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ON HAUSDORFF-YOUNG INEQUALITIES
FOR QUANTUM FOURIER TRANSFORMATIONS *

PO HEPIBHOCTI XAY COOP®A-FOHI'A
JJIsL KBAHTOBOI'O HEPETBOPEHHA OYP’ €

The classical Hausdorff~Young inequality for the Fourier transformation is generalized to various
quantum conlexts involving noncommutative L”-spaces based on translation invariant traces.

Koaenuna nepisnicrs Xayenopda—lOnra s nepernopens @yp'e ysaranunuioernes v Bararbox
KBAIITOBMX KOITEKUTAX, WO BKINouaIoTs nexomyrarupii L -npocropw, sacionani na inpapiamimx
BIITIOCIIO 3CYBY CHIJEAX.

1. Introduction. The classical Hausdorff~Young inequality [1] may be regarded as
the estimate

| % |l < 2m) 727 (1

for the bound of the Fourier transformation
F: L(R) > L™(R);  Ffe) = 2n)~"2 [ e ™F(y)dy

regarded as an operator form L'(R)NLY(R) to LP(R), where 1<g<2 and
p~l+g-1=1. It is known that the estimate is not exact [2] and that the exact bound is
achieved by Gaussian functions and (when g < 2) only by these [3].

The inequality (1) can be proved [3] as an application of the Riesz-Thorin inter-
polation principle, starting with Fourier—Plancherel isometry property

” g”g_;g =1 (2)
and the obvious estimate

| & < (2m)~""2 3)

This paper concerns noncommutative analogs of this Fourier transformation in
which the réle of the translation-invariant (Lebesgue) integral on either the initial or
final space, or both, is played by a “translation-invariant trace” on a von Neumann
algebra generated by a representation of quantum mechanical commutation relations or
a generalization thereof. We shall see that, in all cases, there is an isometry property
analogous to (1) for an appropriate normalization of the trace, and an estimate
analogous to (2) allowing deduction of a Hausdorff~Young inequality from the abstract
Calderon—Lyons form of the inferpolation principle.

The simplest case is that of the so-called Fourier—Weyl (ransformation [4, 5]; this is
considered in Sec. 2 together with its inverse, In Sec. 3 we consider the “canonical
Fourier transformation™ [6] in which both the initial and the final spaces are quantized.
In Sec. 4 we consider further generalizations in which the translation-invariance of the
trace enters non-trivially, based on the ideas of [7]. Finally, in Sec. 5, we consider the
problem of how (o define “Gaussians” in noncommutalive contexts, and the question
of whether in such contexts, Gaussians and only Gaussians achieve the bounds

|4 (P
2. The Fourier—Weyl transformation. Let p and g be self-adjoint operators
acling in a Hilbert space # and satisfying the Heisenberg commutation relation

e

*Work begun when the author visited Mathematics Department of the University of Colorado at
Boulder, whose hospitality is gratefully acknowledged, supported by a grant from University of
Nottingham Key Research Staff Initiative.

© R.L.HUDSON, 1997 :
ISSN 0041-6053. Yip. smam. sypn., 1997, m. 49, N¢ 3 465



ON HAUSDORFE-YOUNG INEQUALITIES FOR QUANTUM FOURIER ... 467

The inverse of the Fourier—Weyl-Plancherel transformation acts on the space
LYR*)NL*(R?) as
Fhi f @)l [ elwrhyf(x, y)dxdy.
Evidently the bound
1511l = 2m)= V72| [ or ) (s, yydxay ]

< @m) 2] || efert0f (x| y) (| dxdy = (2m)~ 112 [ | £(3,x)| dxdy
so that
197"l 5e s (2m)7172
Evidently, by the same argumenl as was used for Theorem 1, we have the
Hausdorff-Young inequality
T | gosp S @mY12-0

3. The canonical Fourier transformation [5]. Let us now introduce two
canonical pairs, each satisfying (4) in the rigorous form (5) in the Hilbert space
7 ® ¥, defined by

p,=p®IL, ¢, =¢q@®I1, p,=1@p, ¢q,=1Rq.
Strictly speaking the pairs {pj, qj), Jj=1, 2, should be defined as the infinitesimal
generators of the lwo pairs of one parameter unitary groups got by ampliation from
U=(el? xe R), V=(e/™ xe K). Then in the Schrodinger case 9¢=L?*(R),
¥ ® Y=L*(E?), the operator p,q,—q,;p, can be defined as the angular
momentum, that is as the infinitesimal generator of the one parameter unitary group
(W,: te R) where

W, f(x,y) = f(costx— sinty, sintx+costy) (fe L*(R?*),x,ye R).

