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ON THE LIE ALGEBRA STRUCTURES
CONNECTED WITH HAMILTONIAN DYNAMICAL SYSTEMS

IIPO CTPYKTYPH AJITEBP JII, IIOB’ ABAHUX
3 TAMIJIbTOHOBUMU TUHAMIYHUMHA CUCTEMAMH

We construct the hierarchies of master symmetries constituting Virasoro-type algebras for the
Hamiltonian vector fields preserving a recursion operator. Similarly repeatedly contracting a
Hamiltonian vector field with the corresponding recursion operator, we define an Abelian Lie algebra of .
thus obtained hierarchy of vector fields. The approach is shown to be applicable for the Volterra and
Toda lattices. .

[Onsa raMinbTOHOBHX CHCTeM 3 PEeKYPCHBHHM olnepaTopoM iepapxil GyayeTnes MacTep cumeTpill, Aki
chopmytorn anrebpu Jli Thy Bipacopo. Anasioriuno, MoBTOPHO /IiI04H PEKYPCHBHHM ONlepaToOpoM Ha
raminLTOHIB MOTIK, OJIEPXKYEThLCs iepapXis BEKTOPHHX MOJIB, 1O CKJIafaloTh abeneny anrtepy JIi.
Lle# migxij 3acTocosano jjo cucreM BossTeppa i Topa..

1. Introduction. We shall study the dynamical systems possessing Hamiltonian
structure on an evendimensional Poisson manifold (M>", P):

w9
ox*

Xy = P M
(we use the Einstein summation convention), where PY is a Poisson bivector, i.e., a
skew-symmetric 2-contravariant tensor field with the vanishing Schouten bracket given
by (in a local coordinate chart)U

L apik i . opki
P"—a‘nI + P“aif + Pﬂ—aPI
ox ~ox . ox
and H is the corresponding Hamiltonian. Both P and H are preserved by the vector
field Xp: Ly P=Ly H=0 (here, Ly denotes the Lie derivative with respect to

[P, P17k .= =0, 2

X ). ThePoisson bivector P naturally endows the manifold (MZ”, P) with the
Poisson bracket {,}p defined for an arbitrary pair of functions f, g € @(MZ”)

+ Of '
{fed}p = Pfa—;af,-. ©)

Condition (2) garantees that the Jacobi identity for bracket (3) is satisfied.

A vector field Y commuting with the initial Hamiltonian vector field Xpg:
[Y,Xy4]=0 is called a symmetry of the Hamiltonian system (1). The notion of a
master symmetry was introduced in [1]. We define it as a vector field Z satisfying
[[Z, Xy, X y] =0, provided that [Y, Xg]# 0. This is the case, for example, when Z
is a conformal invariance for X i, ie., Ly Xy =kXy, ke R. Here, L is the Lie
derivative with respect to the vector field X, Assume that the Hamiltonian vector
field (1) preserves along with the Poisson bivector P a (1, 1) tensor field A(x),
xe M*", Ly, P =Ly, A=0.Then we can construct an infinite hierarchy of vector

fields {A" X4}, ne Z,. Note that (AXy) = A} X%. Analogously, if, in addition,
Xy has a conformal invariance Z,, we come up with a similar hierarchy {A" Z 0 § 3
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700 R. G. SMIRNOV

n e 2.,. Under certain assumptions for the operator A, both of these hierarchies have
remarkable properties, namely, the former one becomes a commuting Lie algebra of
vector fields, while the latter one becomes a Lie algebra isomorphic to the Virasoro

algebra defined over € with the basis L,, n€ Z, c (the central element) and the
following commutator; '

3
5 (m” —m)c @

[L Ln] = (m*n)l’m—n'F m,—n 12 )

m?
[c, Lﬂ] = 0.

This is the subject of considerations that follow.
2. The Main Result.

