G. Da Prato (Scuola Normale Superiore di Pisa, Italy)

REGULARITY RESULTS FOR KOLMOGOROV EQUATIONS IN $L^2(H, \mu)$ SPACES AND APPLICATIONS

РЕЗУЛЬТАТИ ПРО РЕГУЛЯРНІСТЬ ДЛЯ РІВНЯННЯ КОЛМОГОРОВА В ПРОСТОРАХ $L^2(H,\mu)$ ТА ЇХ ЗАСТОСУВАННЯ

We consider the transition semigroup $R_i = e^{i\pi t}$ associated to an Ornstein-Uhlenbeck process in a Hilbert space H. We characterize, under suitable assumptions, the domain of $\mathcal A$ as a subspace of $W^{2,2}(H,\mu)$, where μ is the invariant measure associated to R_i . This characterization is then used to treat some Kolmogorov equations with variable coefficients.

Розглядається перехідна півгрупа $R_t = e^{t/d}$, що пов'язана з процесом Орнштейна-Уленбека в гільбертовому просторі H. При належних умовах наводиться характернзація області визначення \mathcal{M} як підпростору $W^{2,2}(H,\mu)$, де μ — інваріантна міра, що асоціюється з R_t . Ця характеризація використовується для розгляду деяких рівнянь Колмогорова зі зміннями коефіцієнтами

1. Introduction. Let us consider the Ornstein-Uhlenbeck process X in a separable Hilbert space H defined as

$$dX = AXdt + K^{1/2}dW(t), \quad X(0) = x \in H,$$
 (1)

where $A: D(A) \subset H \to H$ is the infinitesimal generator of a C_0 semigroup in H and K is a strictly positive linear operator in H (for instance, K=I). Moreover W(t), $t \ge 0$, is a cylindrical H-valued Wiener process defined in some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Under suitable assumptions (see Sec. 2 below) equation (1) has a unique mild solution X(t, x). Let R_t , $t \ge 0$, be the corresponding transition semigroup:

$$R_t \varphi(x) = \mathbb{E} \left[\varphi \big(X(t,x) \big) \right], \quad \varphi \in C_b(H)^*.$$

Then $u(t, x) = R_t \varphi(x)$ is, in a sense to be precise, a solution to the Kolmogorov equation

$$\begin{cases} u_t = \frac{1}{2} \text{Tr} \left[K D^2 u \right] + \langle A x, D u \rangle, \\ u(0, x) = \varphi(x). \end{cases}$$
 (2)

The Kolmogorov equations in infinite dimensions were extensively studied by many people, starting from the pioneering papers by Yu. Daletskii (see the monograph [1]).

Another approach, motivated by several problems of mathematical physics, is based on the Dirichlet form

$$\alpha(\varphi, \psi) = \int\limits_{H} D\varphi(x)D\psi(x)\mu(dx), \quad \varphi, \psi \in W^{1,\,2}(H;\mu),$$

where μ is the invariant measure associated to problem (1), and $W^{1,2}(H;\mu)$ is the

^{*} $C_h(H)$ is the Banach space of all uniformly continuous and bounded mappings from H into $\mathbb R$ endowed with the norm $\|\phi\|_0 = \sup_{x \in H} \|\phi(x)\|$.

corresponding Sobolev space (see, e.g., the monograph by Z. M. Ma and M. Röckner [2]). Using this method, one can construct the transition semigroup R_1 , $t \ge 0$, in the space $L^2(H; \mu)$. If $\mathcal A$ denotes its infinitesimal generator, one has that the domain of $\mathcal A$ is a subspace of $W^{1,2}(H; \mu)$.

In this paper, we present some new results about the characterization, under suitable assumptions, of the domain of \mathcal{A} as a linear operator on $L^2(H;\mu)$. We will prove in particular that $D(\mathcal{A})$ is a suitable subspace of $W^{2,2}(H;\mu)$ (see Sec. 3 below). Note that, in the particular case where K=I, a characterization of $D(\mathcal{A})$ was given in [3].

In Sec. 4, this result is applied to studying the Kolmogorov equation with continuous coefficients

$$\begin{cases} v_t = \frac{1}{2} \text{Tr} \left[K(x) D^2 v \right] + \langle Ax + F(x), Dv \rangle, \\ v(0, x) = \varphi(x), \end{cases}$$
 (3)

where K(x) are linear positive operators depending continuously on x, and F is a nonlinear Borel mapping from H into H. Using the characterization of $D(\mathcal{A})$, we are able to solve problem (3), under suitable assumptions, by a perturbation argument. Moreover, arguing as in [4], we show that there is an invariant measure ν for this problem that is absolutely continuous with respect to μ .

