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THE BOLTZMANN-ENSKOG LIMIT
FOR EQUILIBRIUM STATES OF SYSTEMS OF HARD SPHERES
IN FRAMEWORK OF CANONICAL ENSEMBLE *

TPAHUIIS BOJIBIIMAHA-EHCKOT'A [1J151 PIBHOBAZKHWX
CTAHIB CUCTEM IIPY2KHHUX KV JIb
B PAMKAX KAHOHIYHOI'O AHCAMBJIXO

We prove the existence of the Boltzmann—Enskog limit for an equilibrivm system of hard spheres. On
the basis of analysis of the Kirkwood-Salsburg equations, we show that the limit distribution functions
are constants, which can be represented as series in density.

[Hopeneno icaypanns rpanuii Bonsiumana—EHcKora 1J1s piBHOBaXHOI CHCTEMH MPYXHHX Kyss. Ha
ocuosi ananiay criseijiowens Kipxpyga—3assifypra nokasano, wo rpansusi QyHkuil posmnoginy e
KOHCTaHTAMH, L0 BHPaXKaIOTLCS! PSJIAMH 34 I'YCTHHOIO.

Introduction. The problem of derivation and mathematical justification of Boltz-
mann — Enskog equation is very important and permanently attracts attention of math-
ematical physicists. In the Boltzmann — Enskog equation, the size of particles is taken
into account, while in the Boltzmann equations, point-wise particles are considered.

The problem is as follows: to derive the Boltzmann —Enskog equation from the
BBGKY (Bogolubov—Born— Green — Kirkwood—Yvon) hierarchy — the fundamental
equations of classical statistical mechanics. This problem is very difficult and it is
natural to try to solve it in a more simple situation for equilibrium states of hard
spheres. First this problem was considered in framework of grand canonical ensemble
in papers [1, 2]. It was shown that the equilibrium distribution function exists in the
Boltzmann — Enskog limit when activity z (or density 1/v) tends to infinity, and the
diameter of spheres a tends to zero in such a way that za3 (a3/v) is constant.

In this paper, we consider an analogous problem in the framework of canonical en-
semble.

It is proved that the equilibrium distribution functions normalized on unity tend-to
zero in the Boltzmann — Enskog limit, i.e., when the number of particles N tends to
infinity, the volume V(A) of the region A tends to infinity, and the diameter of
spheres tends to zero in such a way that Na3 = A = const, N/V(A) = 1/v = const.
The nonzefo limit distribution functions with this normalization can be obtained only
for the systems of particles located in a bounded domain.

The system of particles located in the whole space was also investigated for the
case of the distribution functions normalized to the number of particles. In this case
the limit distribution functions are nonzero only if the diameter of spheres tends to zero
and their density tends to infinity so.that a3/v = const.

In this paper, we extensively used the results of papers [1, 2], where the Boltz-
mann — Enskog limit was investigated in the framework of grand canonical ensemble
and the results of paper [3], where the Boltzmann — Grad limit was investigated in the.
framework of canonical ensemble.

1. The existence of the Boltzmann — Enskog limit for dxstnbutlon functlons‘
normalized on unity.

1. Consider N hard spheres in a region A < R? with volume V(A) = V.:

Denote by D M(gy,...,qn) an equilibrium distribution function (an ethbnum _
state) in configurational space, with inverse temperature f3. :
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The function D (q,, ..., gn) is defined as follows:

(V) R g Y _
D™ (qy,...,qN) = Q(N,A)?»XP{ B:E‘wq}(q; q;)}, .

N
QN A) = | BXP{—B 2 (D(Q:'_qj)} dgy...dqy, 1)
AR i<j=1
where @ is the interaction potential of hard spheres with diameter a,
%, |g|<a,
®(q) = 2
0, Igl>a.
The function D(N)(qh ..., qp) isequal to zero if g ¢ A for at least one number i€
€ (1,...,N). For the sake of simplicity, we suppose that A is a sphere centered at

the origin of the coordinate system.
Let us define a sequence of reduced distribution functions

EMg,,....q,) =

= [ D™M(g. s dys Gyutses AN dggr-day,  1S5SN,
AN-:

3)
N
F® = (B (@5 FM(Gpseees @dseeos B (G155 qn), 050 ) -
Sequence (3) satisfies the following Kirkwood — Salsburg relations [3', 4]:

N-1A - s '
FM (g q,) = %exp{-ﬁ Y, @(q —q,-)}[ﬂ‘i‘i D(ganirgy) +

i=2

2
=

=1

z% (¥ ~g=1) J H ¥, ) X

1 Ak i=1

[
I

S g ,q.-,-,yl,..-,yk)dyl---dyk], 1<s<N,

0g,(y) = exp{-pP(g; -} - 1,

O
= g
™ o -LA), NI v
R (q) = AN []+;§1 '.l:[ 1-j) x

k
X H g ) FL(N—[)()H,“--J’k)_dh-ud)’k:I,

Ak =1

B (quo-vran) =

N-1LA
- g;(z_m?,?x')") X { %@(ql q,)}FN“’H(qz, 54N
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Relations (4) hold for N>2. For N=2, one has

| [, exp{-B@(q) - a,)}da,

[ 2 exp{-B®(q; - )} dayda,’

_ exp{-B®(q; —4,)}
[ 2 exp{-B®(q ~ar)}dayda,

F¥(q) =

)
Fzm (g1, 92)

Let A A ]Rs, V(A)— o, N— e, insucha way that N/V(A) = 1/v = const.
This procedure is known as the thermodynamic limit transition. We suppose that the

diameter a also tends to zero in such a way that Na3 = const. These two limiting
procedures are known as the Boltzmann —Enskog limit.

The goal of this article is to prove the existence of the sequence of distribution
functions in the Boltzmann— Enskog limit. For this purpose, we use the

Kirkwood — Salsburg relations. First, we define the numbers A = Ay = Na3, A | =
(N-1)a3, ..., A; = (N-i)d?, ..., and represent relations (4) as follows:

FEM((@),) = a(N,A) exp{ BZ @ (g - HF‘” (@) +

k
IH L) %
k=

x FN-D (@) 000 dO)e

| PN

s ITEgeN.

(6)

1 k= l)'l-i-

k
H 3J j IT 04, 00 EN D () d()’)k},

a A=l

EIH

N-—
FM(q) = a(N,A)[] + Y

=]

=

N
FEM((@)y) = a(N,A) eXP{—B Y @ —q;} FN T (),

i=2

(@5 = (G151 ds)y  (@% = (@201 85),
O = Oty -ees¥e), A = dy ...
_ Q-1 A)
a(N,A) = OV, A) .

2. Consider the Banach space Eg of sequences of bounded functions fs((g)s).
f= (fl(gi)a-»-)fa'((q}.r)v“) )]

with the norm

Il = sop 2 supl£(@,)l, €0

-f>l€‘5 (q)s

Define an operator k™ in E¢ in the following way:
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X .fr—l+k((9)§u (y)k)d(y)k], 1<s<N, |
' (8)

N-s k-1 A k ' _
EPn@) = xa @) 3+ TT=5 [ 1T 06, 00 £ (O 4O
_ k=1%"j=0 Ak =1
. \ 5 .
(KM In(@n) = %a ((q)N)exp{ -B Y, O(q —q,-)} Fv-1(@),
: i=2
(&™1),((0),) =0, s>N,
where x5 ((g);) is the characteristic function of . A",
‘We have the following estimate for the norm of the operator K ).
N—-s k :
(N) -1 174 -1 4
161 < st 'Z,okl(BM&) < exp[snax). ©

The minimum of the right-hand side of (9) is reached for £ = 3 /47X and it implies

1K™ < Snhe. ©)

It follows from (9) that the operator K M is defined and bounded in Eg.
Estimate the value a(N, A): By using the inequality [3]

O, A)2 QIN-1,4) [V(A) —(N=1) % ‘n:a3:’ >

> Q(N-1, A)[V(A) - gx], (10)

we obtain

' 1

V(A) - 40/3°

-which implies that a(N, A)— 0 in the Boltzmann — Enskog limit.

With the use of the operator K (N), relations (6) can be represented as a single .
operator relation

a(N,A) = (1)

FM = aN, A)Y(KMFN-D 4 gy, (12)

where Fy = (1,0,... ).
Consider the problem of existence of the Boltzmann— Enskog limit for the

sequence FM..
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Theorem 1. The sequence F™ tends to zero in the norm of the space E¢ in
the Boltzmann— Enskog limit.

