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REGULARITY RESULTS FOR KOLMOGOROV EQUATIONS
IN L?(H,1) SPACES AND APPLICATIONS

PE3YJIbBTATHU IIPO PEI'Y JISIPHICTD
OJIS1 PIBHSIHHSL KOJIMOI'OPOBA B IIPOCTOPAX L%(H,p)
TA IX BACTOCYBAHHA

We consider the transition semigroup R, = 2" associnted to an Ornstein—Uhlenbeck process in a Hil-
2.2

bert space AH. We characterize, under suitable assumptions. the domain of & as a subspace of W™ ( A.

W), where W is the invariant measure associated o R, This characterization is then used lo treat some

Kolmogorov equalions with variable coelTicients.

Poaryisyiaeimes nepexijum ninrpyna R, = ™. 1o now ssana 3 nporecoM Opuurreiliia—Yaentexu 1

rimbeprosoMy npocropi H. TIpw 1EUICHIIHX YMOBAX HABO/IH THLCH X2PaK TepH3ailis oblacTi Buatayern-
e e

ust 4 suc nigmpocropy WWU(H, W), jie P — innapian i Mipa, wo aconiioerses 3 R . Ly xapakre-

PH3UHIN BHKOPHCIORYE LU /U1 PO3LALLY NeHknx pintein Kosmmoroposa i sminmumy koedpittiena-

MH.

1. Introduction. Let us consider the Ornsicin—Uhlenbeck process X in a separable

Hilbert space H deflined as

dX = AXdt + K"2dw(), X(0) = xe H, (0

where A: D(A) C H — H is the infinitesimal generator of a Cy semigroup in A
and K is a strictly positive linear operator in 4 (for instance, K =17). Moreover
W), =0, isacylindrical H-valued Wiener process defined in some probability
space (Q, T, TP ).
Under suitable assumptions (see Sec. 2 below) equation (1) has a unique mild solu-
tion X(f,x). Let R,, 1=0, be the corresponding transition semigroup:
Ri9(x) = E[@(X(t,x)], e Cy(HY.
Then u(z,x)= R,p(x) is, in a sense (o be precise, a solution (o the Kolmogorov
equation
1 2
= =Tr| KD"u |+ {Ax, Du}),
U, 5 r[ H] (Ax, Du) @)
u(0, x) = @(x).
The Kolmogorov equations in infinite dimensions were extensively studied by
many people, starting [rom the pioneering papers by Yu. Daletskii (see the mono-

graph [1]).
Another approach, molivated by several problems of mathematical physics, is

based on the Dirichlet form

a(9,y) = [ De()DYN(x), 9y e WH3(H:p),
H

where 1 is the invarian( measure associated o problem (1), and W“?(H;pu) is the

* Cp(H) is lhe Banach space of all uniformly continuous and bounded mappings from H into R en-

dowed with the norm || @ ||, = sup, ., | ()],
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REGULARITY RESULTS FOR KOLMOGOROV EQUATIONS ... 449

corresponding Sobolev space (see, e.g., the monograph by Z. M. Ma and M. Réckner
[2]). Using this method, one can construct the (ransition semigroup R, tz0, inthe
space L*(H; ). If &l denotes its infinitesimal generator, one has that the domain of
sl is a subspace of W 2(H; ).

In this paper, we present some new resulls aboul the characterization, under suit-
able assumptions, of the domain of 4 as a linear operator on L >(H; ). We will
prove in particular thal D(sl) is a suitable subspace of WZ'Q(H; L) (see Sec.3 be-
low). Note that, in the particular case where K =/, a characterization of D(sl) was
given in [3].

In Sec. 4, this resull is applied to studying the Kolmogorov equation with continu-
ous coefficients

5, = ST KGIDR ]+ (Ax-+ Fex), Do), ®

(0, x) = p(x),

where K(x) are linear positive operators depending conlinuously on x, and £ isa
nonlinear Borel mapping from H into H. Using the characterization of D (&), we
are able Lo solve problem (3), under suitable assumptions, by a perturbation argument.
Moreover, arguing as in [4], we show that there is an invarianl measure v for this
problem that is absolutely continuous with respect to L.