2. Notation and setting of the problem. We are given a separable Hilbert space H (norm $|\cdot|$, inner product $\langle \cdot, \rangle$), and two linear operators $A: D(A) \subset H \to H$ and $K: H \to H$ satisfying the following conditions:

Hypothesis 1. (i) A is the infinitesimal generator of a strongly continuous semigroup e^{tA} in H. Moreover, there exist M > 0 and $\omega > 0$ such that

$$\|e^{t\Lambda}\| \leq M e^{-\omega t}, \quad t \geq 0.$$

(ii) For any t > 0, $e^{tA} \in \mathcal{L}_2(H)^*$ and

$$\int_{0}^{t} \operatorname{Tr} \left[e^{sA} e^{sA^{*}} \right] ds < +\infty.$$

(iii) $K \in \mathcal{L}(H)$ is self-adjoint and bounded. Moreover, there exists v > 0 such that

$$\langle Kx, x \rangle \ge v |x|^2, \quad x \in H.$$

Under Hypothesis 1, the linear operator Q defined by the relation

$$Qx = \int_{0}^{\infty} e^{sA} K e^{sA^*} x ds, \quad x \in H,$$

is a well-defined trace-class** operator.

^{*} $\mathscr{L}(H)$ is the Banach algebra of all linear bounded operators on H endowed with the sup norm $\|\cdot\|$. By $\mathscr{L}_1(H)$ (norm $\|\cdot\|_{T_1(H)}$) we denote the Banach space of all trace-class operators on H, and by $\mathscr{L}_2(H)$ (norm $\|\cdot\|_{T_2(H)}$) the Hilbert space of all Hilbert-Schmidt operators in H. If $T \in \mathscr{L}_1(H)$, the trace of T is denoted by $\operatorname{Tr} T$.

[&]quot;" We denote by A " the adjoint of A.

Let us consider the Ornstein-Uhlenbeck semigroup R_t , $t \ge 0$, in $C_b(H)$ defined as

$$R_t \varphi(x) = \int\limits_H \varphi(y) \mathcal{N}(e^{tA} \, x, Q_t)(dy), \quad t \geq 0, \quad x \in H, \quad \varphi \in C_b(H), \tag{4}$$

where $\mathcal{N}(e^{tA}x, Q_t)(dy)$ is the Gaussian measure with mean $e^{tA}x$ and covariance operator Q_t :

$$Q_{t}x = \int_{0}^{t} e^{sA} K e^{sA^{*}} x ds, \quad x \in H.$$

Under Hypothesis 1, one can show (see, e.g., [5]) that $\mu = \mathcal{N}(0, Q)$ is the unique invariant measure for the semigroup R_t , $t \ge 0$. Consequently, for any t > 0, the operator R_t has a unique extension to a linear bounded operator in $L^2(H; \mu)$, still denoted by R_t . Moreover, R_t , $t \ge 0$, is a contraction semigroup on $L^2(H; \mu)$.

We shall denote by $\{e_k\}$ a complete orthonormal system of eigenvectors of Q and by $\{\lambda_k\}$ a corresponding sequence of eigenvalues:

$$Qe_k = \lambda_k e_k, \quad k \in \mathbb{N}.$$

For any $k \in \mathbb{N}$, we denote by $D_k \varphi$ the derivative of φ in the direction of e_k , and we set $x_k = \langle x, e_k \rangle$, $x \in H$. It is well known that D_k is closable. We shall still denote by D_k its closure.

We recall now the definition of Sobolev spaces. We denote by $W^{1,2}(H;\mu)$ the linear space of all functions $\varphi \in L^2(H;\mu)$ such that $D_k \varphi \in L^2(H;\mu)$ for all $k \in \mathbb{N}$ and

$$\int_{H} |D\varphi(x)|^{2} \, \mu(dx) = \sum_{k=1}^{\infty} \int_{H} |D\varphi(x)|^{2} \, \mu(dx) < +\infty.$$

The space $W^{1,2}(H;\mu)$ endowed with the inner product

$$\langle \varphi, \psi \rangle_{I} = \int_{H} \varphi(x) \psi(x) \mu(dx) + \int_{H} \langle D\varphi(x), D\psi(x) \rangle \mu(dx)$$

is a Hilbert space.

