UDC 517.9 =
W. I Skrypnik (Inst. Math., Ukr. National Acad. Sci., Kiev)

EQUILIBRIUM IN QUANTUM SYSTEMS OF PARTICLES
WITH MAGNETIC INTERA CTION.
FERMI AND BOSE STATISTICS*

PIBHOBATA B KBAHTOBHUX CUCTEMAX ‘-IACTPIHOK
3 MAT'HITHOIO B3AEMO/IIEIO.
CTATHUCTHKA ®EPMI, BO3E

Quantum systems of particles interacting via an effective electromagnetic potential with zero electro-
static component are considered (magnetic interaction). It is assumed that the j-th component of the ef-
fective potential for n particles equals the partial derivative with respect to the coordinate of the j-th
particle of “magnetic potential energy” of n particles almost everywhere. The reduced density matrices
for small values of the activity are computed in the thermodynamic limit for -dimensional systems with

short-range pair magnetic potentials and for one-dimensional systems with the long-range pair magnetic
interaction, which is an analog of the interaction of three-dimensional Chern—Simons electrodynamics
(“magnetic potential energy” coincides with the one-dimensional Coulomb (electrostatic) potential

energy).

PosrnsipaloThea KBaHTOBI CHCTEMH YacTHHOK, 10 B3aeMOJIIOTL 32 fonoMorolo edheKTHBHOIO efiek-
TPOMAarHiTHOro NoTenialy 3 HyJILOBOIO eJIEKTPOCTATHYHOIO KOMIMOHEHTOI0 (MarniTHa B3aeMopis).
ITpunyckaernes, o j-Ta KOMIIOHEHTA eDeKTHBHOrO MOTEeHI{ay n YacTHHOK 36iraeThes 3 4acTHH-
HOIO NOXi/[HOIO 32 KOOPAMHATOIO f-1 YACTHIKH , MaruiTHol noTenniansuoi edeprii” n 4acTHHOK mati-
2Ke ckpisb. OGuHC/IeHO peflyKoBaHi MaTpHI IYCTHHH B TEPMOAHHaMiuHi# rpaHuIi NpH MaJIHX 3HAYEH-
HfX aKTHBHOCT] YaCTHHOK )11 o -BUMIDHHX CHCTEM 3 KOPOTKO/IIOUHM [IaPHHM TIOTEHLiaIoM B3aeMopil
Ta O/IHOBHMIDHHX CHCTEM 3 JIalIeKOCKHOIO MarHiTHOIO B3aeMojlielo, KA € aHANIoroM B3aemMopii y 3-
BHMipHiH enekTpoguHamini Yepna—Cakmonca (,,MarHiTHA NOTeHIliaILHA eHepris” 36iraeThes 3 ofHOo-
BHMipPHOIO KYJIOHIBCLKOIO (€JIEKTPOCTATHYHOIO) TIOTEHLIAIEHOIO eHeprielo).

1. Imtroduction. The quantum system of n d-dimensional particles with magnetic
interaction can be defined by the Hamiltonian of a system of n charged particles
moving in the electromagnetic collective (effective) field characterized by the vector

potential a;(X,) depending on the position vectors X, = (X, ..., X,),

= (xl-,...,xj-"}, from the dn-dimensional space R™ We assume that a singularity
of the function appears only if the Euclidean distance between particles vanishes. Then
the initial Hamiltonian H, as a symmetric operator defined on C (Ing‘]) ;

d
d d d)
R = URY, RY =R"\{J,, Gi=x),
v=1
is given by

= 13 (-, (X)), )
2
j=1

d
hoc 2
=i, () = 3 (-4
, =

and 0; is the partial derivative in x;.

The motivation to study such systems appeared recently when it was realized that
such systems can be derived in 3d topological or Chern —Simons (CS) nonrelativistic
electrodynamics. Then vector potentials a; are given by a skew partial derivative with

" respect to x; of the Coulomb potential energy of a system of »n charged particles [1].
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It is believed that the system with Fermi statistic can describe the phenomena of high-
temperature superconductivity [2, 3] and there are phase transitions [4, 5]. Thereis a
nontrivial problem of description of equilibrium states for such systems in the thermo-
dynamic limit for the case

a(X,) = 5 a(x;—x). ' @)

ke(l...j=Lj+L...n)

For such classical systems, thie grand partition function coincides with the grand parti-
tion function of the free particle system, but the Gibbs (grand canonical) correlation

functions are easily computed only in the case of short-range interactions (a(x) is an

integrable function). The existence of functions for long-range magnetic interactions

