F. M. Diab (Univ. Cairo, Giza, Egypt)

ON DIRECTIONAL MONOGENEITY SETS

ПРО НАПРЯМЛЕНІ МОНОГЕННІ МНОЖИНИ

We introduce and investigate some new differential properties of functions by using geometrical properties of directional monogeneity sets.*

З використанням геометричних властивостей напрямлених моногенних множин встановлюються та вивчаються деякі нові диференціальні властивості функцій.

1. Preliminaries. Let w = F(z) be a function from the closed upper half plane H of the complex z-plane into a second countable topological space W. For any point x on the real line of the z-plane $(x = \operatorname{Re} z)$, the directional monogeneity set $\mathfrak{M}_x^{\theta}(F)$ of F at x in direction θ is defined as the directional cluster set

$$C\left(\frac{F(x+h)-F(x)}{h}, x, \theta\right)$$

at x in the direction θ .

The essential monogeneity set Ess. $\mathfrak{M}_{x}^{\theta}(F)$ of Fat x in the direction θ is defined as a set of derived numbers ζ of the function F that satisfies the following condition: For every open set U containing the point w = F(z), the set $F^{-1}(U) \cap L_{\theta}(x)$ has positive upper density at x.

For each point x on the real line R and h > 0, let

$$S(x, h) = \{z \colon z \in H^0, |z-x| < h\},\$$

and for each direction θ , $0 < \theta < \pi$, let

$$L_{\theta}(x) = \{z \colon z \in H^0, \arg|z - x| = \theta\},\$$

and

$$L_{\theta}(x,h) = S(x,h) \cap L_{\theta}(x).$$

Set $E \subset H$. Then a point $x \in R$ is called a first-category point of E if and only if, for every h > 0, the set $S(x, h) \cap E$ is of the first category in E. A point $x \in R$ is called a second-category point of E if and only if it is not a first-category point of E.

The set of all first (second)-category points of E will be denoted by E (E_{11} , respectively).

A point $x \in R$ is called a directional first-category point of E in direction θ if and only if, for every h > 0, the set $L_{\theta}(x, h) \cap E$ is of the first category as a linear set.

A point $x \in R$ is called a directional second-category point of E in direction θ if and only if it is not a directional first-category point of E in direction θ .

The set of all directional first (second)-category point of E in direction θ will be denoted by $E_1(\theta)$ ($E_{11}(\theta)$), respectively.

The qualitative directional monogeneity set Qual. $\mathfrak{M}_{x}^{\theta}(F)$ of F at x in direction θ is defined as a set of derived numbers ζ of the function F that satisfies the following condition: For every open set U containing w, the set $[F^{-1}(U)]_{11}(\theta)$ contains the point x.

^{*} For the definition of monogeneity set of a given function at some point of its domain of definition, see [1].

[©] F. M. DIAB, 1997

For a fixed direction ψ , $\psi \in (0, \pi)$, let $\theta(x)$, x = Re z, $z \in H$, denote the set of all directions $\theta \in (0, \pi)$ in which the directional monogeneity set of F at x in direction θ does not contain the qualitative directional monogeneity set of F at x in direction ψ .

Let $\Delta(x)$ denote the set of all directions $\theta \in (0, \pi)$ in which the directional monogeneity set of F at x in direction ψ does not contain the qualitative directional monogeneity set of F at x in directional θ .

It is known [12] that if F is a continuous function from H to a topological space W with a countable basis and $\psi \in (0, \pi)$ is a fixed direction, then for every $x \in R$ except a first-category set of measure zero on R, the set

$$\{\theta: 0 < \theta < \pi, \text{ Ess. } \mathfrak{M}_{r}(F, \psi) \not\subset \mathfrak{M}_{r}(F, \theta)\}$$

is of the first category. If F is measurable and $\psi \in (0, \pi)$ is a fixed direction, then except a set of measure zero on R, the set

$$\{\theta: 0 < \theta < \pi, \text{ Ess. } \mathfrak{M}_{x}(F, \theta) \not\subset \mathfrak{M}_{x}(F, \psi)\}$$

is of measure zero.

2. Results. Let $E \subset H$ and $x \in R$.

Let

$$O(E,x) = \left\{\theta \colon \ 0 < \theta < \pi, \ x \notin \overline{E \cap L_{\theta}(x)}\right\}.$$

For a fixed positive integer n and rational $r, s, 0 < r < s < \pi$, we also define

$$O_n(E, x) = \{\theta : 0 < \theta < \pi, E \cap L_{\theta}(x, n^{-1}) = \emptyset\},\$$

and

$$O_{nrs}(E, x) = O_n(E, x) \cap (r, s).$$

Then, clearly,

$$O(E, x) = \bigcup_{n} \bigcup_{r} \bigcup_{s} O_{nrs}(E, x).$$

We quote below the Kuratowski-Ulam theorem in polar coordinates [2].

Theorem P. If $E \subset H$ is a plane set of the first category, then for a fixed point $x \in R$, $L_{\theta}(x) \cap E$ is a linear set of the first category for all directions θ except a set of the first category in $(0, \pi)$.

We now prove the following statement.