2. Notation and setting of the problem. We are given a separable Hilbert space
H (norm |-|, inner product (-, )), and two linear operators A: D(A)C H — H and
K: H— H satisfying (he [ollowing condilions:

Hypothesis 1. (i) A is the infinitesimal generator of a strongly continuous semi-
group ¢ in H. Moreover, there exist M>0 and w>0 such that

¢ ||em || < Me ™, r=0.
(i) Forany t>0, ¢’ e La(H) and
r =
_[Tl‘[e”’ o™ }d.v < oo,
0
(iii) Ke L(H) is self-adjoint and bounded. Moreover, there exists v >0 such
that

(Kx,x)2 v|x|’, xeH.

Under Hypothesis I, the lincar operator @ defined by the relation

Ox = J'e""" Ke"ﬂ.xds, xe H,

=

is a well-defined trace-class™ operalor.

*S£(H) isthe Banach nlgebra of all linear bounded operators on H endowed with the sup norm || « ||
By & (H) (porm |[|-]] J.!m,]) we denote the Banach space of all trace-class operators on H, and by

£L(H) (porm ||‘i|.£_’w})lhe Hilbert space of all Hilbert-Schmidt operators in H, If Te £ (H). the

tace of T is denoted by Tr7T.
*"We denote by A° the adjoint of A.
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450 G. DA PRATO

Let us consider the Ornstein—Uhlenbeck semigroup R,, t20, in Cy(H) defined as

RoG) = [ @INE" x,0)dy), t20, xeH, ¢e Cy(H), 4)
H
where N(e” x, Q,)(dy) is the Gaussian measure with mean ¢” x and covariance
operator Q,:

r -
Qx= Ja“"d‘ Ke™ xds, =xeH.
0

Under Hypothesis 1, one can show (see, e.g., [S]) that (L= N (0, Q) is the unique
invariant measure for the semigroup R, £=0, Consequently, for any >0, the oper-

ator R, has a unique extension to a linear bounded operator in L*(H; i), still de-
noted by R,. Moreover, R,, +=0, isa contraction semigroup on L*(H; ).

We shall denote by { ey} acomplete orthonormal system of eigenvectors of 0
and by {A.} acorresponding sequence of eigenvalues:

Qey = ?Lkek, ke H.

Forany ke H, we denote by D¢ the derivative of @ in the direction of ey,
and we set xp={x, ep), x € H, It is well known that Dy is closable. We shall still
denote by Dy ils closure,

We recall now the definition of Sobolev spaces. We denole by WLZ(H; W) the

linear space of all functions ¢ € L*(H, [) such that Dy e LE(H; i) forall ke H
and

[ 1o Putdxy = 3, [|Do) P pidx) < +eo.
H k=1 H

The space W"E(H; 1) endowed with the inner product
(o) = [e@wx)ndx) + [ (Do(x), Dy(x))p(dx)
H H

is a Hilberl space.
In a similar way, we can define the Sobolev space W>*(H: W) consisting of all

functions @& W“*(H;u) suchthat D,D,p € L*(H;p) forall hke N and
2 ]
[1P*00)]lg, pyitdxy = 3, [|DyD@F idx) < +es.
H h k=14
The space WE‘E(H; 1) endowed with the inner product

(@) = (py) + 3, [ DuDpD,Dy(x)pldx) =
k=1 g

= (0.¥) + [(D%00. D))y, W)
H

is a Hilbert space.
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We shall also need some weighted Sobolev spaces. Let B: D(B)C H — H be a
self-adjoint operator such that

(Bx,x) = B|x[?
for some P> 0. Then we consider the linear operator Dy in L*(H; 1,
Dpo(x) = +/B Do(x), xe H,
definedonall g € W"2(H;u) suchthat De(x)e D(-/B) p-ae.and /BDge

e L*(H; i) Itis easy to see that Dy is closable; we still denote by Dy its closure.