(a(x) is not an integrable functions) is an open problem (C-S interaction is long-

range). We showed [6] that, for the classical C-S system in the mean-field type limit

(the thermodynamic limit transition is performed simultaneously), the correlation

functions converge to functions that depend only on the momenta of particles and do

no factorize into a product of one-particle correlation functions. In the quantum case,

the situation is more complicated. Up to now, there are no results concerning the

existence of reduced density matrices (RDMs) even for the short-range magnetic

interaction with general pair vector magnetic potential a(x). Substantial simplification -
is achieved if :

ai(X,) = JUX,), X,e R, 3)
UX) = Y, ob—x),
1Sk<j<n

where @ and U can be multi-valued functions. It is remarkable that the C-S
interaction allows such the representation for its vector potential with U and

2
x
Qcs(x) = arctan g x=(x!, x?.

For such systems (quasiintegrable), the following equality is true:

H, = exp {iU} H® exp {-iU}, 4)
where U is the operator of multiplication by U(X,), H® = —A,/2, A, is the
dn-dimensional Laplacian restricted to  Cp’ (]R[“E‘]) It is obvious that there exists the
following operator H, with the domain D (H,) = exp {iU} D(A,), which is the self-
.adjoint extension of H,: :

H, = exp{iU} H® exp {~i0}, H° = —% A,. )

n

In the case of this extension, the grand partition function for the Maxwell — Boltzmann
(M-B) statistics coincides with the grand partition function of the free particle system.

Moreover, if the magnetic potential is short-range, the RDMs p(X,,|Y,,) for the Di-
richlet boundary condition are easily computed in the thermodynamic limit [7]. For
long-range magnetic interactions, it is difficult to prove the existence of RDMs in the
thermodynamic limit. But in the one-dimensional case, there is an exceptional system

for which RDMs p (X,,|Y,,) can be found in the limit for M-B statistics. It is defined
by U-expressed as the Coulomb potential energy of a system of n charged particles.-
We established that RDMs are nonzero in the thermodynamic limit if x;—y; sitona

lattice [7]. In this paper, we confirm this result for RDMs P4(=y(Xp|Y,) for the one-
dimensional system with Bose (Fermi) statistics and the above selfadjoint extension
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with the Dirichlet boundary condition. We also find the expression for the RDMs for
d-dimensional system in the thermodynamic limit for short-range (integrable) magnetic
potential. We utilize Ginibre’s loop ensemble in deriving our results [8]. Our paper
consists of two sections. In the first section, we formulate the results and, in the second

one, we give the proofs.
2. Main results. Let us consider the system with magnetlc interaction that satisfies

conditions (2) and (3) in the compact domain A and the Dirichlet boundary condition.
An analog of Hamiltonian (4) is the Hamiltonian H,,

H, 5 = exp{iU} H? , exp {~iU}, (6)
where _
HJ:A __lAnA* ’
5 2n

A, a is the dn-dimensional Laplacian with the Dirichlet boundary condition on the

boundary of the démain A”, which is the n-fold Cartesian product of the domain A.
The RDMs of the systems with the Fermi (\e=—,e==1) and Bose (\e =+,&=1)
statistics are givén by

p\B(X | m) -

n
=8 S5 [ax; Y ™ (exp (~BH, AN (X, Xpi (Y, X2),  m>0,

I
nz0 n: Al TESysm

Q)

where S, is the group of permutations of n elements, |7 | is the signature of the

permutation m, (exp{-BH, 5})(X,;Y,) is the kernel of the strongly continuous
contraction semigroup generated by the Hamiltonian, E,. , is given by the numerator
on the right-hand side of the above equality for m=0. :

Lemma. RDMs p‘\“‘a( |AY) in the compact domain with Hamiltonian (6) are
given by
ple (Xul¥n) = exp {ilU(X,) ~ UG} PR (Xins B) exp {Ge (XY,
' )]
where

Jd=l..] 3
Xul¥n) = X, == [ dx [ PIB.(dw) 35 (@) X
ji=0 A

m j

x [exp {i 2 > (9x —o(kB) - cp(ypm(kﬁ)))} = 1} ©)
k=1s=1

Pj: % (dw) is the Wiener measure concentrated on paths starting at the initial moment

from x and arriving at y at time jB, % A(®) is the characteristic function of

paths that do not intersect the complement of A.

