A. V. Skorokhod (Inst. Math. National Acad. Sci. Ukraine, Kiev; Michigan Univ.)

MEASURE-VALUED DIFFUSION

МІРОЗНАЧНА ДИФУЗІЯ

We consider the class of continuous measure-valued processes $\{\mu_t\}$ on a finite dimensional Euclidian space X for which $\int f d\mu_t$ is a semimartingale with absolutely continuous characteristics with respect to t for all $f\colon X\to R$ smooth enough. It is shown that, under some general condition, the Markov process with this property can be obtained as a weak limit for systems of randomly interacting particles that are moving in X along the trajectories of a diffusion process in X as the number of particles increases to infinity.

Розглядається клас неперервних мірозначних процесів $\{\mu_i\}$ на скінченновимірному евклідовому просторі X, для якого $\int f d\mu_i$ — семімартингал з характеристикою, що є абсолютно неперервною відносно t для всіх досить гладких $f\colon X\to R$. Показано, що при досить загальних умовах марковський процес з цією властивістю може бути отриманий як слабка границя для систем випадково взаємодіючих частинок, що рухаються в X уздовж траєкторій дифузійного процесу в X, коли число частинок зростає до нескінченності.

1. Introduction. The theory of measure-valued stochastic processes was founded by D. A. Dawson [1]. Measure-valued branching processes are the most investigated class of measure-valued processes (see E. B. Dynkin [2]). Some limit theorems on the convergence of measure-valued processes generated by systems of randomly interacting particles were obtained by A. V. Skorokhod [3] and P. Kotelenez [4]. In the article of R. Ya. Maydaniuk and A. V. Skorokhod, quasidiffusion measure-valued processes and limit theorems for such processes were considered.

We consider a finite dimensional space X. Let \mathcal{B} be its Borelian σ -algebra, let M(X) be the space of finite measures on \mathcal{B} , and let C(X) be the space of bounded continuous functions $f: X \to R$.

We introduce a metric d_M in M(X) with the following properties:

- 1) M(X) in this metric is a complete separable locally compact space,
- 2) $d(m_n, m) \to 0$ iff the sequence of measures m_n weakly converges to the measure m, i.e., $\int f dm_n \to \int f dm$ for all $f \in C(X)$.

We use the notation $\langle m, f \rangle = \int f dm$.

Denote by \mathcal{M} the σ -algebra of Borelian subsets of M(X). We will investigate a special class of continuous Markov processes in the space $(M(X), \mathcal{M})$.

First, we recall the notion of quasidiffusion process introduced in [5].

Definition 1. A continuous Markov process μ_i in $(M(X), \mathcal{M})$ is called a quasidiffusion process if there exists a linear subset $D \subset C(X)$ satisfying the following conditions:

QD1) D is dense in C(X),

QD2) for $f \in D$, the process $\langle f, \mu_t \rangle$ is a continuous semimartingale (with respect to the filtration $(\mathcal{F}_t)_{t \geq 0}$ generated by the Markov process), for which its compensator, denote it by a(t,f), and the square characteristic of the martingale $m(t,f) = \langle f, \mu_t \rangle - a(t,f)$, denote it by b(t,f), are absolutely continuous functions with respect to t:

$$a(t,f) = \int_{0}^{t} A(s,f) ds, \tag{1}$$

$$b(t,f) = \int B(s,f) ds, \qquad (2)$$

where A(s,f) and B(s,f) are nonrandom functions of μ_s .