We define W‘;'z(H: W) as the domain of the closure of D (B). The space WE‘E(H; 1)
endowed with the norm

19l 2 = [ (10F + [VBDo@[ i)
H

is a Banach space.
We can now return to the semigroup R,, t+=0. We denote by &l its infinitesimal

generator. As is well known, & is m-dissipative on L*(H, lL). Moreover, one can
show [5] that a core for & is given by the space € of all finite linear combinations of
functions ¢ of the form '

ox) = ™Y xe H he DAY

Forany @ & %, we have, as can easily be checked,
Ao = %’I‘r[KDg(p(x)] + (Ax, Do(x)), ¢e %.

We end this section by recalling some formulas of integration by parts, which will
be used later.
Propositions 1 and 2 below are well known (see, e.g., [6] and [7]).

Proposition 1. Let |, s € WJ'E(H; W) and o€ H. Then we have
[ (Dwi(x), Qo) wayuldx) + [ (Dw,(x), Qo hw(x)uldx) =
H H

= [y w0, x)udx). (5)
H :

Proposition 2. Let 0 W"2(H; ) and o € H. Then the function
H—-RE, xt» (xo)elx),

belongs to LZ(H; L) and we have

[ [{ewx)PoPGaopcdx) < 2|0 [ oPmpcdx) + 16|Qaf [ | Dot ).
H H H
(6)
By Proposition 2, we easily get the following result;
Corollary 1. Let @ WI‘Z(H i W). Then the function

H-E, x> |x|ex),

belongs to L*(H; ). Moreover,
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452 G. DAPRATO

[ 1xPe*ndx) € 2TrQ [ @*()dx) + 16Te[QF [ | Do) Pu(dx). (1)
H H H :

Corollary 2. Let 9 € W>*(H: ) and L e L(H). Then we have

[ I{Lx, Do) P idx) < 2| LIPTrQ [ | Do) pcda) +
H H

+ 16| LT[ @*] [ | D*otx)
H

2
o, 0y P, (8)

Preof. Taking (7) into account, we have

[ Lx, Do) Putdx) < LIPS, [ |xP| Do) pidx) <
H i=1 H

< LY, [ZTrQ [ 1Dro) P uedx) + 16Tr[ QT | |DDf(p(x)|2].L(dx)},
i=1 H H

which yields the conclusion.

We end this section recalling the following property of & proved in [6] (see
also [7]):

Proposition 3. Assume that Hypotheses | holds. Then for any @ € D (&), one
has

[ (£@)x0(IR) = =3 [ (KD@(x), Do(x) (). (©)
H H

Remark 1. It follows from Proposition 3 and Hypothesis 1(iii) that D (&) C

C W (H; ).

3. Characterization of D (&). This seclion is devoted to the characterization of
D (&), We shall assume, besides Hypotheses 1, the following:

Hypothesis 2. (i) D(A)Y\ Q(H) is dense in H. Moreover, the linear operator

Lx i=Ax+ %K’Q"lx, xe D(A)N Q(H), (10)
has a bounded extension (still denoted by L) to H.
(ii) Either
(a) KA T is self-adjoint and negative,
or

() A+A" is self-adjointand K=1+S with >0 and SA” bounded.

‘We start with some identities which will play a key role in what follows.
Proposition 4. Assume that Hypothesis | holds, and let @ € € and f=HAe.
Then we have

% | Tr[(KDZ{p(x))z]p.(dx) ~ [(KA"Do(x), Do) )u(dx) =
H H

= — [ (D f(x), KDo(x) )(dx). an
H
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Proof. Let pe % and f=slg. Forany oce H, weset Wu(x) = (Do(x), ).
Then we have

Ay + (Ao, Do) = (D, a).

Multiplying both sides of this identity by W, and integratingin H with respect to [,
we obtain

%I (KDWY (x), DY () )u(dx) — [ (o KA"Do(x) } Do(x), 0. )p(dx) =
H | H

= — [ (DF(x), 0 )( DY), o) (dx). (12)
H

We will prove now identity (11) under the additional assumption that K is a diagonal
operator. Note that this assumption can easily be removed by approximating K with
the finite-dimensional operators

N

Kyx = 2 <Ke;|.ej- )(x, 3,-';)8_;, Xe H.
=1
Thus, we assume that there exists a complete orthonormal set { f,} in H, and posi-

tive numbers {k,} such that Kf,=k,f;, ke N. Then, setting in (12) o= K'%f,
and summing up over A, we arrive at (11).

