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1. Introduction. Let X be a real reflexive Banach space and let X~ be its dual
space. For the sake of simplicity, norms in X and X * are denoted by the same

symbol ||| Let A: X=X * be a continuous operator satisfying the condition
<A(x)_A(y)ax_y> 2 mA”x_y“s anJ‘EX; mA>0) (1)

‘where se B, 1<s< +w,. and the symbol (x* x) or (x, x*) denote the value of the
linear and continuous functional x* € X™ at the point x€ X.
Consider the variational inequality: find an element x such that
{A(xp).x—xg) 20 VxeS8; xge S, : 2

where S is a convex and closed subset of the space X. Condition (1) guarantees the
existence and uniqueness of a solution x, of (2) for an arbitrary convex and closed
subset Sq [1,2]. In the case where S is the set of solutions of the operator equation

. F(I):f(}, f[}EX*’ (3)

with a monotone operator F from X into X* (see definition in [3]), problem (2) was
studied in [2, 4-7]. Itis well known [8] that problem (3), without additional conditions
on the structure of F such as strong or uniform monotonicity, is ill-posed. By this we
mean that solutions of (3) do not depend continuously on the data (F, f). Therefore,
problem (2) in this case is also ill-posed. In numerical computation, we often know
approximations (Fy, f5) of (F,fy) such that

1FE)-Fu)ll < hg(llxll) VxeX, |lfs—foll <8 h&—0 &
where g (#) is some real continuous and positive function. Assume that
g() < @+ b|t]*, 0sp<s—-1, a=0, 620, a+ b >0,

and F), are continuous, but they are usually non-monotone. Then, the sets of solutions
of the equations

Fy(x) = f5,
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Fp(x) + 0A(x) = f5, o>0

(the last equation is used for construction of regularized solutions in the cases where
Fy=F or F; are monotone [8, 9]) may be empty. Even in the case where these sets
are not empty, they may not be a good approximations for the set S,. What should be
done for finding an approximate solution for (2) and (3) in this situation?

The main aim of this paper is to answer this question. - In' Section 2, applying the
Liskovets approach [10], we study a method for regularization and establish the
convergence rate for the regularized solutions. In Section 3, the convergence rate is
presented in combination with finite-dimensional approximations of the space X. An
example is given in Section 4 for illustration.

Below, the symbols — and — denote the strong and weak convergence for any
sequence, respectively.

2. Convergence Rates for Regularized Solutions.

Definition [10]. An element x,, ©® =w(h, o, 8,€) in X is called a

regularized solution of (2) and (3) if
(Fp(xo)- 0A(xo)—f5: x—x0) + e8([[ X0 ) Ix -2l 20 VxeX, (5

for every fixed e2h>0, oo>0, and §=0.
We have the following result:
Theorem 1. For each h, o >0,820, and €2 h, the set S, of solutions of

the variational inequality (5) is not empty, and the set { x )}, where the element
Xy € S is arbitrarily chosen, has only one strongly limit point xo if &/0. and

ge/oo— —0 as x— 0.
Proof. First, we prove that S, # @. Indeed, since the equation F(x)+ oA (x) =

= fg has the solution x5 forevery o> 0 [2], we have
0= (F().'aa)-kCCA(xas}—fa,I--Ia5> <
< (Fu(xop) + 0A (xos) = f5, X = Xqp) + €8 (I x5 1) 1 x~xq5ll 2 0 Vxe X,

ie., xg5€ Sp. Let x,, @=w(h, 0, d, €), be an arbitrary element of S, for every '
fixed e2h>0, >0, and §>0. We prove that the set {x,} is bounded. It
follows from (1), (3)—(5) and the monotone property of F that

) mA”x~xm||'? < (A(x)—A(xm),x—xm> <
< (A(x), x—x4) +'§g(|lxmll)llx—xmn + é(Fk(xm)—fa,xmxm) <
< (A(x), x—xq) + o+ (h+e)glxl) (h+8)g("x‘°n)]1x—xm]| VxeS,. (6)

o

Since [+ 1<s, the last inequality, the properties of g(¢), and the conditions of this
theorem guarantee the boundedness of {x,}. Since X is reflexive, there exists a
subsequence of {x,} converging weakly to an element of X. For simplicity, we

write x,— X. We prove that % is a solution of the stated problem. It easily follows
from (5) that

(F(xo)+ aA(xg)~f5, x=x4) + (h+€) g (|| xol) | x=xoll 2 0
VxeX, e2h>0, >0, and &2=0.

