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ON A CLASS OF A-MODULES
PO OJUH KJIAC A-MOIYJIIB

Smith in paper [Mapping between module lattices, Int. Electron. J. Algebra, 15, 173 —195 (2014)] introduced maps between
the lattice of ideals of a commutative ring and the lattice of submodules of an R-module M, i.e., 4 and A mappings. The
definitions of the maps were motivated by the definition of multiplication modules. Moreover, some sufficient conditions
for the maps to be a lattice homomorphisms are studied. In this work we define a class of A-modules and observe the
properties of the class. We give a sufficient conditions for the module and the ring such that the class A is a hereditary
pretorsion class.

VY poborti [Mapping between module lattices, Int. Electron. J. Algebra, 15, 173 -195 (2014)] CmiT yBiB y po3nisiz BizoOpa-
JKeHHS MDXK PELIITKOIO i/1ealiB KOMyTaTHBHOTO KUIBII Ta PELIITKO0 cyOmMonyniB R-momyns M, ToOTo BimoOpakeHHS Lo 1 A.
11i o3Ha4eHHs1 Oy MOTHMBOBAHI O3HAYEHHSAMH MYJIBTUILTIKATHBHUX MOAYNTIB. Takox Oyso BKa3aHO JesiKi JIOCTaTHI YMOBH,
3a SKUX i BiZoOpaxeHHs € TOMOMOpP(i3MaMu penIiTok. Y i poOoTi HaBeCHO 03HAYEHHS KJIacy A-MOZIYIIIB Ta 3a3Ha4ECHO
BJIACTHBOCTI 1IbOTO Kiacy. BkazaHo nocTaTHi yMOBM Ha MOAYNB Ta KijlbIle, 32 SIKUX KJIAaC A € CHaJKOBUM IMPETOPCIHHUM
KJIACOM.

1. Preliminaries. By the ring R we mean any commutative ring with unit and the module M means
a left R-module, except we state otherwise. An R-module Mis called a multiplication module if
for any submodule N in M, there is an ideal I in R such that N = I M. For further explanation
of multiplication modules over commutative rings we refer to papers [4, 8, 13]. Moreover, M is a
multiplication module if and only if for any submodule N of M we have N = Anng(M/N)M
(see [8]).

An R-module M is called a prime module if for any non-zero submodule K in M, Anng(K) =
= Anng(M). A proper submodule N in M is called a prime submodule of M if M/N is a prime
module (see [14]).

Let K, N be submodules of M. The residue of K in N will be denoted by [NV :p K| =
= {r € R| rK C N}. For a special case, that is if N = 0, we obtain the annihilator of K as
[0:r K] = Anng(K).

Let £(M) be the lattice of submodules of R-module )M, where for any submodules N and K
in M the ’join’ and meet’ are defined as

NVK=N+K, NAK=NNK,

and N < K means N C K. Especially, for M = R we have the lattice of ideals in R and it is
denoted by £(R). The definition of x and A mappings conducted by Smith in [12] are following:

p: L(M) = L(R), N — Anng(M/N), (1.1)
A: L(R) — L(M), I+ IM. (1.2)
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The mappings (1.1) and (1.2) are motivated by the relationship of submodules and ideals in a multi-
plication module. Then we define a class of modules as following:

A={M | (BNC)M = BM NCM VB,C finitely generated ideals of R}.

Based on Lemma 2.1 of [12], M € X if and only if M is a A-module. Note that A is not necessary
a hereditary class.

If R is a ring, then an R-module M is called a chain module if for any submodules /N and L in
M either N C L or L C N. The ring R is called a chain ring if the Z-module R is a chain module.
Smith in Proposition 2.4 of [12] has proved a sufficient condition of a ring such that its modules are
in A as follows:

Proposition 1.1. [fthe ring R is a chain ring, then every R-module is in \.

Moreover, the class A is closed under direct summands and direct sums (see Lemma 2.5 of [12]).
Theorem 2.3 of [12] gave a necessary and sufficient condition of a module to be in A\ as we recall here.

Proposition 1.2. The following assertions are equivalent:

a) R is a Priifer;

b) every R-module is in \;

c) the class A is closed under the homomorphic image.

The sufficient conditions in Proposition 2.4 and Theorem 2.3 of [12] have given a motivation for
us to study more general situations from category R-modules R-Mod to subcategory o[M] which
consits M -subgenerated modules. In this work, we show that with some additional conditions, if
the subgenerator M is a Dedekind module or a chain module, then the class A will be equal to the
class o[M].

In the next section, we discuss module Dedekind and the relationship with the class A. In Section
3, we prove that we can generalize Theorem 2.3 of [12].

2. Dedekind modules and A-modules. For intensive study of Dedekind modules, we refer
to Alkan et al. [3] and Sarag et al. [11]. For any commutative ring R with identity and a set .S
consisting of non-zero divisor elements of R, the fraction ring Rg will be naturally formed. By
considering the notion of fractional ideals in Larsen and McCarthy [9], a fractional ideal I of R is
invertible if there exist a fractional ideal I~1 of R such that I~17 = R. In a case when 1! exists,
then 7! = [R: Rg I]. A domain R is called a Priifer domain providing that each finitely generated
ideal of R is invertible. Furthermore, an integral domain R is Dedekind domain iff every non-zero
ideal of R is invertible.