Proof. Consider relations (12) for N,N-1, ..., 3. By using them, one gets

N=3
FM = 3 aN, A)K™Ma(N -1, )V ..

i=l
L a(N=i+1L, KN DN —i, AR, +
+ a(N,NKMa(N -1, VKNV a3, KD FP 4 a(N,A)F,.  (13)
It follows for estimates (9”) and (11) that
RN et -t AS=Z &k 21, LSigN=3, (14)

for sufficiently large V(A) and N, and small a. It is easy to see from (5) that

V(A)
V(A - 4na’ V(A /3’

) <

as)
1

V(A)? - 4ra® V(A)/3

Fzm (g1, q2) <

and, thus, [|[K®||||F®|| < k < 1 for sufficiently large V(A). Then it follows
form the estimate
N-2
NFM| < av,A) Y k' < a(W, L (16)
=0 1-k
that || F¥|| = 0 in the Boltzmann —Enskog limit, i.e.,

Now, V@A)-ow, —— =1 Na®=2
VA) v
In order to avoid the phenomenon of tending of the distribution functions to zero,
we fix the bounded domain A and consider the Boltzmann —Enskog limit when only

N—oe, a—0, Na3 = A, but A is fixed.
Denote a(N—1i, A) by a;(N) because A isfixed, 0<i<N-3, ag(N) = a(N).
The sequence a;(N) is bounded according to (11) (for fixed i). Thus, one can
select a convergent subsequence a;(N;)

lim a;(N;) = 4;, Ap=A.

By using the diagonal procedure, one can do this for all i. Also the following limits
existforall i=0,1,2,...: i

lim ¢;(N;) = A;. an
e

This does not mean that there are no other convergent subsequences with limits
AP, ., A, ..., i=0,1,2,.... Restrict ourselves to the subsequence a;(N;) (17).
In this notation, relations (12) take the form

PR o KT 4 By, (18)
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Represent the operator K ™) in the following form:

KM = k™ 4 g,

where

i=2

(BN (@) = %a ((q)s)cxz){—ﬁz (I)(%"Q:'.)}ff—l((g)i): 1<s<N,

KME)o(@y) = xa (@) CXP{—B Y @(q - q;)} X

i=2
N-s 1 k-1 ?L.\-+_,‘ k |
X kzl = 1'[l 3 I 1‘[I 0qy 1) Fic1ik (@5 M) Ay » (19)
= J= A= .

(KM1)(@,) =0, s>N,
KM ((@)y) =0, s>N-1.

The operators K\, K{M are bounded in E¢ and the following estimates hold:
4

kM| < &' = 57!%,
(20)
IKEVI < - exp(§ mat) = ;—t'n:ke‘
By using relations (18), we get
FM = ¥ a( kMo -1)kWD ..
i=1
a(N=i+) KN DgN-p R +
+ a(NMKMa(N-1)KVD__a@3)KDFD 4+ a(N)F,. 21)
Consider the function
(BN gD gN-HDE) ((2),). (22)

which is the sum of products of operators K I(N =0 and K{M? actingon F,. This
function is expressed via sums of integrals with integrands equal to the product of the
kernels

Ka(Qj: (y)m) = ﬁ (exp (_B(I)(gj _'y:')) ._ I): 1 é.} = 5,

i=1

and the factors

exp [— B ®(g- Q;'):| .

i#]j

where some g; are equal to the variables (y),,. The integration is carried out over the

ISSN 0041-6053. Ykp. sam. xypn., 1997, m. 49, N° 9
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domain A with respect to the variables (),,. The kernel K,(g;, (¥),,) is different
from zero if |gj—y;|< a forall i=1,2,...,m; the factor is different from zero if
Iqj-q,-!> a, i#j. Consider a compact domain D, € A which contains the points
(g), satisfying the conditions |g;—g;|> ag, (i,j)e (1,...,s), where a, is an
arbitrary fixed number, ay > a. '

Lemma. For arbitrary small fixed ay > a and (q), € D, the distribution
functions in an arbitrary nth order of the perturbation theory

Fx,f((?);) = (G(N)K(N)Q(N_])K(N~l)

. a(N=i+ 1) KN (N - B ((9),)

are independent of a and constants with respect to (q), for sufficiently small a.
Proof. An analogous lemma was proved in the paper [2], the only difference is

that, instead of a bounded domain A, the whole space R*® was used in it. In our
case, functions (22) do not depend on the size of domain A because, in virtue of the
definition of the support of the kernels K, the integrands in (22) are different from
zero in spheres with diameter na centered at the points (g;,..., g5). Here, n is

some number less than i. It is obvious that, for sufficiently large A, the support of
the integrand is completely situated in A and function (22) does not depend on the

size of A. One canput A= R3. After these remarks, the proof of our lemma follows
directly from the corresponding lemma (Lemma 1) of the paper [2].