Definition. We call a (1, 1) tensor A(x), xe M?'”, a recursion operator if its
Nijenhuis tensor vanishes identically, i.e.,

N, := A’[X, Y] + [AX, AY] - A([X, AY] + [AX, Y]) = O, (5)

where X, Ye T(M*").
If we consider the Lie derivatives instead of commutators, equation (5) is
equivalent to

NyX, Y) = (LyyA-ALA)Y = 0. (6)
Theorem 1. Let Z,e T(Mz”) be a conformal invariance for a recursion
operator A(x), xe M*" and a vector field X, € T(M*"):

LZ'UX = aX,, LGA =BA, o,Be R.

In addition, LXHA =0. Define the following hierarchies of vector fields: {X,}, 50
{Z,} y0» Where X,=A"X, and Z,=A"Z, ne Z,.

Then the hierarchy {X,},., constitutes a commutative Lie algebra, while
{Z,} 5o is a Lie algebra with the Virasoro commutator relation (4) (with zero
central element). Moreover,

LyA=0 and Ly A =A™

Proof. Let us show first that L X“A =0. Indeed, repeatedly applying relation (6),
we derive the following equalities:

: 1
LynyA =ALyn-ixyA = ALyn1yA = ... = A" L,y A = A"Ly A = 0.
Consider the hierarchy {X,},o Where X,=A"X,. Then, for an afbitrary ne Z,,
[Xo X,] = A"Ly Xo + (LXcAn)Xo -

Now assume that, for any m # n, we have [Xn, Xm] =0. Then using the Leibniz rule

for the Lie derivative, we obtain
[Xn,X = [XH,AXm] = (J[.anfx))_f,'?1 +A[XN,X'm] = (LX"A)XM] = 0.

m+l]

Hence, by induction, X, commutes with all members of the hierarchy {X,} .o,
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ne Z,. Andsince m was picked out arbitrarily, {X } ., forms a commutative Lie
algebra.
Analogously, for the hierarchy {Z,} .o, .Z,:=A"Z), ne Z,, we first prove

that L, A = BA"MZO. Indeed, employing the same technique again, we get
_ _ _ _ 1
LA =Lgngy =LyuniyzA =LynigA =...=A"L; A = BA™.
Then, - _ ! '
(Z24.2,] = Lz,,AHZG = A"LZDZ0 + {LZUA‘“)Z0 = BnZ,.

Now assume, as before, that, for any m # n,

(2,.2,]=B(m-n)Z,,,,. (N
Then, )
[-Z::’ m—l—l] [zu’ AHT'-FLZO) = (LZ,;A)AmZ) + A[zﬂ’ z ] =
= BAHHA”I% " B(m__n)AZMm = an+1+m + B(m n)Zn+.ln+l =
= B(m +1 _n)zu—i-m—Pl'

Therefore, again by induction, for arbitrary integers n and m, we see that (7) takes
place. Th.lS completes the proof.
Corollary. If A is invertible, we can extend the hierarchy {Z,},., - for

negative n as well:
-n =1
{oos sl Lgurss sl Zigy Loy ALy s y A'Zogy i 1o

Then, for B =1, the Lie algebra of vector fields {Zy, Z |, ..., Z. .
isomorphic to the Virasoro algebra with central element zero c¢=0.
Proof. Indeed, the map f: Z,— L , ne R, preserved the algebraic structures

~(4), (7) and is bijective.
Remark. In the case of invertible A this Lie algebra possesses the following

automorphism for any integer ne 2 :
Bl =L,

Example: The Volterra lattice.
" Consider the finite nonperiodic Volterra lattice [2], i.e., the system of the following

n equations:

AR _ a0
. dt
BBy o g T R pn oy ®)
dt

dRy _ R, (1)

dt

It has the Hamiltonian representation (1) for the vector field
Xé = @, i .
dt

the Hamiltonian
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and the Poisson blvector Py defined by the nXxn mamx || Pd || with the following
nonzero e_:ntnes