We may also define p,p,+¢,q, as (1 ®S)(p;4,—-q,p,)(] ®S)"' where S isa
unitary operator on ¥ =L*(RR) such that

Sgs ' =p, Sp$t=-g.
the existence of which follows from the von Neumann uniqueness theorem (in fact we
can take S to be the one-dimensional Fourier—Plancherel transformation). It is clear
that p,q,—q,p, and p,p,+q,q, arc well-defined self-adjoint operators, even in

the case of general ¥ where we use the von Neumann uniqueness theorem. The
operator p,q,+ ¢ P, can be defined similarly, in the Schrédinger case as the

infinitesimal generator of the one parameter unitary group (W,: re IE) given by
W, f(x,y) = f(coshtx+ sinhty, sinh tx +coshty), fe L*(E?), x,ye E.

A bounded operator Te B(# ® %) is said to have a partial trace over the first
copy of ¥ if the linear functional

L'(N)=S > tropgeT (1 ®S)
is bounded, in which case there exists a unique bounded operator tr;7 e ¥, such that,
forall Se L' (N),

tropee (1 ® §) = trge((tr;7)S).
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For fixed a e (0, ), the canonical Fourier transform of X € LI(N) is defined
X =sinotr;e®P Pt L)X @ 1.

It is shown in [5] that the partial trace exists, and that the map X > X extends to a
unique isometry % from L>(N) onto itself whose inverse map is found by replacing
—~i by i in the defining formula. Moreover the diagram
LY (R?) s LY(RY)
T T (7
F

LA*N) —— L*(V)
commutes, in which the vertical maps are both the Fourier—Weyl-Plancherel
transformation and the upper horizontal map &, is a Fourier—Plancherel
transformation extending the map '
LUBRHNLHR?) s f fi
Flrxp) = 0@2m)! [ 7Ot it f(y , y,) dy dy,
ml

and © is a certain non-zero real number depending on o

Let us estimate the bound of the canonical Fourier transform as a map from L LN
to L=(N). With Xe L'(N) and X = %X we have

| Xl = sup{lw X7|, Te L'N), I Tl <1} =
= sup {sin &t|troegse /PPt BIX @ T|} =
= sup {sinc|X®T[} = sina ] X][],.

We (hus obtain the estimate ||% ||, . <sinc.. Combining this with the non-

commutative L*> isometry property || % |Lb_»=1 we may again use the abstract
Calderon—Lyons interpolalion principle [1] to conclude:
Theorem 2. For 1<g<2 and p-'+¢g-'=1, the canonical Fourier

transformation  F maps LUN)NVL'(N) into L P(N) and the bound of its
restriction to this domain satisfies
N ||y S (sino)=!12-07", (8)

It is evident that exactly the same estimate is obtained if the exponent p,p, +¢,4,
in the definition of the canonical Fourier transform is replaced by the “angular
momentum” p g, —qPy-

We may also replace the exponent by the operator p,g,+¢,p,. In this case, to
obtain Lz—isometry we must re-define the canonical Fourier transformation to be

X = sinha trie PP P X @ 1.

For the diagram (7) to remain commulative we must replace the classical Fourier
transform &, by one of symplectic type in which the exponent has the form

B(x,y5—x5y,). Bvidently (8) becomes
1l < (sinhcy=112=07,

4. Generalizations. A canonical pair (p, g) satisfying (4) generates a unitsiry
multiplier-representation
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IE'.Z = (x,y)— Wx.._.' = pllxp+rya)

of the additive group IRZ; we have
) w:\'._'tr]"Vx'._"f = (x, y,x,y) Wx+f.‘1-|-y-‘
where the multiplier @: B?x E? — T is given by
1 . v 4
37 y) = exp( ity ). ©)

More generally we may consider unitary multiplier representations V= v > W,;
W, W, = o(u, v)W,,, of the additive group of a real finite-dimensional vector space
V; here the W, are unitary operators in a Hilbert space % and the multiplier ® isa
measurable function from VX V to T satisfying the 2-cocycle condition

o(wv+wio(, w) = o, v)ou+v, w),

A set of canonical forms for such a 2-cocycle, under the cohomologically natural
equivalence relation ~, where @ ~ ®" iff there exists a measurable function
f: V—=T such that
M YVuveV,

Flu+v)

is obtained by taking @ =expiM where M: VXV —-E is a skew-symmetric
bilinear form on V. The form AL may itself be taken in the canonical form

o' (u,v) = oy, v)

¥
M) = 3 GjYoj—Xaj¥apy)
i=|
where u, v have coordinales X |, ..., Xops Xaygps vee s X5 s vens Yaps Yo voves s Yy A0
some basis of V. If M is degenerate, that is n>2r, the von Neumann uniqueness
theorem breaks down and there are many unitarily inequivalent irreducible ®-
representations. To generalise the Fourier—Weyl and related transformations to this
context we first introduce the regular ®-representation R, defined on the Hilbert

space L*(V) of square-integrable (with respect to Haar-Lebesgue -measure V')
functions by .
Ro@)f@) = @@, u) f(o+u).