Now we generalize the notion of invertibility of fractional ideals in the case of submodules.
Many papers have discussed the notion of invertible submodules (see, for example, [3, 11]).

For any R-module M, consider T' = {t € S | for some m € M,tm = 0 implies m = 0}.
We can see that T" is a multiplicatively closed subset of .S. For any submodule NV of M, we define
N’ = [M :g, N]. Following the concept of invertible ideal, we call a submodule N of M is
invertible if N'N = M. Then M is called a Dedekind module if every non-zero submodule of M
is invertible and M is called a Priifer module providing every finitely generated non-zero submodule
is invertible. The examples of Dedekind modules are the Z-module Q and Z, for prime p.

An R-module M is called a multiplication module provided for each submodule N of M there
exist an ideal I of R such that N = IM, ie., I = [N :p M]. If P is a maximal ideal of R, then
we define
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Tp(M)={me M | (1 —p)m =0 for some p € P}. (2.1

Next, M is P-cyclic if there exist p € P and m € M such that (1 —p)M C Rm. In El-Bast (2007)
it has been shown that M is multiplication module if and only if for every maximal ideal P of R
either M = Tp(M) or M is P-cyclic.

Now we show the property of A-module dealing with the invertibility property of submodules
of multiplication modules. Let us recall an important property in paper [1], that is for any finitely
generated faithful multiplication R-module and for any invertible submodule N of M, [N :p M] is
an invertible ideal of R.

Proposition 2.1. Let M be an R-module. Then we have the following assertions:

1. If I is a multiplication ideal of a ring R and M is a multiplication R-module, then \(I) is
a multiplication R-module.

2. Every invertible submodule N of a faithful multiplication finitely generated module M is a
A-module.

3. If M is a faithful multiplication module over an integral domain R, then M is a A-module
and for any ideal I of R, I=* = (\(I))~L.

Proof. 1. Let P be a maximal ideal of R. Consider the set Tp in (2.1). If Tp(M) = M
or Tp(I) = I, then Tp(IM) = IM. Hence A(I) is a multiplication module. Now suppose that
Tp(I) # I and Tp(M) # M. Then I and M are P-cyclic. Therefore there exist elements pj,p2 €
€ P,ae€l, me M suchthat (1 —p;1)I C Ra and (1 —p2)M C Rm. It follows that (1 —p)IM C
C R(am) where p = p1 + pa — pip2 € P. Thus A\(I) = IM is P-cyclic. This proves that A(]) is a
multiplication R-module.

2. According to Proposition 2.1 of [1], for any invertible submodule N of M, [N :p M] is an
invertible ideal of R. By using (2), we can easily obtain that N = [N :g M]M is a multiplication
R-module. If r € Anng(N), then rN = 0 and hence rM = r N~ 1N = 0. This implies r = 0.
Therefore, N is faihtful multiplication R-module. By using Theorem 2.12 of [12], we conclude that
N is a A-module because every faithful multiplication module is A-module.

3. It is obvious by Theorem 2.12 of [12] and Lemma 1 of [2].

Now we are ready to display the connection of Dedekind module with A-module by using the
following Corollary 3.8 of [3]. We recall a module M is divisible if forany 0 #£r € R, M = rM.

Lemma 2.1. Let M be a Dedekind divisible R-module. Then R is a field.

It is easy to understand that any vector space is a A-module. Moreover, we have the following
direct consequences of Lemma 2.1.

Proposition 2.2. [f M is a Dedekind divisible R-module, then:

1) M is A-module;

2) forany N € o[M], N € X;

3) the class of ) is closed under submodules and homomorphic images.

Now we apply a result in paper [1].

Lemma 2.2. [If M is a faithful multiplication module, then M is a Dedekind (Priifer) module if
and only if R is a Dedekind (Priifer) domain.

Proposition 2.3. Let M be a faithful multiplication module and Priifer. Then o[M] C A.

Proof. By assumption and according to a result in Lemma 2.2 we obtain that R is a Priifer

domain. Proposition 1.2 shows that A is equal to the category of R-modules. It is clear that
o[M] C A.
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For the converse, we give in the following corollary.

Corollary2.1. Let R be a semisimple ring, M a faithful multiplication module and Priifer. If M
is a subgenerator for any semisimple module, then o[M] = A.

Proof. Applying Proposition 2.3, o[M] C A. Now take any N € A. Since R is a semisimple
ring, IV is also a semisimple module. Moreover, N € o[M] and we prove A\ C o[M] as well.
We recall a sufficient condition of a Dedekind module in Lemma 3.3 of [1].

Lemma 2.3. Let R be an integral domain and M a faithful multiplication module. If for any
non-zero prime submodule P of M is invertible, then M is Dedekind.