B =1 A =l f=lsin-l

We shall use Theorem'1 in order to construct a hierarchy of master symmetries for
system (8) connected by the Virasoro relation (4).
Consider the vector field

na .
xg‘la—&:,

and the operator tensor field A defined by the n X n matrix ||a || with the following

nonzero entries: a,- =e Rr“}, i=1,..., n. Note that the linear operator A is
invertible. By the Nijenhuis theorem [3], A has the vanishing Nijenhuis tensor N4
(5) in the coordinates Ry, ..., R,, since it is defined by a diagonal matrix with the
property that each eigenvalue depends only on the corresponding coordinate. By virtue
of tensorial properties of N4, we conclude that A is a recursion operator in any
system of coordinates. Direct calculation show that the vector field Z, is a conformal
invariance for both X, and A:

Ly Xp = -MXy Lz A =-AA.

Applying Theorem 1 for X,,:=A"X, and Z,:=A"Z, ne Z, we get
n+1
Ly A=0, L;A=-AA"",

and

[X,.X,]=0,
&)
(2,.Z,] = -A(m-n)Z

n+m-

The hierarchy of symmetries Z, 6, me Z, forms a Lie algebra with the Virasoro

commutator relation (9) and, in view of Corollary 1, for A =-1, this algebra is
isomorphic to the Virasoro algebra with central element zero, while the vector fields

X,, n€ Z, form a commutative Lie algebra.
3. The Bi-Hamiltonian Case. Lie algebra properties connected with the chams of

vector fields considered above were based on the existence of a (1, 1) tensor field A
satisfying the invariance equation:

LyA=0. (10)
For arbitrary Hamiltonian vector field (1), this condition is not always satisfied. The

situation is different when we deal with the bi-Hamiltonian case, namely, when the
dynamical system (1) has two Hamiltonian forms

X = PydH, = P,dH,. (11)

Here, Py, P, are compatible Poisson bivectors, i.e., their Schouten bracket vanishes
identically,

ISSN 0041-6053. Ykp. mam. xypn., 1997, m. 49, N° 5



ON THE LIE ALGEBRA STRUCTURES CONNECTED ... 703

i oRY ory
[P, P, )% := ax—LPZWC + gx%a”" + (cycle) = 0 (12)

(here, cycle means cyclic permutation of i, j, and k), and H,, H, are the

corresponding Hamiltonians. The compatibility condition (12), which guarantees the
integrability of system (11) [4—6], can be reformulated in an alternative way. Since
. either of the Poisson bivectors P, P, is nondegenerate (e.g., P;), we can construct a

(1,1) tensor A := P, Po_l-. Then condition (12) is equivalent to the fact that ‘A is a
recursion operator, i.e., satisfies relation (5) [S]. In this case, the matrix of the operator
A has doubly degenerate eigenvalues as a product of two skew-symmetric matrices P,

and Po"l. Assuming that all these eigenvalues are functionally independent, we
conclude that system (11) is completely integrable in the Arnol’d—Liouville sense

[4-6]. The functions H, :=1/nTr (A™ are the first invariants of the vector field X,
in involution with respect to the Poisson brackets defined by the Poisson bivectors Py,
P,. Obviously, A satisfies the invariance equation (10). In’this case, the recursion

operatm A appears rather naturally and, if an appropriate conformal invariance is
found, we can formulate a kindred of Theorem 1. :

Theorem 2. Let us have a bi-Hamiltonian dynamical system (1 1) defined by the
vector field X, along with Poisson bivectors P, .and P,

| X, := PydH, = P, dH|,

integrable in the Arnol’d-Liouville sense. Assume that there be a vector field Z
generating a conformal invariance for X, Py and ® := Pffl (provided that P,
is nondegenerate);