In a similar way, we can define the Sobolev space $W^{2,2}(H;\mu)$ consisting of all functions $\varphi \in W^{1,2}(H;\mu)$ such that $D_h D_k \varphi \in L^2(H;\mu)$ for all $h, k \in \mathbb{N}$ and

$$\int_{H} \|D^{2} \varphi(x)\|_{\mathcal{L}_{2}(H)}^{2} \mu(dx) = \sum_{h,k=1}^{\infty} \int_{H} |D_{h} D_{k} \varphi(x)|^{2} \mu(dx) < +\infty.$$

The space $W^{2,2}(H;\mu)$ endowed with the inner product

$$\begin{split} \left\langle \left\langle \phi, \psi \right\rangle_2 &= \left\langle \left\langle \phi, \psi \right\rangle_1 + \sum_{h, k = 1}^{\infty} \int_{H} D_h D_k \phi(x) D_h D_k \psi(x) \mu(dx) = \\ &= \left\langle \left\langle \phi, \psi \right\rangle_1 + \int_{H} \left\langle D^2 \phi(x), D^2 \psi(x) \right\rangle_{\mathcal{L}_2(H)} \mu(dx) \end{split}$$

is a Hilbert space.

We shall also need some weighted Sobolev spaces. Let $B: D(B) \subset H \to H$ be a self-adjoint operator such that

$$\langle Bx, x \rangle \ge \beta |x|^2$$

for some $\beta > 0$. Then we consider the linear operator D_B in $L^2(H; \mu)$,

$$D_B \varphi(x) = \sqrt{B} D\varphi(x), x \in H,$$

defined on all $\varphi \in W^{1,2}(H;\mu)$ such that $D\varphi(x) \in D(\sqrt{B})$ μ -a.e. and $\sqrt{B}D\varphi \in L^2(H;\mu)$. It is easy to see that D_B is closable; we still denote by D_B its closure. We define $W_B^{1,2}(H;\mu)$ as the domain of the closure of D(B). The space $W_B^{1,2}(H;\mu)$ endowed with the norm

$$\|\phi\|_{W^{1,2}_B(H;\mu)}^2 = \int\limits_H \Big(\big|\phi(x)\big|^2 + \Big|\sqrt{B}D\phi(x)\Big|^2\Big)\mu(dx)$$

is a Banach space.

We can now return to the semigroup R_t , $t \ge 0$. We denote by $\mathcal A$ its infinitesimal generator. As is well known, $\mathcal A$ is m-dissipative on $L^2(H;\mu)$. Moreover, one can show [5] that a core for $\mathcal A$ is given by the space $\mathcal E$ of all finite linear combinations of functions φ of the form

$$\varphi(x) = e^{i(h,x)}, \quad x \in H, \quad h \in D(A^*).$$

For any $\phi \in \mathcal{E}$, we have, as can easily be checked,

$$\mathcal{A}\phi = \frac{1}{2} \operatorname{Tr} \left[K D^2 \phi(x) \right] + \left\langle A x, D \phi(x) \right\rangle, \quad \phi \in \mathcal{E}.$$

We end this section by recalling some formulas of integration by parts, which will be used later.

Propositions 1 and 2 below are well known (see, e.g., [6] and [7]).

Proposition 1. Let $\psi_1, \psi_2 \in W^{1,2}(H; \mu)$ and $\alpha \in H$. Then we have

$$\int_{H} \langle D\psi_{1}(x), Q\alpha \rangle \psi_{2}(x) \mu(dx) + \int_{H} \langle D\psi_{2}(x), Q\alpha \rangle \psi_{1}(x) \mu(dx) =$$

$$= \int_{H} \psi_{1}(x) \psi_{2}(x) \langle \alpha, x \rangle \mu(dx). \tag{5}$$

Proposition 2. Let $\varphi \in W^{1,2}(H;\mu)$ and $\alpha \in H$. Then the function

$$H \to \mathbb{R}, \quad x \mapsto \langle x, \alpha \rangle \varphi(x),$$

belongs to $L^2(H; \mu)$ and we have

$$\int_{H} |\langle \alpha, x \rangle|^{2} \varphi^{2}(x) \mu(dx) \leq 2 |Q^{1/2} \alpha|^{2} \int_{H} \varphi^{2}(x) \mu(dx) + \frac{1}{6} |Q\alpha|^{2} \int_{H} |D\varphi(x)|^{2} \mu(dx).$$
(6)