Theorem 2. The distribution functions F (N)((q)ﬁ) tend to constants in the

Boltzmann — Enskog limit when N = e, a— 0, Na?® = A = const, and domain A
is fixed.

Proof. In Lemma 1, we have established that the function (22) tends to a constant
uniformly with respect to (g), € D,,. According to (16), the sequences a;(N;) tend

to A;, i=1,2,.... Hence, an arbitrary term in (21)
(KM a(N =)k . a(N-i+1) KN a(N - i) Ky),((9),)

tends to the constant Fy ; uniformly with respect (g); € D, .
Consider two series

EN@),) =

N-3 i
= 3 (aMKMaN-KN D aN-i+ KNV a(N - ) Fy),((9)5) +

i=1

+ (@MW KM aN -1 KN a@) kP FP) (@),) + (@a(N)Fy)((@)s), (23)
F, = i F;. (24)
i=0

For sufficiently.large A and chosen &, both series are convergent (the first one
uniformly with respect to (g),) because the estimates of the norms of the operators

KN are independent of N, A, n. Hence, for arbitrary small &> 0, there exists a
number i, such that

ISSN 0041-6053. Ykp. mam. zypi., 1997, m. 49, N2 9



1202 M. LAMPIS, D. Ya. PETRINA

Y, (aMEMa(N-1KNY | a(N-i+ 1)KV D a(N - i) R),((g),) +

i

+ (@ KM a(N-1) KD a3 kP FP).((9),)| < &, (25)

< E.

2 F

i2iy

It follows from the lemma that

iy .

> (@M KM a(N-DKN D a(N =i+ ) KN oV - R ((9);) + .

i=1

i
k- (a(N)PE]).r((Q)J') = E F.s'.f
C =0

in the Boltzmann — Enskog limit uniformly with rcspect to for (g), € D,,. This means

that, for arbitrary small €> 0, there exist sufficiently large N and sufficiently small
a such that, for (g);€ Dy,

IEM((g),) — F| <&,

1.e.,
lim  EY((g)) = F
N, a0,
_ . Na® =1

uniformly with respect to (g), € Dan.

Show that constant F; does not depend on the subsequences a;(N;), i.e., that the
limits F, are unique. Indeed, the functions F("((g),) satisfy the following
normalization conditions:

| EM((9);) d(g), = 1
J'\’
By using the Lebesgue theorem and performing the Boltzmann — Enskog limit under
the integral sign, we get
1
= e
V(A)
Thus, the constant F, does not depend on the subsequence N; and is unique.
2. The existence of the Boltzmann — Enskog limit and the thermodynamic limit

for distribution functions standardly normalized on numbers of particles.
Consider the equilibrium distribution functions normalized as follows

) =

S =iy

5—1 i
= [Twv-» | D™@.... 40 dpe1s» aN) ddgss--day.  s=1,2,...,N.
i=0 AN '
(26)

ISSN 0041-6053. YEp. sam. s#ypit., 1997, m. 49, N¢ 9
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They satisfy the following Kirkwood — Salsburg relations:

FM((@);) = Mcxp{—ﬁ S ®(g - ) HF‘N D((@l) +
O(N, A) Ez :

N=g
* ]% J IT 04 O0EZ2 (@ (y)t)d(y)k} 1<s<N,
= Ari=
27
FN-D Z 1,
Wy - NoN-1LA) - &1 \ RN-1)
R () AN { Elk',{kg a ODE () 40X |
N) NOIN-1A) A) J _ (N-1)
V(@) = ON. ) { i§ D (g, }F (9)n) -
Define a(N, A) by the ratio
sl Ay BEEY =1l (28)
O(N, A) #