PR XnlY) = 3, Hp“‘“(leyp, (10)
nes, j=1
p?‘;"(xly) = Y 7' [ B (do) x4 (@).
j=0
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Theorem 1. Let
lolg = [lo@ldr < .

Then for |z| <1, there exist limits of pO(A) and G{\g as A —> R d, denoted by
p\ e and G\, respectively. The latter are found from equations (9), (10), by sub-
stituting R for A inthem. RDMs in the limit are expressed as follows:
p\e(Xm IYm) = exp {I[U(Xm) B U(Ym)]} p?e (Xm |Ym) exp {G\e (Xm |Ym)} - (1D
Theorem 2. Let d=1 and

U(x,) = o E Ixj—xkl‘
I1sk<j=n

If |x—y;l e 2no~' 2, then RDMs in the thermodynamic limit are given by
p\E(Xm | Ym) = exp {E[U(Xm) = U(er)]} P?.a (Xmi Ym) CxXp {G\E (Xm [Ym)} »
where
Gulkal¥r) = 3 E-F [ ax [ BIf (dw) x
J >0

X i Z H Aa=,a*1 (CD (QB)) X

k=1(eenle) €(Lerond) g€ ennly)

X {?xP {fko i i (Ix; — 6B - 1; —CD(sB)I)} o= 1}, (12)

k=] yg=]

a- =min(X.,¥.), a°=max(X,,¥.),
and for |z|<1/2,

2z) at—a

@2z)
|G\E( IYm)l = 2 3;2 (2 B)l_zg'

_;>0

If the above differences do not belong to the lattice, then the RDMs are zero in the
thermodynamic limit.

3. Proofs. Our proofs are based on the transition to the loop ensemble introduced
by Ginibre [8, 9]. In order to derive the results, one needs to make twice a
resummation (equations (14), (17)) and use relation (16). For the convenience of the
reader, we follow all the steps of Ginibre’s method. The proof of equahon (14) can be
found in [8]. We start from the obvious cquahty

(exp {-BHp AD(X,i3 %) = g
= exp {ilUX,) - U@} [ P 5 (d,) xa (@),

where

PX , (dcn(u)) = H x}yj(doa_,-), Oy = (O, ..., 0,),
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% @) = TT 24 @))-

ji=1
Substituting this equality into (7), we obtain

n+m . *
PheXm Yo = Eiap X, 5 [ dX; [ exp {BIUXp, X7) = U Ty, X1} X
, ) _

nz0 n!
x. ¥, " EP&,, 1, X5 (AP (m) A0)) XA @y » D)) - (3)
“ESm+n

In order to redefine the right-hand side of (13) we have to use the combinatorial for-
mula proved by Ginibre ([5], Lemma 2.1)

de' ,[ p o e” IPX XY, x;) (@0 d0y)) =

T:ES]I-I-III .
<] = ST (enelm
r=0 [Ty l=m=n—r
J .
x-[ X &Py o) X, PR e (doty), 14
"LES, nes,

where
m
& il mndad Il 35

This relation yields
PReulty) = 3 ™ 3 dnlmm Bl (dog) pg @), (15)

m
TES, I €0

where (W (X,|X.) = U(X,,, X,) — U(X.))

PRe(@um) = Eia exp {ilUX,) — U]} xa (@) X

n.+m

J 7 exp {ilW (X, 1X7) = W(E, [ X1}

2
XJ- z L Pﬁ,’..ﬂxé (dwny) XA (@(n)) -
neS,

From the definition of the Wiener measure, the following equality is obtained for a
symmetrical function F:

n
[ ax; P TT BR (x5 x5-) B Gens %)) =
A j=2 .
= [ dx [ PR (do) F(@®),....0(nB)) %A (@) (16)
A
Every permutation in S, is a product of cycles. Let &; be the number of cycles of
length j, ie., z jd; = n. One can decompose S, into nonintersecting subsets
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(conjugate classes) described by different {8};, j=1,..., n. The number of elements
in the class denoted by & is given by the number (85, n),.

h(& n) = nrl‘[ﬁfsj b {8y ned BEN
Jj=1

and all compments of the sequencc & are nonzero. From the last equality and equa-
tion (16), representing the sum over S, as a sum over cycles, we obtain

PRe(@um) = ETL 4 exp {ilUX,) — U]} x

x Y zZdetn fH(s Vil e jdxj Pyt X,(dm())ez-’* 251 X
;)