By Proposition 2, we easily get the following result:

Corollary 1. Let $\phi \in W^{1,2}(H;\mu)$. Then the function

$$H \to \mathbb{R}, \quad x \mapsto |x| \varphi(x),$$

belongs to L2(H; µ). Moreover,

$$\int_{H} |x|^{2} \varphi^{2}(x) \mu(dx) \leq 2 \operatorname{Tr} Q \int_{H} \varphi^{2}(x) \mu(dx) + 16 \operatorname{Tr} [Q]^{2} \int_{H} |D\varphi(x)|^{2} \mu(dx).$$
 (7)

Corollary 2. Let $\varphi \in W^{2,2}(H;\mu)$ and $L \in \mathcal{L}(H)$. Then we have

$$\int_{H} |\langle Lx, D\varphi(x) \rangle|^{2} \mu(dx) \leq 2 \|L\|^{2} \operatorname{Tr} Q \int_{H} |D\varphi(x)|^{2} \mu(dx) +
+ 16 \|L\|^{2} \operatorname{Tr} [Q^{2}] \int_{U} \|D^{2}\varphi(x)\|_{\mathcal{L}_{2}(H)}^{2} \mu(dx). \tag{8}$$

Proof. Taking (7) into account, we have

$$\int\limits_{H} |\langle Lx, D\varphi(x)\rangle|^{2} \mu(dx) \leq \|L\|^{2} \sum_{i=1}^{\infty} \int\limits_{H} |x|^{2} |D_{i}\varphi(x)|^{2} \mu(dx) \leq$$

$$\leq \|L\|^2 \sum_{i=1}^{\infty} \Bigg[2 \operatorname{Tr} Q \int\limits_{H} |D_i \varphi(x)|^2 \mu(dx) + 16 \operatorname{Tr} [Q]^2 \int\limits_{H} |DD_i \varphi(x)|^2 \mu(dx) \Bigg],$$

which yields the conclusion.

We end this section recalling the following property of \mathcal{A} proved in [6] (see also [7]):

Proposition 3. Assume that Hypotheses 1 holds. Then for any $\phi \in \mathcal{D}(\mathcal{A})$, one has

$$\int_{\mathcal{H}} (\mathcal{A}\varphi)(x)\varphi(x)\mu(dx) = -\frac{1}{2}\int_{\mathcal{H}} \langle KD\varphi(x), D\varphi(x)\rangle\mu(dx). \tag{9}$$

Remark 1. It follows from Proposition 3 and Hypothesis 1(iii) that $D(\mathcal{A}) \subset W^{1,2}(H;\mu)$.

3. Characterization of $D(\mathcal{A})$. This section is devoted to the characterization of $D(\mathcal{A})$. We shall assume, besides Hypotheses 1, the following:

Hypothesis 2. (i) $D(A) \cap Q(H)$ is dense in H. Moreover, the linear operator

$$Lx := Ax + \frac{1}{2}KQ^{-1}x, \quad x \in D(A) \cap Q(H),$$
 (10)

has a bounded extension (still denoted by L) to H.

- (ii) Either
- (a) KA* is self-adjoint and negative,

or

(b) $A + A^*$ is self-adjoint and K = 1 + S with $S \ge 0$ and SA^* bounded.

We start with some identities which will play a key role in what follows.

Proposition 4. Assume that Hypothesis 1 holds, and let $\varphi \in \mathscr{C}$ and $f = \mathscr{A}\varphi$. Then we have

$$\frac{1}{2} \int_{H} \text{Tr} \left[\left(KD^{2} \varphi(x) \right)^{2} \right] \mu(dx) - \int_{H} \left\langle KA^{*} D \varphi(x), D \varphi(x) \right\rangle \mu(dx) =$$

$$= - \int_{H} \left\langle D f(x), KD \varphi(x) \right\rangle \mu(dx). \tag{11}$$

Proof. Let $\varphi \in \mathcal{C}$ and $f = \mathcal{A}\varphi$. For any $\alpha \in H$, we set $\psi_{\alpha}(x) = \langle D\varphi(x), \alpha \rangle$. Then we have

$$\mathcal{A}\psi_{\alpha}+\langle A\alpha,D\phi\rangle=\langle Df,\alpha\rangle.$$