By virtue of the monotone property of F and A, we get
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(F(x)—Fo x—Xg) + 0lA(x), X% +
-+ G rre)g(llxelD)lIx-x0ll 20 VxeX
By passing to the limit in this inequality as 0, &, and o — 0, we obtain
(F(x)-fpx—%) 20 VxeX
By virtue of the Minty lemma [3], X € Sp. It foilows from (6) that
(A(x),x-%) 20 Vxed,.

In this in.equality, we replace x by tx+(1-£)X, te (0, 1), anddivide then the
obtained inequality by ¢. Then, by passing to the limitas ¢t — 1, we also get (2), i.e.,
X 1is a solution of the stated problem. Since this problem has only one solution
(because A satisfies condition (1), i.e., A 1is uniformly monotone), the entire set
{x} has the strongly limit point ¥ and % =x,. Replacing x by x, in (6), we can
conclude that the set {x,} has one strongly limit point x; as &/c, €/c, and
o —0. _

If A is a dual mapping of X, ie., (A(x) x) = [[A@®]| || x] = lIx]®, s=2,
xe X [8], then A also satisfies condition (1) for most cases of X [11] and our
problem has the following form: find a norm-minimal element xq € Sy. The Tikhonov

regularization in the infinite-dimensional space X for this particular case is considered
in [8-10], but, the question about its convergence rates was not mentioned. The
answer is contained in the following result:

Theorem 2. Suppose that the following conditions are sansﬁed
(i) Fj, are Fréchet differentiable in some neighborhood Ug of xg, s—1
times if s=[s], [s] isthe integer part of s, and [s] timesif s+ [s],
(ii) there exists a constant L >0 such that
[ 5P xo) - ERO)| < Lllxo-yll Vyel,
k=s—1if s=[s], k=[s] if s#[s)], andif [s]123, then

F,fz_’(xoj =...= FB(xy) =0,
(iii) there exist elements z, such that F,'(xg)zp,=A(xg) and if s =[s],
then L||zpll <mys!.
Then, if o is chosen so that o.~ (8 +¢)?, 0<p<1, we have °
| 2g—xoll = O((8+¢)°%), 6 =min{(1-p)/(s—1),p/s}.
Proof. By virtue of (6) and condition (iii) of this theorem, we can write

s < [5+(h+§g("x"’ﬁ)ﬂx®

30+ (e )50 — 7)) )| [
In the case s=[s], since F , are s — 1 times Fréchet differentiable at x; and

FP(x) =...= B x) = 0, |

Il xo—xoll

we get
Fy(xg)(xg—xq) = Fr(xq) — Fp(xq) + 1

with
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lroll € Lllxg—xll*/s.

Thus,
[ x—xqll* < ( M’.L?;SM |2 —xoll +
+ (2 Fi(x0)=Fy(x0)) + Lzl ""m—;fﬂ) /m,q.
Therefore,

E 3 8+ (h+ * ¥ 5
(1ot Jlxa-sol s (LMD o o

+ Nzl 3+ heCllxoll)) + (z 5= Fitxa)) ) [ma
Replacing x by x, +z, in (5), we obtain

(Zh’ fs“Fh(xw» & Eg(lixmll) ”zh” + [)L(A(xm),. Zf:)-
Finally, we get

L s (84
(1= bl flxg sl < (280D

+ llzall G+ hellxoll) + sg(lxall) + G ) fma. D
Using the: relation [12]
a’” < ba?' +c = a’ = O(b"/(p-q)+c)
for a,b,c¢>0 and p >¢g>0, and the local boun&edness of any hemicontinuous
monotone operator, we obtain
lxo-xoll = O((8+2)°).
If s#[s], then .

1
”rm” = |Jxm'—x0”[”+ .

o il
([s]+D)!
In this case, the lefi-hand side of (7) has the form

[1 L
my([s]+ 1)

Since || x,—xoll = 0 and [s]+1—s5>0, we obtain

uzhnuxm—xol|m+"*]||xmfxoll‘.

L . -
1— _ [6]+ 1= o 1 L
e -l /

for sufficiently small ct. This remark completes the proof of the theorem.
We mention that all conditions on F), in this theorem can be imposed on F, i..,
this theorem remains valid if we omit the index A in F), and z;

Let us consider the problem of finite-dimensional approximations for (5).
3. Finite-Dimensional Approximations. The variational inequality (5) can be
approximated by the sequence of finite-dimensional inequalities
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(B (o) + 0a"(x0) = ', " = xa) + eg (| ]) | =" - =] = ®)
Vxne X, e2h, a>0,
where F' = P,F,B, A,= F,AR, f= Rffa, P, denotes the linear projection
from X onto its subspace X, satisfying the condition

X,CX Px—X, n—o+o VxelX,

n+ s

Pt

n

is the adjoint of P,, ||P,]|<C, and C is a positive constant. By Theorem 1,

nw

there exists x/, satisfying (8) for every o>0. -
Now we establish whether

hm xf = xp
o,h,8—0
n—3+teo

and its convergence rates.