Ly Xo=0Xy LyPo= B Py, Lzumi =vyo, op,yveR.
Then, deﬁm'ng A :=Pyw, and Z, := A"Z,, one finds, for all n, m,
Lx,,Xm = 0, - (13)
Ly Zy = (m=n)(B+Y)Zpim- (14)

Proof. The first part (13) ‘coincidcs with thc-analogous_"statement of Theorem 1,
since A := Py®, is arecursion operator and satisfies condition (10). The part about
the vector fields {Z,},., can also be derived from the previous theorem. Indeed,
applying the Leibniz rule, we get

Lz,,A = PoLzuml + (}LZUP){D1 = (B+7)A4,

and the result follows.
Note that equation (10) can be interpreted in terms of the Lax formalism. Indeed, in

a local system of coordinates (xg xy, ..., x,), (10) can be rewritten as
“ AE (1) k aXl
(Lx A); = - A;,(x) - Af(x )9 F = 0.
x* j
or
AL (x) ox’ ax*
x* k

= Al - A o 15
"3 ;(x)ax HES) B ” | (15)

Define now the linear operator
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Taking into account that

g it

— = H¥O =X 20),
it easily follows that (15) is equivalcnt to

d

S 410 = A"(x)Bk(x) B (x) Ay (),
which is the following matrix equation: -

A = [A,B). (16)

Equation (16) is reminiscent of the Lax equation and, thus, possesses certain algebraic
structures (see, for example, [7]).

Example: the Toda lattice.

Consider the finite, nonperiodic Toda lattice, i.e., the system of equations that
describes dynamics of a one-dimensional lattice of particles with cxponcntlal
interaction of nearest neighbors. In terms of the canonical coordinates ¢’ and
moments p;, i=1,2,...,n, itis given by

'dqi
ar P
(17
i _ - _ q-g"!
dt
where g'(t) can be interpreted as the coordinate of the i th particle in the lattice. This
system takes the Hamiltonian form (1), and its Hamiltonian function H, is defined by
the formula
i nz_, qHI

i=l

N

while the corresponding Poisson bivector P, is defined by the canonical symplectic

o
form w, := Fy,

n -
= Y dp;ndg’.
i=]
This particular case of the Toda lattice was thoroughly studied by A. Das and S. Okubo
in [8] from the bi-Hamiltonian point of view. There the second symplectic form ®,
was found to be

i_gi+] .
Z -9 dq' Adq”'l+ ZP‘.dq Adpf+§ Zd;;v:x\dj:v_I
i=1 i=1 i<j

and

i=1
H (q,p) = 2 P+ ):, (P +Pipp) el 9
i=] i=1

as the corresponding Hamiltonian. Furthermore, the corresponding operatof
A= 0)10)0_1 given by the formula o
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= ip i ®d€i + Eeq’—q"“l[ 9 @dqi—-_a_-{@ dqf+l}+
i=1 Jaql i=1 9P+ Ip;

2
_Z(al®dp_, aj®dp,) Ep ®dp,

i<j

was proved to be a recursion operator [8]. Moreover, the linear operator A is
invertible. This fact leads to the integrability of system (15) in the Arnol’d-Liouville
sense as a bi-Hamiltonian system (see.[4—6]). Consider now the vector field Z, given

by

= i [2(}1—!—1—:) +p,aa :’ | (18)

i=1
for which one finds
LZBXU = '—'X{'{, LZUCDI = 2031. LZUPO = —PO,

where Py := mai and X, is the vector field of system (15). Note that Z, was
introduced in [9] as a nontrivial master symmetry for the vector field generating
system (15). _ _

Setting Z,=A"Z5, X ,=A"X, ©, ,=®,A" and P, :=A"P, and applying
Theorem 2, we arrive at the relations y .

Xaxl=0 [Z,2,)=m-0)Z,,

n'

for all integers n, m. Note that, in this case, the master symmetries Z,, z€ £, form

a Lie algebra isomorphic to the Virasoro algebra with central element zero (see
Corollary 1 of Theorem 1).
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