Multiplying both sides of this identity by ψ_{α} and integrating in H with respect to μ , we obtain

$$\frac{1}{2} \int_{H} \langle KD\psi_{\alpha}(x), D\psi_{\alpha}(x) \rangle \mu(dx) - \int_{H} \langle \alpha, KA^{*}D\phi(x) \rangle \langle D\phi(x), \alpha \rangle \mu(dx) =$$

$$= -\int_{H} \langle Df(x), \alpha \rangle \langle D\phi(x), \alpha \rangle \mu(dx). \tag{12}$$

We will prove now identity (11) under the additional assumption that K is a diagonal operator. Note that this assumption can easily be removed by approximating K with the finite-dimensional operators

$$K_n x = \sum_{i,h=1}^n \langle Ke_h, e_j \rangle \langle x, e_h \rangle e_j, \quad X \in H.$$

Thus, we assume that there exists a complete orthonormal set $\{f_h\}$ in H, and positive numbers $\{k_h\}$ such that $Kf_h = k_h f_h$, $h \in \mathbb{N}$. Then, setting in (12) $\alpha = K^{1/2} f_h$ and summing up over h, we arrive at (11).

Proposition 5. Assume that Hypotheses 1 and 2(i) hold. Let $\varphi \in \mathscr{C}$ and $f = \mathscr{A}\varphi$. Then we have

$$\frac{1}{2} \int_{H} \text{Tr} \left[\left(K D^{2} \varphi(x) \right)^{2} \right] \mu(dx) - \int_{H} \left\langle K A^{*} D \varphi(x), D \varphi(x) \right\rangle \mu(dx) =$$

$$= 2 \int_{H} |f(x)|^{2} \mu(dx) - 2 \int_{H} f(x) \langle L x, D \varphi(x) \rangle \mu(dx), \tag{13}$$

where L is defined by (10).

Proof. Using Proposition 2 and setting $K_{h,k} = \langle Ke_k, e_h \rangle$, we get

$$\int_{H} \langle Df(x), KD\varphi(x) \rangle \mu(dx) = \sum_{h,k=1}^{\infty} \int_{H} K_{h,k} D_{h} f(x) D_{k} \varphi(x) \mu(dx) =$$

$$= -\sum_{h,k=1}^{\infty} \int_{H} f(x) K_{h,k} D_{h} D_{k} \varphi(x) \mu(dx) + \sum_{h,k=1}^{\infty} \int_{H} f(x) K_{h,k} \frac{x_{h}}{\lambda_{h}} D_{k} \varphi(x) \mu(dx),$$

which yields

$$\begin{split} \int\limits_{H} \big\langle \, Df(x), \, KD\phi(x) \big\rangle \mu(dx) \, &= - \int\limits_{H} f(x) \mathrm{Tr} \big[\, KD^2\phi(x) \big] \mu(dx) \, + \\ &+ \int\limits_{H} f(x) \Big\langle \, KQ^{-1} \, x, \, D\phi(x) \big\rangle \mu(dx) \, . \end{split}$$

Now the conclusion follows in view of Proposition 2.

We can now prove the main result of this section.

Theorem 1. Assume that Hypotheses 1 and 2 hold and let \mathcal{A} be the infinite-simal generator of the semigroup R_1 , $t \ge 0$, defined in (4). Then we have

$$D(\mathcal{A}) = W^{2,2}(H;\mu) \cap W^{1,2}_{A+A^*}(H;\mu). \tag{14}$$

Proof. We present the proof assuming that condition (b) of Hypothesis 2 holds. When condition (a) holds, the proof is completely similar. We first prove that $D(A) \subset$ $\subset W^{2,2}(H;\mu) \cap W^{1,2}_{A+A^*}(H;\mu)$. Let $\phi \in D(\mathcal{A})$. Since % is a core for \mathcal{A} , there exists a sequence $\{\varphi_n\} \subset D(\mathcal{A})$ such that

$$\lim_{n\to\infty} \varphi_n = \varphi \quad \text{and} \quad \lim_{n\to\infty} \mathcal{A}\varphi_n = \mathcal{A}\varphi \quad \text{in} \quad L^2(H;\mu).$$