Obviously, the answer to this question depends on the relation between h, o, €, 6,
and n. In this section, applying the 1dea of W. Engl and C. Groetsch in [13], we give
an answer to this question.

Theorem 3. Assuming that the following conditions are satisfied:
(i) if F is Fréchet differentiable in some neighborhood Oy of Sg, s -1
times if s =1[s] ([s] is the integer part of s), [s] timesif s # [s], ' )

(ii) there exists a constant L >0 such that
| FO@)-FRO) < Lllx-yll YxeS, ye O,
k=s=11if s=[s], k=[s] if s#[s)], andif [s]123, then
FAx)=...= F®x) = 0,
(iii) ao=o0(n)— 0 so that
(@) + I d-PYx"Na! 50 Vxes,
as n— +eo, where v,(x) is defined by

Yulx) = ||Fl(x)(f—-P__,l)x||‘

Then x is a strongly limit point of {xé;}
Proof. 1t follows from (8) that, for each x € Sp,

oy |y - =)° <
< eg(l =3 N I x§ —x"Il + o{A"(x"), x"= xi3) + (B (x) — Ao x" — x§ ).
Thus,
amy |l xg —x"|I" < eg (Il xi 1) I x — ="l + (A ("), x"— xp) +
+ (Fh(xa;)—-F(x’a‘,)+F(xg)—'F(x")+F(x”)—F(x)+f0 - fi, x" -x§,). ©)
Since , '
|5:(x6) = F(xp)] < Rell x5 1),
(F(x{,‘,) — F(x"), x" —-x,jg) <0,
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it follows from (9) that
amy ||xp —x"||* <

< ((h+ o)l 1) + 8 + | FeD - F)) I xp—x"|| + oA"Y, x"-

If s =[s], we can write .
F(x") = F(x) + F'(x)(x"-x) + 1,
with ;
L
Il < Sla-PxI
Therefore, it is easy to see from (10) that

I =" < —— ((e+ Mgl 541D + 8 + | F'(x)(r = P)xll+

1
. Ctmy
" ﬁ-u (I-P,)x II‘")II xg—x"|| + (A", 2"~ x5} /my Vxe Sy

Obviously, this inequality, the property of g(¢), and condition (iii) of this tt
- guarantee the boundedness of {xy}. Therefore, there exists a subsequence of
that converges weakly to some element x,. For the sake of simplicity, we

Xy —> %, a8 n—> +eo and §, o, € = 0. It follows from (8) that
(Fx™ —f5, x"= x5) + a{A"), x"- x3) + (h+&)g(ll xg ) | x" - xg || 2

After passing to the limit as n — +e and o, 8,&—> 0 in this inequali
continuity of F and the weak convergence of {xu} give

(F(x)=fpx-x;) 20 VxeX

By the Minty lemma, x, € S;. Replacing x" by x{' =P x, in (11), we see t
set {xgu} strongly convergesto x,. On the other hand, from (11), we also obtz
inequality

(A(x), x-x;) 2 0 VxeS,.

The last inequality yields (2). Then x, =x, and the entire set {xy} converges
If s# [s], we have

L. 1
7l < | (7-P)x||WL,

([s]+1)!
In this case, on the right-hand side of (11), we have [s]+ 1 instead of s. This 1
completes the proof of this theorem.
Now, we answer the question about the convergence rate for {x}.
Theorem 4. Suppose that the following conditions are satisfied:
(i) conditions (i), (ii) of Theorem 3;
(ii) there exist a positive constant d and an element z such that

1A -AGQll < dlx-xl', 550 VxeU, F*(xp)z = Al

and if s =[s), then L| z||<s
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172

(iii) o is chosen so that ot~ (e+d+7Y,) °, where

¥, = max{|| (I = P)xo|l. | (" = BN S, Il Il 7= Pz ]I}
Then ' * : o

n 1/2 -7 = ; 5 ]
5 =ml = Ofawa)" i), 7= “““{E a*}

Proof. It follows from COl’ldlthi’l (ii), that, for sufﬁmenﬂy Iarge n w1t‘n xy € GIL'C,,

(A (x0), x5 — xg ) d'yH”.xo -—x’m II + (A(xo), xp —xm>,

Thus, in the case s = [s], inequality (11) with x=x, has the form

x5 | . (Alxg), xG — xp

my

|6 -x | < 0(8+5+v,,+vi+vf;)” L (12)