Lemma 1. If $G \subset H$ is open and $P \subset H$ is a set of the first category, then for every $x \in R$ there exists a set of the first category $Q(x) \subset (0, \pi)$ such that

$$O(G\Delta P, x) \subset O(G, x) \cup Q(x).$$

Proof. Let

$$Q(x) = \{\theta : 0 < \theta < \pi, P \cap L_{\theta}(x) \text{ is of the second category in } L_{\theta}(x)\}.$$

In virtue of Theorem P, this implies that Q(x) is of the first category in $(0, \pi)$. Let $\theta \in O(G\Delta P, x) \cap CO(x)$. Then there exists a positive integer n such that

$$L_{\theta}(x, n^{-1}) \cap (G\Delta P) = \emptyset \tag{1}$$

and

(2)

$$P \cap L_{\theta}(x)$$
 is of the first category in $L_{\theta}(x)$.

In virtue of (1) and (2) and the fact that G is open, we have

$$L_{\theta}(x, n^{-1}) \cap G = \emptyset.$$

Hence, $\theta \in O(G, x)$ and

$$O(G\Delta P, x) \cap CQ(x) \subset O(G, x)$$
, i.e. $O(G\Delta P, x) \subset O(G, x) \cup Q(x)$.

Lemma 2. If the set $E \subset H$ has the Baire property and $\psi \in (0, \pi)$ is a fixed direction, then the set

$$B = \{x : x \in E_{11}(\Psi), O(E, x) \text{ is of the second category in } (0, \pi)\}$$

is of the first category in R.

Proof. Let $E = G\Delta P$, where G is open and P is of the first category. Clearly,

$$E_{11}(\psi) \subset G_{11}(\psi) \cup P_{11}(\psi). \tag{3}$$

It follows from Lemma 1 that, for every $x \in R$, there exists a set of the first category $Q(x) \subset (0, \pi)$ such that

$$O(E, x) \subset O(G, x) \cup Q(x).$$
 (4)

Let

$$A = \{x : x \in G_{11}(\Psi), O(G, x) \text{ is of the second category in } (0, \pi)\}.$$

Let $x \in B$. Then O(G, x) is of the second category. By virtue of (3), we have $x \in G_{11}(\psi)$ or $x \in P_{11}(\psi)$. In the first case, $x \in A$. Thus,

$$B \subset A \cup P_{11}(\psi)$$
.

The set A is of the first category by Lemma 1. The set $P_{11}(\psi)$ is of the first category in virtue of the Kuratowski-Ulam theorem [3, p. 56]. Hence, the set B is of the first category.

Let W be a second countable topological space and let $\psi \in (0, \pi)$ be a fixed direction.

Theorem 1. If $F: H \to W$ has the Baire property, then, for every $x \in R$ except a set of the first category in R, the set

$$O(x) = \{\theta: 0 < \theta < \pi, \text{ Qual. } \mathfrak{M}_x(F, \psi) \not\subset \mathfrak{M}_x(F, \theta)\}$$

is of the first category.

Proof. Let $\{V_n\}$ be a countable basis for the topology of W.

Let

$$B_n = [x: x \in E_{n+1}(\psi), O(E_n, x)]$$
 is of the second category in $(0, \pi)$

and let

$$D = [x: O(x) \text{ is of the second category in } (0, \pi)].$$

So, if $x_0 \in D$, then, by (4), there is at least one n_0 such that $O(E_{n0}, x, \psi)$ is a second category set. By the definition of $O(E_{n0}, x_0, \psi)$, x_0 belongs to $E_{n011}(\psi)$ and the set $O(E_{n0}, x_0)$ is of the second category. Therefore, $x_0 \in B_{n0}$. Hence,

$$D \subset \bigcup_n B_n$$
.

$$S_n = \{x: x \notin \overline{L_{\Psi}(x) \cap E_n}, K(E_n, x) \text{ is of the second category in } (0, \pi) \}$$

and let

$$T = \{x : \Delta(x) \text{ is of the second category in } (0, \pi)\}.$$

So, if $x_0 \in T$, then $\Delta(x_0)$ is of the second category in $(0,\pi)$. Hence, by (13), there is at least one n_0 such that $K(E_{n_0},x_0,\psi)$ is of the second category, and so, by the definition of $K(E_{n_0},x_0,\psi)$, $x_0 \notin \overline{L_{\psi}(x_0) \cap E_{n_0}}$, and $K(E_{n_0},x_0)$ is of the second category. Therefore, $x_0 \in S_{n_0}$. Hence,

$$T \subset \bigcup_{n} S_{n}$$
.

Since the sets S_n are of the first category for all n, by Lemma 4, the set T is of the first category. This prove the theorem.

- Trokhimchuk Yu. Yu. Continuous mapping and conditions of monogeneity. Jerusalem: Scientific Translations, 1964.
- Layek A. K., Mukhopadhyay S. N. On directional essential cluster sets // J. London Math. Soc. 1977. – 15 (2). – P. 489–496.
- 3. Oxtoby J. C. Measure and category. New York etc.: Springer, 1971.
- Wilczyński W. Qualitative cluster sets // Colloq. Math. 1974. 32. P. 113–118.

Received 30.03.93