We set $f_n = \mathcal{A} \varphi_n$. Since, obviously,

$$\mathrm{Tr}\Big[\left(KD^2\phi_n(x)\right)^2\Big] \,\geq\, \, \nu^2\,\mathrm{Tr}\Big[\left(D^2\phi_n(x)\right)^2\Big],$$

taking (13) and Corollary 2 into account, we find that, for any $\varepsilon > 0$, we have

$$\begin{split} \frac{v^{2}}{2} \int_{H} \left\| D^{2} \varphi_{n}(x) \right\|_{\mathcal{L}_{2}(H)}^{2} \mu(dx) - \int_{H} \left\langle KA^{*} D \varphi_{n}(x), D \varphi_{n}(x) \right\rangle \mu(dx) & \leq \\ & \leq 2 \left(1 + \frac{1}{\varepsilon} \right) \int_{H} \left| f_{n}(x) \right|^{2} \mu(dx) + 2 \varepsilon \cdot \int_{H} \left| \left\langle Lx, D \varphi_{n}(x) \right\rangle \right|^{2} \mu(dx) + \\ & + \left\| SA^{*} \right\| \int_{H} \left| D \varphi_{n}(x) \right|^{2} \mu(dx) & \leq 2 \left(1 + \frac{1}{\varepsilon} \right) \int_{H} \left| f_{n}(x) \right|^{2} \mu(dx) + \\ & + 4 \varepsilon \| L \|^{2} \operatorname{Tr} Q \int_{H} \left| D \varphi_{n}(x) \right|^{2} \mu(dx) + \\ & + 32 \varepsilon \| L \|^{2} \operatorname{Tr} \left[Q^{2} \right] \int_{H} \left\| D^{2} \varphi_{n}(x) \right\|_{\mathcal{L}_{2}(H)}^{2} \mu(dx) + \left\| SA^{*} \right\| \int_{H} \left| D \varphi_{n}(x) \right|^{2} \mu(dx). \end{split}$$

Choosing ε sufficiently small, we see that there exists N > 0 such that

$$\| \varphi_n \|_{W^{2,2}(H;\mu)}^2 \, + \, \| \varphi_n \|_{W^{1,2}_{A+A^{\bullet}}(H;\mu)}^2 \, \leq \, N \int\limits_H \big| \, f_n(x) \big|^2 \, \mu(dx).$$

By a classical argument, this implies $\varphi \in W^{2,2}(H;\mu) \cap W^{1,2}_{A+A^{\bullet}}(H;\mu)$. We finally prove that, conversely, $W^{2,2}(H;\mu) \cap W^{1,2}_{A+A^{\bullet}}(H;\mu) \subset D(\mathcal{A})$. For any $\varphi \in W^{2,2}(H;\mu) \cap W^{1,2}_{A+A^*}(H;\mu)$, we set

$$\gamma(\varphi) = \|\varphi\|_{W^{2,2}(H;\mu)}^2 - \int\limits_H \left\langle A^* D\varphi(x), D\varphi(x) \right\rangle \mu(dx).$$

Let $\varphi \in W^{2,2}(H;\mu) \cap W^{1,2}_{A+A^{\bullet}}(H;\mu)$ and let $\{\varphi_n\} \subset \mathcal{E}$ such that

$$\lim_{n\to\infty} \varphi_n = \varphi \quad \text{and} \quad \lim_{n\to\infty} \gamma(\varphi_n) = \gamma(\varphi) \quad \text{in} \quad L^2(H; \mu).$$

We set $f_n = \mathcal{A} \varphi_n$. It follows from (13) that

$$\int\limits_{H} |\mathcal{A} \varphi_{n}|^{2} \mu(dx) \leq \gamma(\varphi_{n}) + 2 \int\limits_{H} |f_{n}(x)| |\langle Lx, D\varphi_{n}(x) \rangle| \mu(dx) + 1$$

$$+ \|SA^*\| \int_{H} |D\varphi_n(x)|^2 \mu(dx) \le \gamma(\varphi_n) + \frac{1}{2} \int_{H} |f_n(x)|^2 \mu(dx) +$$

$$+ 2 \int_{H} |\langle Lx, D\varphi_n(x) \rangle|^2 \mu(dx) + \|SA^*\| \int_{H} |D\varphi_n(x)|^2 \mu(dx),$$

which implies

$$\begin{split} &\int\limits_{H} \left|\mathcal{A}\phi_{n}\right|^{2}\mu(dx) \leq 2\gamma(\phi_{n}) + 4\int\limits_{H} \left|\left\langle Lx, D\phi_{n}\right\rangle\right|^{2}\mu(dx) + \\ &+ \left\|SA^{*}\right\|\int\limits_{H} \left|D\phi_{n}(x)\right|^{2}\mu(dx). \end{split}$$