Proposition 5. Assume that Hypotheses | and 2(1) hold. Let ¢ € € and f =
= . Then we have

% | Tr[(KDZ.q}(x))Z]u(dx) ~ [ (KA Do(x), Do(x) )uidx) =
H H

= 2[ | F)Pudx) = 2 [ F(x)( Lx, Do(x))u(d), (13)
H H I

where L is defined by (10).
Proof. Using Proposition 2 and setting K, ;= (Ke,, ¢,), we get

[(Dfx), KDOG)(dx) = Y, [ KyuDy FRID@(x)(dx) =
H hk=1g

X

=~ 3 [ F@ KDy Deodn) + Y, [ F) K, x,: Dy o(x) i(dx),

hk=1g . hk=1H
which yields

[ (Dfx), KDo(x))intdx) = — [ £G)Te[ KD*ox) Jin(dx) +
H H

+ [ fe)( K Q™ x, Do) Yu(dx).
H

Now the conclusion follows in view of Proposition 2.
We can now prove the main resull of this section,

Theorem 1. Assume that Hypotheses | and 2 hold and let # be the infinite-
simal generator of the semigroup R,, t=0, defined in (4). Then we have
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454 G. DA PRATO

D(st) = WH(H; ) N W2 L (H; ). (14)

Proof. We present the proof assuming that condition (b) of Hypothesis 2 holds.
When condition (a) holds, the proof is completely similar. We first prove that D(s#d) C

C W2H; ) N w;-jﬂ,(y;u). Let @ e D(sl). Since $ isa core for o, there
exists a sequence {@,} C D(s) such that

lim ¢, =@ and lim @, = o in L*(H;p).

fi—>ea 11~—3 o

We set f,= &l ¢,. Since, obviously,
Tr[(KDE(pn(x))z ] 2 VZTF[ (ng)"(x))z ]'
taking (13) and Corollary 2 into account, we find that, for any £> 0, we have

= [ 122 0ut, 1l = [ ( KA" D, (), Dy iatalx) <
H B H

< 21+ é) [ £GP i) +2¢.f |( Lx, Do, () pid) +
H H

+ 547 [ 1Do, 0P pedx) < 2[) +é) [ 1,00 P e +
H H

+ 4] LIPTeQ [ | Do, ()P pidx) +
H

+32¢| LIPTr[@* ] [ | Do, (x)||;2(m w(dx) + | SA"| [ | D@, (0 u(dx).
H H

Choosing & sufficiently small, we see that there exists N> 0 such that

" @n "2‘4"2'1(”:“} + "(P.u ”a/):'gd.(ﬁiui £ N.“J‘,,(I)F}L(dx).
= H

By aclassical argument, this implies ¢ € WE‘Z(H; w N W;'EA.(H; .
We finally prove that, conversely, WZ'E(H: w) N W;'EA.(H; W) C D(gl). Forany
Qe WAA(H;w) N W2 L(H;p), weset

@) = 19F 22y, — | (A" Do), Do) ().
H

Let g€ W22(H;p) N W;'fﬁ_(H; i) andlet {@,} €% such that

lim ¢, = ¢ and lim y(g,) = y(9) in L*(H; p).
n o

3=

We set f,=d,. It follows from (13) that

[ st g, Pridx) < y(@,) + 2 [ [ £, Lx, Do, () |idx) + |
H H
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+ |47 | 109, ) ntdx) < y(o,) + %J | £ ) +
H H

+ 2 [ |(Lx, Do, (x)) nidx) + | SA"|
H

j | D(P,, (x) [2 Hidx),
H
which implies

[Isto, Pudx) < 2v(0,) + 4 [ |{Lx, Do, ) pidx) +
H H

+ |87 [ 1 D@, (0 pidx).
H
Using again Corollary 2, we gel

[1ste, Pridx) < 2v(p,) + BILIPTrQ [ | D, (x)f pidx) +
H H

+ 64ILP T QP [ [ D2 @u()y, ppy ilel) +
.

