in [1]. Let A be a compact Lie group with bi-invariant

metric and K be acompact n-dimensional manifold, Set G=H"(K; A), where s>
>n/2, i.e. the Hilbert manifold of maps g: K — A of class H’, e.g. see [26]. Let o
be the Lie algebra of A. Then if 2(r—s)>n the inclusion of Sobolev spaces H'(K;
) — H'(K; &) is Hilbert—Schmidt and there is an associated Gaussian measure and
Wiener process { W;: t=20} on HY(K; &), the tangent space to the Lie group G at
the identity. In fact instead of A" (K; &) we could take any subspace H, of H*(K;
&) with Hilbert structure which has a Hilberl—-Schmidt inclusion into H¥(K; #). See
[27]. We can therefore consider the left invariant equation on G:

dg, = Xo(g:1)e dW,

with go given, where Xo: H'(K; o) — THH"(K; &) is given by left translation just
as in [1], see also [28]. Solutions exist for all time, for example by the uniform cover
technique as used in [21] or [29] for diffeomorphism groups. Let | be the law of the
solution process restricted to the time interval [0, 1], so p is a Borel measure on E:=
1= Gy, ([0, 1], G).
Set H= H{([0,1]; Hy), the Cameron-Martin space of { W;: 0 <t< 1}, Define
X: ExH-—TE by
' I
S s
(X(o)h), = TR, [ ad(c;')h,ds
0
where R,: G— G denotes right multiplicaéion for ¢ in G and ad(g): H'(K;
) — H*(K; 1) is the adjoint representation of g for g e G. (This means that
(ad(g)o)(x) = ady(g(x))o(x), xe K, oo € H'(K; ) for ad, the adjoint
representation of A on &).

2
Let 9@ bethesubset of L (E, W; R) consisting of BC' functions using the right
invariant Finsler on E:
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[vly = sup I[TRB, Y

- ve T,E.
0=l

HY (K sl)

Certainly E with the above Finsler structure is a C-F manifold by Atkin’s result.
Moreover the argument in [30] similarly to that in [1], shows that each X(-)A is
strongly @-admissible. However although X(o): H— T.E is bounded for each ©
it is not clear that it will satisfy the integral condition of Theorem 2. To be safe, we

can change the state space E to E := Cy, ([0, 1]x K3 A) the infinite-dimensional Lie
group of continuous maps
o:[0,1]xK—=A 'with o(0,x) = go(x), xe K.

i.e. the space of homotopies of g,. Taking the natural Finsler, || say, we havea C-F
manifold again, Let @ be corresponding space of BC' functions on E. Since E

is included in E (as a dense subset and by a C™ inclusion), we have an induced
probability measure [i on E and X extends to a measurable

X: ExH—-TE.

The strong admissibility property is retained under such an extension of state space.
Moreover now, by the right invariance of the metric on A,

|)"€(0')h. [i = sup

OSISI._\'EK

Jad,‘ o, (%)) Ay ds

I

< [ sup| A (x)|yds
0 X

since ad, is an orlthogonal representation. Thus

142
‘X{U}h < {J sup| h‘(,\)uds:l <

ITE
O,
< const. [ _[ | A Ly, dsJ = const. | i ]ly.

0

It follows from Theorem 2 that the form

Ex(h) = [(df o X(©@) df o X(@)), ) ldO).  fe D,
E
is closable with closure a quasi-regular, local, Dirichlet formon E. In particular there
is an associated diffusion on E.

Remark 5. (i) We are not claiming that the above example has importance other
than that of illustrating the possibililies of the approach described and showing the sort
of problems which can arise (e.g. when does the diffusion liec on E?).

(i1) Instead of using the Hilbert manifolds H *(K; &) it should be possible to use
more general spaces of maps as in [29].

(iii) For related conslructions of infinite-dimensional diffusions see [30].

(iv) As alternatives to @ and D we could equally well have used functions
cylindrical in the [0, 1] variable but BC' on H'(K:;sd) or C(K;A), or used
functions cylindrical on [0, 1 ]x K. It is probably difficult to discover if, or when,
they lead to the same Dirichlet forms. For Lhe “classical” case of path spaces, when A
is a point, see [31].
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