Using again Corollary 2, we get

$$\begin{split} &\int\limits_{H} |\mathcal{A}\phi_{n}|^{2} \mu(dx) \leq 2\gamma(\phi_{n}) + 8\|L\|^{2} \operatorname{Tr} Q \int\limits_{H} |D\phi_{n}(x)|^{2} \mu(dx) + \\ &+ 64\|L\|^{2} \operatorname{Tr}[Q]^{2} \int\limits_{H} \|D^{2}\phi_{n}(x)\|_{\mathcal{L}_{2}(H)}^{2} \mu(dx) + \\ &+ \|SA^{*}\| \int\limits_{H} |D\phi_{n}(x)|^{2} \mu(dx) \leq \\ &\leq 2 \Big(1 + 36\|L\|^{2} \operatorname{Tr} Q + \|SA^{*}\| \Big) \gamma(\phi_{n}), \end{split}$$

and the conclusion follows.

Remark 2 (Finite-dimensional case). Assume that H is a finite-dimensional space and let $A, K \in \mathcal{L}(H)$. Assume that all eigenvalues of A have the negative real part. Then Hypotheses 1 and 2 clearly hold. Thus, by Theorem 1, it follows that

$$D(\mathcal{A}) = W^{2,2}(H; \mu).$$
 (15)

This result was obtained by A. Lunardi [8] by different methods based on interpolation. Remark 3 (Commutative case). Assume that

(i) A is self-adjoint and there exists $\omega > 0$ such that

$$\langle Ax, x \rangle \le -\omega |x|^2, \quad x \in D(A).$$

Moreover, $A^{-1} \in \mathcal{L}_1(H)$.

(ii) K is self-adjoint, strictly positive, and such that $Ke^{tA} = e^{tA}K$ for all t > 0. Then KA is self-adjoint and

$$\langle KAx, x \rangle \leq \omega v |x|^2, \quad x \in H.$$

Moreover, L=0. Thus, Hypotheses 1 and 2 are fulfilled and, by Theorem 1, it follows that

$$D(\mathcal{A}) = W^{2,2}(H;\mu) \cap W_{KA}^{1,2}(H;\mu). \tag{16}$$

For K = I, this results was obtained in [3].

We end this section by giving an example where A and Q do not commute, but Theorem I still applies.

Example 1. We assume here that condition (i) of Remark 3 is fulfilled and, moreover, that K is of the form

$$K = 1 + A^{-1}SA^{-1}$$

for some $S \in \mathcal{L}(H)$, symmetric nonnegative. Then Hypotheses 1 and 2 clearly hold. Let us check Hypothesis 2. First, we write Q as

$$Q := Q_0^{1/2} (I + S_1) Q_0^{1/2}, \tag{17}$$

where $Q_0 = A^{-1}/2$ and

$$S_1 x = 2 \int_{0}^{\infty} (-A)^{-1/2} e^{iA} S(-A)^{-1/2} e^{iA} x ds, \quad x \in H.$$

It follows from (17) that

$$Q^{-1} = Q_0^{-1/2} (1 + S_1)^{-1} Q_0^{-1/2} = Q_0^{-1/2} (1 - T_1)^{-1} Q_0^{-1/2},$$

where $T_1 = 1 - (1 + S_1)^{-1}$. Then

$$A \; + \; \frac{1}{2} \mathcal{Q}^{-1} K \; = \; -\frac{1}{2} \mathcal{Q}_0^{-1/2} \, T_1 \, \mathcal{Q}_0^{-1/2} K \; = \; \mathcal{S}_2 (1 + \mathcal{Q}_0 \, \mathcal{S}_2),$$

where $S_2 = Q_0^{-1/2} S_1 Q_0^{-1/2}$. It is easy to see that S_2 is bounded and, hence, $A + Q^{-1}K/2$ is bounded too, as required.

4. Perturbation results. Here, we assume that Hypotheses I and 2 hold. For the sake of simplicity, we also assume that A is self-adjoint. We denote by μ the Gaussian measure defined in Sec. 2.

We consider, besides the operator A defined by

$$\mathcal{A}\varphi = \frac{1}{2}\operatorname{Tr}[KD^{2}\varphi(x)] + \langle Ax, D\varphi(x) \rangle,$$

$$\varphi \in W^{2,2}(H; \mu) \cap W_{A}^{1,2}(H; \mu),$$
(18)

the following one:

$$\mathcal{A}_{1} \varphi = \frac{1}{2} \operatorname{Tr} \left[K(x) D^{2} \varphi(x) \right] + \langle Ax + F(x), D \varphi(x) \rangle,$$

$$\varphi \in W^{2,2}(H; \mu) \cap W_{A}^{1,2}(H; \mu),$$
(19)

where K and F satisfy the following assumption:

Hypothesis 3. (i) $K: H \to \mathcal{L}(H)$ is a Borel function. Moreover, K(0) = K and $K(x) - K \in \mathcal{L}_2(H)$.