Definition 2. A quasidiffusion process μ_t in $(M(X), \mathcal{M})$ is called a diffusion process if $D = C^{(2)}(X)$ is the space of twice continuously differentiable functions from C(X) with derivatives that are also from C(X); besides, we assume that the functions A(s,f) and B(s,f) in relations (1) and (2) are of the form

$$A(s,f) = A(s,\mu_{s},f) =$$

$$= \int \left[\operatorname{Tr} A_{2}(s,\mu_{s},x) f''(x) + (A_{1}(s,\mu_{s},x),f'(x)) + A_{0}(s,\mu_{s},x) f(x) \right] \mu_{s}(dx),(3)$$

$$B(s,f) = B(s,\mu_{s},f) =$$

$$= \int \left[(B_{2}(s,\mu_{s},x,\tilde{x}) f'(x), f'(\tilde{x})) + (B_{1}(s,\mu_{s},x,\tilde{x}), f'(x)) f(\tilde{x}) + B_{0}(s,\mu_{s},x,\tilde{x}) f(x) f(\tilde{x}) \right] \mu_{s}(dx) \mu_{s}(d\tilde{x}), \tag{4}$$

where

$$\begin{split} A_2 \colon R_+ \times M(X) \times X \to L(X), & B_2 \colon R_+ \times M(X) \times X^2 \to L(X), \\ A_1 \colon R_+ \times M(X) \times X \to X, & B_2 \colon R_+ \times M(X) \times X^2 \to X, \\ A_0 \colon R_+ \times M(X) \times X \to R, & B_2 \colon R_+ \times M(X) \times X^2 \to R; \end{split}$$

these functions are measurable on $R_+ \times M(X)$ and continuous and bounded in x and \tilde{x} .

The goal of the article is to establish the existence of a process for A_0 , A_1 , A_2 , B_0 , B_1 , and B_2 satisfying some additional conditions. The tool of investigation is some limit theorem for measure-valued continuous processes and processes generated by a system of randomly moving particles in the space X.

2. Compactness of probability distributions in $C_{[0,1]}(M(X))$. Here, we consider conditions under which the distributions for a sequence $\{\mu_n(t), t \in [0, 1], n = 1, 2, ...\}$ of continuous measure-valued processes is a compact set in the space $C_{[0,1]}(M(X))$ of all continuous functions $m: [0,1] \to M(X)$.

Theorem 1. The distributions of the processes $\{\mu_n(t)\}$ form a compact set iff the following conditions are fulfilled:

- 1) there exists a continuous function $\rho: X \to [1, \infty)$ for which $\rho(x) \to +\infty$ as $|x| \to +\infty$ and $\sup_{t} \langle \rho, \mu_n(t) \rangle$ are uniformly bounded in probability;
 - 2) for any $f \in C(X)$ and $\varepsilon > 0$,

$$\lim_{h\to 0} \sup_{n} P\left\{ \sup_{|t-s|\leq h} |\langle \mu_n(s), f\rangle - \langle \mu_n(t), f\rangle| > \varepsilon \right\} = 0.$$

Proof. The necessity of condition 2) follows from the necessary conditions for compactness of the distributions of the processes $\langle \mu_n(t), f \rangle$ in $C_{[0,1]}$ for all $f \in C(X)$. We prove now the necessity of condition 1).

It follows from the compactness of the distributions of processes $\mu_n(\cdot)$ that, for any $\varepsilon > 0$ and $\delta > 0$, there exists r > 0 for which

$$P\left\{\sup_{t} \mu_n(t, X \setminus B_r(0) > \varepsilon\right\} < \delta, \quad B_r(0) = \left\{x \colon |x| \le r\right\},\,$$

for all n. If r_k satisfies the inequality

$$P\left\{\sup_{t} \mu_{n}(t, X \setminus B_{r_{k}}(0) > \frac{1}{2^{k}}\right\} < \frac{1}{2^{k}}$$

for all n and $\rho(x) \le k$ for $|x| \le r_k$, then 1) is fulfilled.

To prove the sufficiency of conditions 1) and 2), we consider measures $\mu_n^*(t)$ for which $\langle \mu_n^*(t), \lambda \cdot f \rangle$, where $\lambda \in C(X)$, $\lambda(x) = 1$ for $x \in B_r(0)$, $\lambda(x) = 0$ for $x \in X \setminus B_{2r}(0)$, $\lambda(x) \in [0, 1]$ is valid.