+ [ $A7| [ | Doutx) udx) <
H

< 201436 L P Tro+ | A" | Jy(g,),

and the conclusion Follows.

Remark 2 (Finite-dimensional case). Assume that H is a finite-dimensional
space and let A4, K'e £(H). Assume that all eigenvalues of A have the negative real
parl. Then Hypotheses 1 and 2 clearly hold. Thus, by Theorem 1, it follows that

D(st) = W*(H; ). (15)

This result was obtained by A. Lunardi [8] by different methods based on interpolation.
Remark 3 (Commutative case). Assume (hat
(i) A is self-adjoint and there exists @ > 0 such that

(Ax,x) € —o|x]*, xe D(A).

Moreover, Al e L\ (H).

(ii) K is self-adjoint, strictly positive, and such that Ke” = e K forall r>0.
Then KA is self-adjoint and

(KAx,x)< ov|x?, =xeH.
Moreover, L =0. Thus, Hypotheses | and 2 are fulfilled and, by Theorem 1, it follows
that
D(st) = W>2(H; ) N Wl (H; ). (16)

For K=/, this results was obtained in [3].

We end this section by giving an example where A and @ do not commute, but
Theorem | still applies.

Example 1. We assume here that condition (i) of Remark 3 is fulfilled and, more-
over, thal K is of the form

K=1+ A-lsa™!
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456 G. DA PRATO

for some §e &£ (H), symmelric nonnegative. Then Hypotheses | and 2 clearly hold.
Let us check Hypothesis 2. Firs(, we write O as

0= o)*(+8)0oY>, (17

where Qg= A"'/2 and

Six = 2[ (A2 hs(—AY 2 xds,  xe H.
0
It follows from (17) that

o = gea+sy e = et gs,
where T =1~ (1+5,)~". Then

Y. | .
A+ EQ ‘e = —EQn”ZTlQn”ZK = S+ 005,

where S, = QD'HESJ Qu_”z. It is easy to see that S, is bounded and, hence, A +

+ Q'K /2 is bounded 100, as required.

4. Perturbation results. Here, we assume that Hypotheses | and 2 hold. For the
sake of simplicity, we also assume that A is self-adjeint. We denote by [ the
Gaussian measure defined in Sec, 2.

We consider, besides the operator & defined by

i = %Tr[KquJ(X):[ + (Ax, DO(x)),
(18)
Qe WRA(H;p) N Wi H: ),

the following one:

= éTr[K(x}D?'(p(x)] + (Ax+F(x), Do(x)),
. (19)
2.2 L2
Qe WH (H; 1) N Wy~ (H;w,
where K and F salisfy the following assumption:
Hypothesis 3. (i) K: H— £ (H) is a Borel function. Moreover, K(0)=K
and K(x)—Ke £L,(H).
(it) F: H— H is a Borel function. Moreover, (HA)_HZF is bounded.
Theorem 2. Assume, besides Hypothesis 3, that

sup (Te(K(x) =1 + | (=4) 2 Fof ) < 1. (20)
reH

Then sl generates a strongly continuous semigroup P,, t=0, on Lz(H; TDN
Moreover, there exists an invariant measure for P,, t20, which is, in addition, ab-
solutely continuous with respect to [L.

Proof. We set

) = + B,

where
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Bo = 2 Tr[ (K- K)D0(0)] + (F ) Do),

Boe W2(H;w) N Wy >(H; ).

We are going to show that @B is relatively bounded with respect to .
We have, in fact, for any ¢ € ,

[ ol (&) - K)D*ew) ]| d) <
H

< J|Tr[(K'(x)—K)]IZITr[Dz(p(x)]]zu(dx) < sup Tr(K(x)=1)* |l o|?. 21)

H xelH
Moreover,
[ [(Fex), Do) Prtdx) = [ (A2 F), (-4 2 Do) ) id) <
H H
< sup |[(—4) 2 Fo) [ st o). 22)
xefH

Now it follows from (21) and (22) that @8 is relatively bounded with respect to ¢, as
required. Now, by a well-known perturbation result (see, e.g., A. Pazy [9]), it follows

that &, generates a semigroup C, in L (H; TH
Finally, the last statement follows by analogy with [3].
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