Proposition 2.4. Let R be an integral domain and M a faithful multiplication module. If for
any non-zero prime submodule P of M is invertible, then o[M] C .

Proof. 1t is obvious by applying Lemmas 2.3 and 2.2.
The following propositions are another properties of a Dedekind module.

Proposition 2.5. Let M be a faithful multiplication Dedekind module over an integral domain
R. If I is an ideal of R, then M is a \-module over I and \(I) is a \-module over R.

Proof. Since [ is an ideal of R, A\(I) = IM is a submodule of M. Hence I M is an invertible
submodule. We have I=! = (A\(Z))~! due to Proposition 2.1, i.e., I is an invertible ideal of R. By
using a result in [7], we conclude that I is a A-module over R. For any ideal B and C' of R we
have

(BN C)A(I) = (BNC)IM = (BINCI)M = BIM N CIM = BA(I) N CA(I).

This proves our assertion.
Now we give a sufficient condition of A-module.

Proposition 2.6. Let M be a multiplication Dedekind R-module. Then every R-module is a
A-module.

Proof. According to Theorem 3.12 of [3], a multiplication Dedekind R-module implies the ring
R is a Dedekind domain, i.e., a Priifer domain. It means every R-module is a A-module.

If M is an R/I-module, then under scalar multiplication am = (a + I)m, M becomes an R-
modules for every a € R and m € M. Conversely, if M is an R-module, then M is an A/I-module
with respect to (a + I)m = am for every a+ I € R/I and m € M.

Proposition 2.7. Let R be a ring, M an R-module and I an ideal of R where I C [0 :p M].
M is a \-module over R if and only if M is a A\-module over R/I.

Proof. 1f M is a A-module over R, then (BN C)M = BM N CM for every finitely generated
ideals B, C of R. Suppose B/I, C/I be any ideals of R. Then (B/INC/I)M = ((BNC)/I)M.
Since (BNC)M = BMNCM, (BNC)/I)M = (B/I)MnN(C/I)M. This gives (B/INC/I)M =
= (B/I)M N (C/I)M. So, M is a A-module over R/I.

Conversely, let M is a A-module over R/I. Suppose B, C be any ideals of R with BM # {0}
and CM # {0}. Clearly, B+1/I,C+1/I are an ideals of R/I. Since M is a A-module over R/I,
(B+I1/I)n(C+I/I))M =(B+1/I)MnN(C+1/I)M. On the other hand, ((B+1/I)N(C +
+I1/1))M = ((B+INC+1)/I)M, consequently ((B+INC+I)/I)M = (B+I1/I)MN(C+I1/I)M.
Then (B+INC+I)M = (B+I)MN(C+I)M. Since, I C(0: M), (B+I)Mn(C+I1)M =
=BM NCM. So, M is a A-module over R.
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3. Chain modules and A-modules. In this section, we consider chain modules and the relation-
ship with A-modules.

Proposition 3.1. Let M be a chain R-module and faithful. Then o[M] C \.

Proof. For any N € o[M], according to (15.1) of [15], N = ®sRmy, where my € MM,
Since M is chain, N = Rmy for some mg € MM . Now take any ideals B and C in the ring R.
We only have to prove that BN NCN C (BN C)N. Take any x € BN NCN. Then x = bmy for
some b € B and = = c¢myg for some ¢ € C. Hence z = bmg = c¢mg and moreover (b — ¢)mg = 0.
Since M is faithful, b = ¢ and we obtain that x € (BN C)N.

For the converse of Proposition 3.1 we need an extra condition as we give in the next corollary.

Corollary3.1. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator
Sor all semisimple R-modules. Then o[M] = \.

Proof. We apply Proposition 3.1. It is known that a module over a semisimple ring is semisimple.
Take any R-module N in A, then N is semisimple. From the assumption, N € o[M].

According to the properties of o[M] in (15.1) of Wisbauer [15], we obtain the following corollary.

Corollary3.2. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator
for all semisimple R-modules. Then:

1) X is a hereditary pretorsion class, i.e., A is closed under submodules, homomorphic images
and any direct sums;

2) forany N € \, N = ZRm, where m € M®);

3) pullback and pushout of morphisms in X belong to \.

Corollary3.3. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator
for all semisimple R-modules. If N is M -injective, then N is K -injective for all K \-module.

Proof. If N is M -injective, then N is K-injective for any K € o[M]. But according to
Corollary 3.1, o[M] = A\. Hence N is K -injective for any K € .

Now we recall the following definition from Definition 2.6 of [10].

Definition 3.1. Let M and N be R-modules. We says that M rises to N, denoted by M 1 N,
if every M -injective module is N -injective.

Based on this definition and properties of injectivity in o[M] we conclude that if N € o[M],
then M 1 N, but the converse is not necessary true. Theorem 2.8 of [10] has given a sufficient
condition such that the converse is holds.

Corollary3.4. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator
for all semisimple R-modules. For any module N which is M 1 N, N is M -injective if and only if
N is K-injective for all K € \.

Proof. 1t is straightforward from Corollary 3.3 and Theorem 2.8 of [10].
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