It is easy to check that the distributions of $\mu_n^*(t)$, n = 1, 2, ..., form a compact set of measures because $\mu_n^*(t)$ are measures on the compact $B_{2r}(0)$. Using condition 1), we can choose λ in such way that

$$P\left\{\sup_{t} \operatorname{Var}\left(\mu_{n}(t) - \mu_{n}^{*}(t)\right) > \varepsilon\right\} < \delta$$

for given $\varepsilon > 0$ and $\delta > 0$. This completes the proof.

Corollary. Let $\{\mu_n(t)\}$ be a sequence of measure-valued diffusion processes for which their diffusion characteristics $A^n(s,f)$ and $B^n(s,f)$ are represented by formulas (3) and (4) with functions A_0^n , A_1^n , A_2^n and B_0^n , B_1^n , B_2^n instead of A_0 , A_1 , A_2 and B_0 , B_1 , B_2 . Assume that the following conditions are fulfilled:

(i) the distributions of $\mu_n(o)$ are compact in M(X);

(ii) there exists a continuous function $\rho: X \to [1, \infty)$ such that $\rho(x) \to \infty$ as $|x| \to \infty$, and $\rho''(x)$ are continuous and bounded and

$$\int \left[\operatorname{Tr} A_{2}^{n}(s, m, x) \rho''(x) + \left(A_{1}^{n}(s, m, x), \rho'(x) \right) + \right. \\ \\ + \left. A_{0}^{n}(s, m, x) \rho(x) \right] m(dx) \langle m, f \rangle + \int \int \left[\left(B_{2}^{n}(s, m, x, \tilde{x}) \rho'(x), \rho'(x) \right) + \right. \\ \\ + \left. \left(B_{1}^{n}(s, m, x, \tilde{x}), \rho'(x) \right) \rho(\tilde{x}) + \right. \\ \\ + \left. B_{0}^{n}(s, m, x, \tilde{x}) \rho(x) \rho(\tilde{x}) \right] m(dx) m(d\tilde{x}) \leq C \langle m, \rho \rangle^{2}$$

for all $s \in R_+$ and $m \in M(X)$; here, C is a constant;

(iii) for any $\varphi \in C^{(2)}(X)$, there exists a constant C_{φ} for which

$$|A^{n}(s, m, \varphi)| \leq C_{\varphi}\langle m, \rho \rangle, \quad |B^{n}(s, m, \varphi)| \leq C_{\varphi}\langle m, \rho \rangle^{2}.$$

Then the distributions of $\mu_n(\cdot)$ are compact in $C_{[0,1]}(M(X))$.

3. Diffusion processes generated by a system of randomly moving particles. Let $x_1(t), \ldots, x_N(t)$ be a stochastic continuous X-valued process; we refer to $x_k(t)$ as to the trajectory of the kth particle of a system of N particles that are moving in X. We assume that $x_k(t)$ is a semimartingale:

$$x_k(t) = x_k(0) + \alpha_k(t) + m_k(t),$$
 (5)

where $\alpha_k(t)$ is absolutely continuous with respect to t and the square characteristic of the martingale $m_k(t)$, denote it by $\beta_k(t)$, is also absolutely continuous with re-

spect to t. Note that $\alpha_k(t)$ is an X-valued process and $\beta_k(t)$ is an L(X)-valued process. Denote by $\beta_{kj}(t)$ the mutual characteristic of the martingales $m_k(t)$ and $m_j(t)$. We have the relations

$$\alpha_k(t) = \int_0^t A_k(s) \, ds,\tag{6}$$

$$\beta_{kj}(t) = \int_0^t B_{kj}(s) \, ds; \tag{7}$$

the functions $A_k(s)$ and $B_{kj}(s)$ are supposed to be adapted and predictable with respect to some filtration $(\mathcal{F}_s)_{s>0}$.