(ii) $F: H \to H$ is a Borel function. Moreover, $(-A)^{-1/2}F$ is bounded.

Theorem 2. Assume, besides Hypothesis 3, that

$$\sup_{x \in H} \left(\text{Tr}(K(x) - 1)^2 + \left| (-A)^{1/2} F(x) \right|^2 \right) < 1.$$
 (20)

Then \mathcal{A}_1 generates a strongly continuous semigroup P_t , $t \geq 0$, on $L^2(H; \mu)$. Moreover, there exists an invariant measure for P_t , $t \geq 0$, which is, in addition, absolutely continuous with respect to μ .

Proof. We set

$$A_1 = A + B,$$

where

$$\mathfrak{B} \varphi = \frac{1}{2} \operatorname{Tr} \left[(K(x) - K) D^2 \varphi(x) \right] + \langle F(x), D \varphi(x) \rangle,$$

$$\mathfrak{B} \varphi \in W^{2,2}(H; \mu) \cap W_4^{1,2}(H; \mu).$$

We are going to show that \mathfrak{B} is relatively bounded with respect to \mathscr{A} . We have, in fact, for any $\varphi \in \mathscr{A}$,

$$\int\limits_{H}\left|\operatorname{Tr}\left[\left(K(x)-K\right)D^{2}\phi(x)\right]\right|^{2}\mu(dx)\ \leq$$

$$\leq \int_{H} |\operatorname{Tr}[(K(x) - K)]|^{2} |\operatorname{Tr}[D^{2}\varphi(x)]|^{2} \mu(dx) \leq \sup_{x \in H} \operatorname{Tr}(K(x) - 1)^{2} \| \mathcal{A}\varphi\|^{2}. (21)$$

Moreover,

$$\int_{H} |\langle F(x), D\varphi(x) \rangle|^{2} \mu(dx) = \int_{H} |\langle (-A)^{-1/2} F(x), (-A)^{1/2} D\varphi(x) \rangle|^{2} \mu(dx) \leq \sup_{x \in H} |\langle (-A)^{1/2} F(x) \rangle|^{2} \|\mathscr{A}\varphi\|^{2}.$$
(22)

Now it follows from (21) and (22) that \mathfrak{B} is relatively bounded with respect to \mathcal{A} , as required. Now, by a well-known perturbation result (see, e.g., A. Pazy [9]), it follows that \mathcal{A}_1 generates a semigroup C_0 in $L^2(H; \mu)$.

Finally, the last statement follows by analogy with [3].

- Daletskii Yu. L., Fomin S. V. Measures and differential equations in infinite-dimensional space. Dordrecht: Kluwer Acad. Publ. – 1991. – 337 p.
- Ma Z. M., Röckner M. Introduction to the theory of (nonsymmetric) Dirichlet forms. Berlin: Springer-Verlag, 1992, -210 p.
- Da Prato G. Perturbations of Ornstein Uhlenbeck semigroups // Preprint No. 39. Scuola Normale Superiore, Pisa. - 1996. - 22 p.
- Da Prato G., Zabczyk J. Regular densities of invariant measures for nonlinear stochastic equations // Funct. Anal. – 1995. – 130, No. 2. – P. 427–449.
- Da Prato G., Zabczyk J. Brgodicity for infinite dimensions // Bncyclopedia of mathematics and its applications. — Cambridge: Cambridge Univ. Press, 1996. — 338 p.
- Fuhrman M. Analyticity of transition semigroups and closability of bilinear forms in Hilbert spaces // Studia Math. - 1995. - 115. - P. 53-71.
- Bogachev V. I., Röckner.M., Schmuland B. Generalized Mehler semigroups and applications // Probab. Theory and Related Fields. – 1996. – 114. – P. 193–225.
- Lunardi A. On the Ornstein Uhlenbeck operator in L² spaces with respect to invariant measures // Preprint No 1, Pisa; Scuola Normale Superiore, 1995. – 20 p.
- Pazy A. Semigroups of linear operators and applications to partial differential equations. Berlin: Springer-Verlag, 1983. – 279 p.

Received 13.11.96