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ON DIRECTIONAL MONOGENEITY SETS

IIPO HAIIPSIMJIEHI MOHOI'EHHI MHOKHHHA

We introduce and investigate some new differential properties of functions by using geometrical proper-
ties of directional monogeneity sets.”

3 BHKOIJHC’I‘&HI-L‘HM reoOMeTpHYHHX BJ'Ia.CTHi}OC'ﬂ:ﬁ Haﬁp.ﬁMJ'IGHHX MOHOIeHHHX MHOXXHH BCTaHOBJIOIOThL-
¢ Ta BHBYAIOThCSA JiesKi HoBi gudbepentiaibhi BiracTHBOCTI PyHKUIH. .

1. Preliminaries. Let w= F(z) be a function from the closed upper half plane H of
the complex z-plane into a second countable topological space W. For any point x

on the real line of the z-plane (x=Rez), the directional monogeneity set ﬂRi (F) of
F at x in direction 6 is defined as the directional cluster set

C(Mﬁ;ﬁ@,x‘ 9]

at x in the direction 0.

The essential monogéncity set Ess. fmi (F) of Fatx in the direction 6 is defined
as a set of derived numbers { of the function F that satisfies the following condition:
For every open set U containing the point w = F(z), the set F~Y(U)N Lg(x) has
. positive upper density at x. '

For each point x on thereal line R and h>0, let

S(x,h) = {z: ze H®, |z—x|<h},
“and for each direction 8, 0;9<n, le:t.

Lg(x) = {z: ze H arg|z—x|=6},
and . ' -
| Lg(x, ) = S(x, h)N Ly (x).

Set Ec H. Then apoint x € R is called a first-category point of E if and only if,
for every h>0, theset S(x, h)[) E is of the first category in E. A point x€ R is
called a second-category point of E if and only if it is not a first-category point of. E.

The set of all first (second)-category points of E will be denoted by E (E,,,
respectively).

- A point xe R is called a directional first-category point of E in direction & if
and only if, for every h>0, the set Lg(x, h)[) E is of the first category as a linear
set. ‘
A point x € R is called a directional second-category point of E in direction 6 if
and only if it is not a directional first-category point of E in direction 6.

The set of all directional first (second)-category point of E in direction 6 will be
denoted by E;(8) (E;;(8)), respectively.

The qualitative directional monogeneity set Qual. EIRE (F) of FE at x in direction
0 . is defined as a set of derived numbers { of the function F that satisfies the
following condition: For every open set U containing w, the set [F ~L()1,,(0)
contains the point x. : ' ) W '

* For the definition of monogeneity set of a given function at some point of its domain of definition, see
[1].

© F.M.DIAB, 1997
ISSN 0041-6053. Yip. mam. xypu., 1997, m. 49, N° 4 _ 517



518 o F. M. DIAB

For a fixed direction vy, y e (0, n), let 6(x), x=Rez, z€ H, denote the set of
all directions 6 € (0, ®) in which the directional monogeneity set of F at x in
direction 6 does not contain the qualitative directional monogeneity set of F at x in
direction .

Let A(x) denote the set of all directions -8 € (0, ) in which the directional
monogeneity set of F at x in direction y does not contam the qualitative directional

_monogeneity set of F at x in directional 6. .

It is known [12] that if F is a continuous function from H to a topological space
W with a countable basis and y € (0, 7) is a fixed direction, then for every x € R
except a first-category set of measure zero on R, the set

{0: 0<0<n, Bss. .(F, y)z M. (F, 0)}

is of the first category. If F is measurable and y € (0, ) is a fixed direction, then
except a set of measure zeroon R, the set

{6: 0<0<n, Ess. M (F, 0)z M.(F, y)}

is of measure zero.
2. Results. Let Ec H and x€ R.

Let’
O(E,x) = {6: 0<0<m, xe ENLy(x)}.
For a fixed positive integer n and rational r,s, 0 <r<s<m, we also define
O,(E,x) = {8: 0<0<m, ENLg(x,n~)= D}, |
and _
Ors (B, ) = OB, 0N (r, 5).
Then, clearly, |

oEx) = | L] 0x(E.%.

‘ We guote below the Kuratowski — Ulam theorem in polar coordinates [2].
" Theorem P. If E c H is a plane set of the first category, then for a fixed point
“ x€ R, Lg(x)( E is a linear set of the first category for all directions. & except a

set of the first category in (0, ).
We now prove the following statement. C
Lemmal. [f G < H is open and P c H is a set of the f rst category, then far
every x € R there exzsrs a set of the first category Q(x)< (0, ™) such that

O(GAP, x) < O(G,x)U Q(x).
Proof. Let
Q(x) = {6: 0<B<m, P Lg(x) is of the second category in Lg(x)}.

In virtue of Theorem P, this implies that Q(x) is of the first category in (0, 7).
Let 6 € O(GAP, x)[)1 CO(x). Then there exists a positive integer n such that

Lg(x,n" )N (GAP) = @ ' ) (1)
and -
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P Lg(x) is of the first category in Lg(x). (2)
In virtue of (1) and (2) and the fact that G is open, we have
gl NG =2,

Hence, 8 € O(G, x) and
O(GAP,x)N CQ(x) < O(G,x), ie. O(GAP,x)c O(G,x)U Q(x).

Lemma 2. If the set E < H has the Baire property and y € (0, 1) is a fixed
direction, then the set

B = {x: xe E|;(¥), O(E, x) is of the second category in (0, )}

is of the first category in R.
Proof. Let E=GAP, where G is open and P is of the first category. Clearly,

E;(v) € G i(yUP (y). 3)

It follows from Lemma 1 that, for every x € R, there exists a set of the first categdry
Q(x)< (0, ) such that

O(E,x) < O(G; ) ) Ofx) )
Let
A = {x: xe G (y), O(G,x) is of the second category in (0, 7)}.

Let xe B. Then O(G, x) is of the second category. By virtue of (3), we have x e
€ Gy (y) or xe Py (y). In the first case, x € A. Thus,

B < AUP(y).

The set A is of the first category by Lemma 1. The set P (y) is of the first
category in virtue of the Kuratowski — Ulam theorem [3, p. 56]. Hence, the set B 1is of

the first category. _
Let W be a second countable topological space and let ¢ € (0, ) be a fixed

direction.
Theorem 1. If F: H — W has the Baire property, then, for every x € R

except a set of the first category in R, the set
O(x) = {6: 0<B<m, Qual I(F, y)z M (F, 0)}

is of the first category.
Proof. Let {V,} be acountable basis for the topology of W.

Let
B,= [x: xe Ey (y), O(E, x) is of the second category inf (0, )]
_and let
D = [x: O(x) is of the second category in (0, 7)].
I So, if xp € D, then, by (4), there is at least one ny such that O(E,g,x, y) is a

second category set. By the definition of O(E,q, xp, ¥), xq belongs to E,q; (W)
and the set O(E,q, xg) is of the second category. Therefore, x5 € B,,. Hence,

bl )8,

n
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L= {e s em, K (E,, x) isof the second category in (0, ) }
and let
T = {x: A(x) is of the second category in (0, m)}.
So,if xy e T, then A(xy) is of the second category in (0, ®). Hence, by (13),
there is at least one ny such that K(E,, xp, ) is of the second category, and so, by

the definition of K(E,g, xp, ¥), xg € Ly(xg)(1E,, and K(E,g,xp) is of the
second category. Therefore, x; € S,,. Hence,

e 5%

n

Since the sets S, are of the first category for all n, by Lemma 4, the set T is of
the first category. This prove the theorem.
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