Introduce the measure μ_t^N determined by relation

$$\langle \mu_i^N, f \rangle = \frac{1}{N} \sum_{k=1}^N f(x_k(t)), \tag{8}$$

 $f \in C(X)$. Using Itô's formula for $f \in C^{(2)}(X)$, we can write

$$d\langle \mu_t^N, f \rangle = \frac{1}{N} \sum_{k=1}^N \left[\left(f'(x_k(t)), A_k(t) \right) + \frac{1}{2} \text{Tr} \, f''(x_k(t)) B_{kk}(t) \right] dt + \frac{1}{N} \sum_{k=1}^N \left(f'(x_k(t)), dm_k(t) \right). \tag{9}$$

Denote

$$\hat{A}(t,f) = \frac{1}{N} \sum_{k=1}^{N} \left[\left(f'(x_k(t)), A_k(t) \right) + \frac{1}{2} \operatorname{Tr} f''(x_k(t)) B_{kk}(t) \right].$$

Then .

$$m(f,t) = \left\langle \mu_t^N, f \right\rangle - \int_0^t \hat{A}(s,f) ds \tag{10}$$

is a martingale and its square characteristics is

$$\langle m(f,\cdot)\rangle_t = \int_0^t \hat{B}(s,f) ds = \int_0^t \frac{1}{N^2} \sum_{k,j=1}^N (B_{kj}(s)f'(x_k(s)), f'(x_j(s))) ds.$$
 (11)

Assume that

$$\begin{split} \boldsymbol{A}_k(t) &= \tilde{\boldsymbol{A}}\big(t, \boldsymbol{\mu}^N(t), \boldsymbol{x}_k(t)\big), \\ \boldsymbol{B}_{kj}(t) &= \tilde{\boldsymbol{B}}\big(t, \boldsymbol{\mu}^N(t), \boldsymbol{x}_k(t), \boldsymbol{x}_j(t)\big), \end{split}$$

where

$$\tilde{A}: R_+ \times M(X) \times X \to X,$$

 $\tilde{B}: R_+ \times M(X) \times X^2 \to L(X).$

Then μ_t^N is a measure-valued diffusion process for which

ISSN 0041-6053. Укр. мат. жури., 1997, т. 49, № 3

$$A_0(t, m, x) = 0, \quad A_1(t, m, x) = \tilde{A}(t, m, x), \quad A_2(t, m, x) = \tilde{B}(t, m, x, x),$$

$$B_0(t, m, x, \tilde{x}) = 0, \quad B_1(t, m, x, \tilde{x}) = 0, \quad B_2(t, m, x, \tilde{x}) = \tilde{B}(t, m, x, \tilde{x}).$$

Under which conditions does there exist a system $\{x_1(t), \dots, x_N(t)\}$ that satisfies the required conditions?

The necessary condition is:

I. $\tilde{B}(t, m, x, \tilde{x})$ is a symmetric operator, $\tilde{B}(t, m, x, \tilde{x}) = \tilde{B}(t, m, \tilde{x}, x)$, and, for any $z_1, \ldots, z_N \in X$ and $x_1, \ldots, x_N \in X$,

$$\sum_{i,j=1}^{N} (\tilde{B}(t, m, x_i, x_j) z_i, z_j) \ge 0.$$
 (12)

It follows from (12) that there exists a set of operators $\Lambda_{ik} = \Lambda_{ik}(t, m, x_1, \dots, x_N)$, $i, k \in \overline{1, N}$, for which

$$\Lambda_{ik} = \Lambda_{ki}^*, \quad \sum_{k=1}^N \Lambda_{ik} \Lambda_{ki} = \tilde{B}(t, m, x_i, x_j).$$

We assume that, in addition to condition I, the following condition holds:

II. There exists $\delta > 0$ for which

$$\sum_{i,j>1} (\tilde{B}(t, m, x_i, x_j) z_i, z_j) \ge \delta \sum_{i=1}^{N} (z_i, z_i)$$
 (13)

for all $t \in R_+$, $m \in M(X)$, and $x_1, \ldots, x_N \in M(X)$, and the function

$$F(t, x_1, \dots, x_N, x_{N+1}, x_{N+2}) = \tilde{B}\left(t, \frac{1}{N} \sum_{k=1}^{N} \delta_{x_k}, x_{N+1}, x_{N+2}\right), \tag{14}$$

where δ_x is the measure for which $\langle \delta_x, f \rangle = f(x)$, satisfies the conditions

a)
$$||F(t,x_1,\ldots,x_N,x_{N+1},x_{N+2})|| \le K\left(1+\sum_{k=1}^{N+2}|x_k|^2\right),$$
 (15)

where K > 0 is a constant;

b) for any C > 0, there exists $l_c > 0$ for which

$$\left| \left| \, F(t,x_1, \ldots, x_N, x_{N+1}, x_{N+2}) \, - \, F(t,\, \tilde{x}_1, \ldots,\, \tilde{x}_N,\, \tilde{x}_{N+1},\, \tilde{x}_{N+2}) \, \right| \right| \, \leq \,$$

$$\leq l_C \sum_{k=1}^{N+2} |x_k - \tilde{x}_k|,$$
 (16)

if $|x_k| \le C$, k = 1, 2, ..., N + 2.

III. The function

$$G(t, x_1, \dots, x_N, x_{N+1}) = \tilde{A}\left(t, \frac{1}{N} \sum_{k=1}^{N} \delta_{x_k}, x_{N+1}\right)$$
 (17)

satisfies the conditions

c)
$$|G(t, x_1, ..., x_N, x_{N+1})| \le K \left(1 + \sum_{k=1}^{N+1} |x_k|\right),$$
 (18)

d)
$$|G(t, x_1, ..., x_N, x_{N+1}) - G(t, \tilde{x}_1, ..., \tilde{x}_N, \tilde{x}_{N+1})| \le l_C \sum_{k=1}^{N+1} |x_k - \tilde{x}_k|$$
 (19)

if $|x_k| \le C$, k = 1, 2, ..., N + 1, and K and l_C are the same as in II.

It follows from M. Freidlin [6] that, under condition II, the function $\Lambda_{ik}(t, m, x_1, \dots, x_N)$ satisfies the conditions:

e) there exists a constant K_1 for which

$$\left\| \Lambda_{ij} \left(t, \frac{1}{N} \sum_{k=1}^{N} \delta_{x_k}, x_1, \dots, x_N \right) \right\| \leq K_1 \left(1 + \sum_{k=1}^{N} |x_k| \right), \quad i, j \in \overline{1, N}, \quad (20)$$

f) for any C, there exists a constant \tilde{l}_C for which

$$\left\| \Lambda_{ij} \left(t, \frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}}, x_{1}, \dots, x_{N} \right) - \Lambda_{ij} \left(t, \frac{1}{N} \sum_{k=1}^{N} \delta_{\tilde{x}_{k}}, \tilde{x}_{1}, \dots, \tilde{x}_{N} \right) \right\| \leq$$

$$\leq \tilde{l}_{C} \sum_{k=1}^{N} |x_{k} - \tilde{x}_{k}|, \quad i, j \in \overline{1, N},$$

$$(21)$$

if $|x_k| \le C$, k = 1, 2, ..., N.

Let w_1, \ldots, w_N be independent Wiener processes in X, let $Ew_k(t) = 0$, and let $E(w_k(t), z)^2 = |z|^2$, $z \in X$, $k = 1, \ldots, N$.

We consider the system of stochastic differential equations

$$dx_{k}(t) = G(t, x_{1}(t), \dots, x_{N}(t), x_{k}(t)) dt +$$

$$+ \sum_{i=1}^{N} \Lambda_{ki} \left(t, \frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}(t)}, x_{1}(t), \dots, x_{N}(t) \right) dw_{k}(t).$$
(22)

It follows from conditions c), d), e), and f) that system (22) has a unique solution for any initial condition.