There is a natural action y of the dual space ¥V’ of V (regarded as an additive group)
on the von Neumann algebra N, generated by R, given by 7,7 = M;J,TMYu
where M,  is the operator on L*(N) of multiplication by the character y, = ¢™0),
v'e V'. That is indeed an automorphism (in general not inner since M, & Ng)
follows from the fact that T, Ry() = e"“’(“)Rm(v), in consequence of which it is

natural o call v the translation action.
It can then be shown [7] that
(1) there exists a translation trace tr,, on N, which is unique to within normali-

zation; we may call try, the Haar trace;

(2) for a given normalization of the Haar measure on V there is a normalization of
the Haar trace such that the map %, defined on the noncommutative L space
L'(Ng) of try by

Fo: F3fy f0) = T(Ry(v)F)
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extends uniquely to an isometry from LZ(Nm) to L2(V), whose inverse acts on
LY(V) as
Fo:fPF = [ Ryw) fv)dv.

When V=E? and o is the multiplier (9) of the Heisenberg-Weyl commutation
relation %, becomes the Fourier—Weyl transformation to within a normalization,

When V=1 isone-dimensional and @ is the trivial multiplier identically equal to I,
it can be shown that &%, is unitarily equivalent (o the Fourier—Plancherel
transformation from L?*(IE’) to L*(R) [7]. The general case is in effect a direct
sum of copies of these two cases. Thus generally %, will map LYN,)NL'(N,)
into L”(V) (where 1/p + 1/g=1) and its inverse will map L”(V)(L'(V) into
L"(Nm). and both transformations will satisfy an inequality of Hausdorff—Young type.

Details will be published elsewhere.

We may also consider generalizations of the canonical Fourier transformation in
which the Heisenberg-Weyl multiplier (9) is replaced by a more general multiplier in
either of its two rbles, for the initial and for (he final space. For simplicity we rétain

the Heisenberg—Weyl multiplier on the initial space B2 The final space must then

also be R2
Assuming first that the multiplier on the final space is also the Heisenberg—Weyl

multiplier, we may define a generalized canonical Fourier transformation & by

X = ‘tr,(exp{f(m, 91)[2;: :Z:l[ Z)}le

where the partial trace is normalized by the requirement of L2-isometry and

0 = [911 912}
0y O
is a real non-singular 2 x 2 matrix, The theory of such a transformation is reduced to
canonical forms by applying independent linear canonical transformations
o By
Yi 9
In this way we find the canonical forms

[s“ 9[3]_a[0 ]} a[{) 1]
8y O -1 0’ 1 0

which were considered in Sec. 3.

Similarly, if we take the multiplier on the final space R* to be trivial, then it is
easily seen that the generalized canonical Fourier transformation must reduce, after
linear canonical transformation in the initial space, and non-singular linear change of
variables in the second space, to the Fourier—Weyl transformation. More exotic
possibilities exist in higher dimensions.

5. Gaussian as maximizers. It is known [2] that the Hausdorff~Young inequality

does not give the exact bound || &||,_,, in the case of the Fourier transformation from

LYR) to L°(R).
Indeed, if f, denotes the Gaussian

(Pj"]j) b= (Pj-?j}( Ja O‘jsj ‘Bij =1 Jj=L2

- 2
fix) = &° 'Y e R,
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then Ff,=e'2f_,. Then we have

taNtp
|| &1, ”: = SFHEU B”g-lq‘"xzudx] A = e"”z[%/—_—) P2

P
whereag
e-uz Hy
irly = () w
R \[5
whence

, IFEl, _ ng
qy=p "fr Ilq Erf.‘!ppfﬂ

Il

It is known [8] that this estimate for the bound || ||,_,, is exact and that the

Gaussian functions are the only elements of LY(IR) which achieve it.

It is natural to conjecture that similar results hold in noncommutative contexts. It is
well known that “quantum Gaussians”, which may be defined naturally as limit density
operalors (that is, noncommutative Radon-Nykodim derivatives with respect to the
“Haar trace”) for the quantum mechanical central limit theorem [9] for canonical pairs
(p,q), have Fourier—Weyl! (ransforms of Gaussian type; thus in the case of the
Fourier—Weyl transformation “Gaussian™ transforms o Gaussians. However the
transform Gaussians are not arbitrary; the matrices of their quadric forms, as well as
being positive definite, must be consistent with the restrictions placed by the
uncertainly principle on the covariance matrix of (p,¢). The inverse Fourier—Weyl
transform of a Gaussian whose matrix violates this constraint is found to be a

“Gaussian” of the form
| P
exp {~—B{p, q)e( ]}
2 q

where 8 is a positive definite Hermitian matrix of unit determinant, but the
“temperature” is now complex. Thus in formulaling appropriate conjectures it is
evident that a slightly wider class of “Gaussian” than that of limit states of the central
limit theorem will be needed. Within such a context it is conjectured that, for the
Fourier—Weyl, inverse Fourier—Wey! and canonical Fourier transformations and their
generalizations, Gaussians and (if g < 2) only Gaussians are maximizers, attaining the

L?— L” bounds forall ¢ with 1<¢<2, and thus permitting the exact calculation
of these bounds.
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