(the value a(N, A) in (28) differs from the value a(N, A) in (6)) by the multiplier N
and introduce the renormalized distribution functions

F™M((g)s) = a* FM ((a)y) - (29)

They satisfy the following Kirkwood — Salsburg relations (in what follows, for the
sake of simplicity, we preserve the previous notation for the renormalized distribution
functions):

i=2

FM((@),) = a(N, A)a%xp{—ﬁ 3 cp(ql—q,-)}[ﬁ‘f’l“’((q)i) +

N—s k
1
< EQT ‘[ H ) FM (@) (J’)k)d()’)k:l, 1<s<N,
k=1 i=1
(30)
FEM(ay) =
1
= a(N,A)d’ {1 - Z e j H 0q ) B2 (0)) d(y)k]
A i=1 ’
N) ¢ & NI
FM(@y) = aiN, M) expi —B Y, @(q —a) p BT (@)
i=2
FND = 1.
Relations (30) can be represented as a single operator relation
FM = a.(N, A)a (K'MFW-1) 4 FOy, (31)

where the operator KV is defined in the space Eg as follows:

ISSN 0041-6053. Ykp. asam. sxypn., 1997, m. 49, N* 9
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(EM£)((@) = 24 ((@),) exp { ~B i ®(q) - q,-.)}[fgml () +

i=2

g S
+ P P filj[l g, 1) So—14k ((q)i,(y)k)d(y)k} l1<s<N,
ST | 32
i N=l k
(KM F)l@)n) = xa (@) ;l rﬁg 1‘[l 9q, 00 £ (ON) O
. . .
KM F)n(@y) = xal@n) GXP{—ﬁ Y, (g - CL‘.)} Fy-1(@y).
i=2
(KMf)y((@)) =0, s>N, fo=0.
The operator K m is- defined and bounded in Eg
(M) 4 4 .S
1K™ < &lexp(SnE), &= Zn. (33)
By analogy with (10), (11), the following estimate can be proved for a(N, A)a3:
3
a(l, A)a® < s : (34)

< .
V(A) = (N-Ddna’ /3 = V(A) — 40/3

Tt implies that a(N, A)a®— 0 as V(A)— .

Theorem 3. The sequence F ™) tends to zero in the norm of the space E¢ in
the Boltzmann — Enskog limit.

Proof. Asin Theorem 1, the proof follows from estimates (33) and (34).

If the domain A is fixed, then an analog of Theorem 2 can easily be proved. In
order to obtain a nonzero limit F™) when N — o, V(A)—> e, N/V(A) = 1/v,
a— 0, we consider the case where 1/v — ¢ in such a way that a®/v = const
instead of Na3 = A = const.

Theorem 4. The renormalized distribution functions F_}(N)“(")-‘) tend to
constants in the Boltzmann — Enskog limit

N 1
N o, VA oo, —_— = —-—)o-c:,
- A= YA v
a=30, 1 =%
v 41

Proof. The value a(N, A) a® satisfies the inequality

N&®

3 ; _
R = I DB T

N&3 A 1

1
< = - e i ———— 35
V(A) - N4m3/3 -l 1 - 4na’ [3v 63

ISSN 0041-6053. Yxp. aam. sypit., 1997, m. 49, N2 9
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The sequence a(N —i, A)a3, i=1,2,..., is also bounded and satisfies inequality
(35). Consider the expression

FM = 3 a(N,A)® KM a(N =1, A)P KV -

i=1
ca(N=i+1, A KN a(N-i, A)a® Fy +
+ a(N, AP KM a(N -1, A)a® kD
a(N=i+1,A)@ KWV a3, A)a® KB FP 4

+ a(N,N)d’ F,. . (36)

The sequences a(N, A)a> are bounded; the operators K (-1 are bounded
uniformly with respect to N, A, a according to (33). Hence, we can repeat the proof

of Theorem 2 word by word. The only difference is that, in this case, A — R?
instead of being fixed as in the case of Theorem 2. But it was shown in the proof of

Theorem 2 that F™((g),) does not depend on the size of the domain A if (g), e
€ D, . The uniqueness of the limit ¥ follows from the normalization condition

1
N(N=1)..(N-s—

| KM ((@),) d©), = a*.
1) 5

The details of the proof are the same as in [2].
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