X H exp {I[W(mea)is) (B)) - W(leézr) (B))]}XA (m(m)’ mzn)) ’ (1?)
s=1
where _
By = (0B, .... 0GB)), D8 =71, D jx= 2 8 =n,
' k=1 ' :

and the summation is performed over all finite families of integers & such that & ;i is
not zero only for finitely many values of j and all n (in the sequence (j|B, ..., J.B)

) the value j occurs tSJ- times) .. We now pass to the summation over (jj,...,J,). Itis
clear that

r LI o r

I =115 Xi-X8=2% G-
i g .oe=1 7 k=] k=1

Since the number of decompositions of the set (1,...,n) into k subsets with

: : n! i e
ny, ..., n, elements is equal to e, it follows from the symmetricity of the

function F that

Y. Y Flhaud) = 3 T1 G0 Pl )

nz0 jiu.,f, 20 : {81} i

where j, and 8, arerelated as above. The resummation yields

e (@pmy) = 278! xp (@(my) xp (iU (X,n) — UE)I}ETL , X

R 2 IS

R20 flreefy 201

ZJ: eJ"

.[ Xy, .[ PJ,’:'?X;‘ (do(yy) %A (@) X
A"

X ]‘[ exp {i[W(X,,|®(y) — W (¥, |01} =

y=1

= 2l ) (@) exp (iU (X) — UEIT}ETL A X

% exp{ > ef7'2d [ dx [ PP (dw) exp i[W(X,,|®; (B)) -

jzl A
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- W(leféj(ﬁ))]} XA (@)
The lemma is proved because, by the same arguments, we derive

FLF o K .
Ben = exp{z : jz | @x [ PP, (dw) m(w)}
A

IS

Proof of the Theorem 1. It easily follows'.fro_ni the lemma, the estimate
lexp{ip@E)}—1| £ |@(x)]|, and the equality

| dx [ PP (dw)lo(x—w(sB)I = 191, (2nB)".

: Proof of the Theorem 2. Let A = [=L, L], X (a4, bj(*) Dbe the characteristic
function of the interval [a, b]. Then the followmg equality is obvious for x e [-L
L], [a,blc[-L,L]:

J: J
= 1 %-1o\tapy &) + (1 - H (1= Xta, ) (%))J =

s=1 y=1
J J
= I t-rontenn &) — X ¥ IT s G-
g=1 k=14, ..l ) el ) sel,...ly)
As aresult, for a* =max (X, ¥,,), a~=min(X,,, ¥,,), we have

G (Xl 5) = J dx | P18 (dw) %1, 13 (@) X
js D

i : .
X 2 E H XEa"',a'] (CD(.S‘B)) X
k=

Lol € s ) £ € U )

X [l — exp .{foc i i (lx; — @ @D] - |y; —w(Bf)I)H +

j=lt=1

+.§, Y, 'J)[exp{iq[ > -y +

(T | L& oenly)

+ N e —xp )J} 1} X
Vel DN aly)

L
x [ dx [ PP, (dw) ypp, 1y (@) %
=k

x I %era(@Bs) IT . %t n@@s).

se(ly,...l) se(l N0 l)
Here, we have used the equalities i

[x—0@s)| - |yj—0Bs)| = -y, o@s)e[-L,a7],

ISSN 0041-6053. Yip. atam. scypi., 1997, m. 49, N° 5



698 ' . B W. I. SKRYPNIK

!x<—m(j3.s')| = ij"m(ﬁ‘-f)‘ = =% o@s) e [a*, L]. ;

The last integral tends to —oo if x;—y; does not belong to Zn'a"lZ and p[ LL)
converges to zero if L tends to-ee. If ;

. xj-—-yje2n0:_12,
then . o
. L :
Lh_t)n G R B = Gl

~ From the bound

i‘ o II et oy (@@s) <

k=1 (£| .u.,r!k)E(l,<“,j) .?E(tl”“.fk)

'_j
= o E Xla™,a*] (0)“35)):

s=1

and the equality .
J de R{'i.ﬁxx:[a_.aﬁ(m(ﬁs)) =
= [ ax [ PP (x=y) PPU (= y1) g a OV by =

= la* —a| [ PP*(x)) PPU)(1x]) dx = |a*-a7| PP ),

the needed estimate is obtained. In deriving the last inequality, we changed the order
of integration and replaced x—y by x. Theorem 2 is proved.
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