Theorem 2. Let the functions $\tilde{A}(t, m, x)$ and $\tilde{B}(t, m, x, \tilde{x})$ satisfy conditions I, II, and III for any $N \ge 1$. Then for any $m \in M(X)$, there exists a measure-valued diffusion process μ , for which

$$\begin{split} A_0(t,m,x) &= B_0(t,m,x,\tilde{x}) = 0, \\ A_1(t,m,x) &= \tilde{A}(t,m,x), \quad B_1(t,m,x,\tilde{x}) = 0, \\ A_2(t,m,x) &= \tilde{B}(t,m,x,x), \quad B_2(t,m,x,\tilde{x}) = \tilde{B}(t,m,x,\tilde{x}). \end{split}$$

Proof. We consider the sequence μ_t^N of measure-valued processes for which

$$\langle \mu_t^N, f \rangle = \frac{1}{N} \sum_{k=1}^N f(x_k^N(t)),$$

where $x_1^N(t), ..., x_N^N(t)$ is the solution of system (22) with the initial conditions $x_1^N(0), ..., x_N^N(0)$ for which

$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} f(x_k^N(0)) = \langle m, f \rangle$$

for $f \in C(X)$. It follows from Theorem 1 and the corollary that distributions of $\{\mu_t^N, N=1, 2, ...\}$ are compact in $C_{[0,1]}(M(X))$.

4. Pure birth and death processes. We assume that

$$\mu_t(A) = \int\limits_A u(t,x) m(dx)$$

and u(t, x) is a random function from $R_+ \times X$ to R_+ satisfying the following conditions:

4.1. u(t, x) is measurable in t and x; it is a continuous semimartingale in t;

4.2.
$$du(t,x) = v(t,x)dt + dw(x,t),$$

$$v(t,x) = \tilde{V}(t, u(t,\cdot), x),$$

w(x, t) is a continuous martingale in t, and the mutual square characteristic for w(x, t) and $w(\tilde{x}, t)$ is

$$\int_{0}^{t} \tilde{W}(s, u(s, \cdot), x, \tilde{x}) ds.$$

We assume that the functions $ilde{V}$ and $ilde{W}$ can be represented in the form

$$\tilde{V}(t, u(t, \cdot), x) = A_0(t, \int u \, dm, x), \qquad \tilde{W}(t, u(t, \cdot), x, \tilde{x}) = B_0(t, \int u \, dm, x, \tilde{x}), \tag{23}$$

where $\int u dm$ denotes the measure

$$\int u dm(C) = \int u dm.$$

It is easy to check that μ_i is a measure-valued diffusion process for which the functions A_0 and B_0 satisfy relation (23) and $A_1 = B_1 = 0$, $A_2 = B_2 = 0$.

The processes of general forms can be constructed by combination of the processes considered in Secs. 3 and 4.

- Dawson D. A. Measure-valued Markov processes. Ecole d'Ete de Probabilities de Saint Flour, 1991 // Lect. Notes, Math. - 1993. - 1541. - 260 p.
- Dynkin E. B. An introduction to branching measure-valued processes. Providence-Rhode Island: AMS, 1994. – 125 p.
- Skarakhod A. V. Stochastic equations for complex systems. Dordrecht: Riedel Publ. Co., 1988. 175 p.
- Kotelenez P. A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation // Probab. Theory and Related Fields. –1995. – 102. – P. 159–188.
- Maydaniuk R. Ya., Skorokhod A. V. Quasi-diffusion measure-valued processes and a limit theorem for jump measure-valued Markov processes // Exploring Stochastic Laws. Festschrift in Honour of 70-th Birthday of V. S. Korolyuk. – Utrecht: The Netherlands, 1995. – P. 275–284.
- Freidlin M. I. Functional integration and partial differential equations. Princeton-New Jersey: Princeton Univ. Press, 1985. – 545 p.

Received 27.11.96