It is easy to see now that, in this case,
(Alxg), x5 — xty) '= {2, F* (xo)(xo ~xg)) + {2 F'(xq) (xy— xi3)) <

< 0(y,) + (& Fxp) - F(xb)) + = Lz [l-2f 1%

| xt —xoll* = |t = + 0Cv,)

and : :
(2 F(xo).—.F(x::,D =
= (a.fo=fs) + (a.fs=Filxo)) + (& Filxg)= Fi(0)) + (& Fylxp) = F(xg)) <

< 0(8+h) + alz, A(xy)) + eg(llxl) 1zl + (2 Fy(xy)= Fi(xp))-

We estimale

(& Fiulxo) = Fylx)) = (@ Filxo)= "(xéé)) + (o Fy'(xp) = Fy (%)),
where '
(o B(xb) - Fi(=h)) = <(Pn Dz Fla) <
< Yall Gl < Y,,!lﬁx(xm)f Flxp)ll + Il Fex) Il = O(y;)
and t ' ' ' 7

(Z, Fh(x- )= )) = (Z, Fh(xm)> + (Z, l(xé:))>
ch]acmg x in(5)by x,—z we gct ' #

(2, Fy(xy)) = (o f5—0A(xg)) + eg(llxol) ll 2l
On the other hand,

(B () = (e~ BP ().

Then replacing x" by z"+ xJ, in (8), we obtain
(2", - F'(xg)) < (" 0A"(xg) — ) + eg (I =G )1l "Il =
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= (z, aA"(xEé)_—'fa”)-+ eg (|l X’céll) IIZ’-‘II-
Therefore,

AN

(z, Fp(xy)- ;,‘(xé.;)) (z,f5— A (x )+aA"(x) fg‘>+0(e)s

< O(e+8+a) + (z.fo— fy) = O(e+8+ 0’-1’;;)-

Hence, (12) can be written in the form
B N L AT
(]_m,ls! "xm_—xoll -

< O(B%é+7"¥ Yi +'aw(ﬁ)ﬂ—;f9-ﬂ & O((e+6+~(”)”2).

Then .
=6 - <

< 0((e+8+7,) 2+ 1%+ vi) |G — x| + O((e+8+7,)"%).

Applying again the relation in [12] to the last inequality, we obtain

| xa — x§ | = o +8)11% 1 D).

Therefore, - :

| 2 —xoll = OC(e+8)""%+ 7%).

The case s# [s] can be proved b); analogy with the proof of Theorem 1.
. 4. Example. Consider the eigenvalue problem: find an eigenfunction ¢y#0 for
an eigenvalue A, of the problem K,¢=A,K,9, where K;, i=1,2, are the
operators defined by measurable kernel functions k;(t, 5)

(K 0)t) = [ kit 5)(s)ds;
Q

[[ 1kt )| deds < +eo, 1< g<+es,
QxQ

and Q is a bounded and closed subset of IE", the operator F=K,-AK, has the
domain of definition X=LP(Q), p~'+¢7'=1, and the range in x* =Lq(Q).
Suppose that F is nonnegative, i.e., (F@,@)20 and ¢, is chosen so that it

minimizes the functional (Bo, ¢)/2+ | @ —¢* |[1 @/ 2<s, where ¢* isnotan

t !
eigenfunction for the eigenvalue A, and B is a linear selfadjoint bounded
nonnegative operator. : '
In this case, A+ B+ U’, where U’ is the dual mapping of LP(Q) satisfying the

condition
Since o B

Ut en-v' @, g = €191 =021z, )

ISSN 0041-6053. Ykp. sam. sypi., ] 997, m. 49, Nt 5



CONVERGENCE RATES AND FINITE-DIMENSIONAL APPROXIMATION FOR A CLASS ... 637

where C,(R) is a positive increasing function of R = max{llcplﬂL @y
||(p2||L (Q)} we have d=||B||+ C,(R). If p=2, then s=2, m, =1, C, (R)—l
and, furthermore [11], :

l<p<2: s=2, my=p-1, C/(p) = p2Ar-d grpp-l,
e =max{2%2p}, 1<L<3.18, §=p-1,
2<p: s=p, my=2>"/p,

C (p) = 27pP*{p[p-1+max{p,L}]}!, §=1.

Moreover, F. is smooth with infinite order, and Fk(q)) =0 for ¢ e S, In this case,

So

me

is a subspace generated by eigenfunctions for the eigenvalue A

Remark. The condition L||z||<1 in [13] can not be omitted for the variational
thod of Tikhonov regularization. But, in this case, if s# [s], the condition

Lllz||<mys! is not necessary. This is also a great advantage in using the operator

version of Tikhonov regularization for solution of nonlinear monotone iii-posed
problems.
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