UDC 512.5
I. E. Wijayanti (Univ. Gadjah Mada, Indonesia),
M. Ardiyansyah (Aalto Univ., Finland),
P. W. Prasetyo (Univ. Ahmad Dahlan, Indonesia)

ON A CLASS OF λ-MODULES

ПРО ОДИН КЛАС λ-МОДУЛІВ

Smith in paper [Mapping between module lattices, Int. Electron. J. Algebra, 15, 173-195 (2014)] introduced maps between the lattice of ideals of a commutative ring and the lattice of submodules of an R-module M, i.e., μ and λ mappings. The definitions of the maps were motivated by the definition of multiplication modules. Moreover, some sufficient conditions for the maps to be a lattice homomorphisms are studied. In this work we define a class of λ-modules and observe the properties of the class. We give a sufficient conditions for the module and the ring such that the class λ is a hereditary pretorsion class.

У роботі [Mapping between module lattices, Int. Electron. J. Algebra, 15, 173-195 (2014)] Сміт увів у розгляд відображення між решіткою ідеалів комутативного кільця та решіткою субмодулів R-модуля M, тобто відображення $\mu \mathrm{i} \lambda$. Ці означення були мотивовані означеннями мультиплікативних модулів. Також було вказано деякі достатні умови, за яких ці відображення є гомоморфізмами решіток. У цій роботі наведено означення класу λ-модулів та зазначено властивості цього класу. Вказано достатні умови на модуль та кільце, за яких клас $\lambda є$ спадковим преторсійним класом.

1. Preliminaries. By the ring R we mean any commutative ring with unit and the module M means a left R-module, except we state otherwise. An R-module M is called a multiplication module if for any submodule N in M, there is an ideal I in R such that $N=I M$. For further explanation of multiplication modules over commutative rings we refer to papers [4, 8, 13]. Moreover, M is a multiplication module if and only if for any submodule N of M we have $N=\operatorname{Ann}_{R}(M / N) M$ (see [8]).

An R-module M is called a prime module if for any non-zero submodule K in $M, \operatorname{Ann}_{R}(K)=$ $=\operatorname{Ann}_{R}(M)$. A proper submodule N in M is called a prime submodule of M if M / N is a prime module (see [14]).

Let K, N be submodules of M. The residue of K in N will be denoted by $\left[\begin{array}{ll}N & \left.:_{R} K\right]\end{array}=\right.$ $=\{r \in R \mid r K \subseteq N\}$. For a special case, that is if $N=0$, we obtain the annihilator of K as $\left[0:_{R} K\right]=\operatorname{Ann}_{R}(K)$.

Let $\mathcal{L}(M)$ be the lattice of submodules of R-module M, where for any submodules N and K in M the 'join' and 'meet' are defined as

$$
N \vee K=N+K, \quad N \wedge K=N \cap K,
$$

and $N \leq K$ means $N \subseteq K$. Especially, for $M=R$ we have the lattice of ideals in R and it is denoted by $\mathcal{L}(R)$. The definition of μ and λ mappings conducted by Smith in [12] are following:

$$
\begin{gather*}
\mu: \mathcal{L}(M) \rightarrow \mathcal{L}(R), \quad N \mapsto \operatorname{Ann}_{R}(M / N) \tag{1.1}\\
\lambda: \mathcal{L}(R) \rightarrow \mathcal{L}(M), \quad I \mapsto I M . \tag{1.2}
\end{gather*}
$$

The mappings (1.1) and (1.2) are motivated by the relationship of submodules and ideals in a multiplication module. Then we define a class of modules as following:

$$
\lambda=\{M \mid(B \cap C) M=B M \cap C M \quad \forall B, C \text { finitely generated ideals of } R\}
$$

Based on Lemma 2.1 of [12], $M \in \lambda$ if and only if M is a λ-module. Note that λ is not necessary a hereditary class.

If R is a ring, then an R-module M is called a chain module if for any submodules N and L in M either $N \subseteq L$ or $L \subseteq N$. The ring R is called a chain ring if the R-module R is a chain module. Smith in Proposition 2.4 of [12] has proved a sufficient condition of a ring such that its modules are in λ as follows:

Proposition 1.1. If the ring R is a chain ring, then every R-module is in λ.
Moreover, the class λ is closed under direct summands and direct sums (see Lemma 2.5 of [12]). Theorem 2.3 of [12] gave a necessary and sufficient condition of a module to be in λ as we recall here.

Proposition 1.2. The following assertions are equivalent:
a) R is a Prüfer;
b) every R-module is in λ;
c) the class λ is closed under the homomorphic image.

The sufficient conditions in Proposition 2.4 and Theorem 2.3 of [12] have given a motivation for us to study more general situations from category R-modules R-Mod to subcategory $\sigma[M]$ which consits M-subgenerated modules. In this work, we show that with some additional conditions, if the subgenerator M is a Dedekind module or a chain module, then the class λ will be equal to the class $\sigma[M]$.

In the next section, we discuss module Dedekind and the relationship with the class λ. In Section 3, we prove that we can generalize Theorem 2.3 of [12].
2. Dedekind modules and $\boldsymbol{\lambda}$-modules. For intensive study of Dedekind modules, we refer to Alkan et al. [3] and Saraç et al. [11]. For any commutative ring R with identity and a set S consisting of non-zero divisor elements of R, the fraction ring R_{S} will be naturally formed. By considering the notion of fractional ideals in Larsen and McCarthy [9], a fractional ideal I of R is invertible if there exist a fractional ideal I^{-1} of R such that $I^{-1} I=R$. In a case when I^{-1} exists, then $I^{-1}=\left[R:_{R_{S}} I\right]$. A domain R is called a Prüfer domain providing that each finitely generated ideal of R is invertible. Furthermore, an integral domain R is Dedekind domain iff every non-zero ideal of R is invertible.

Now we generalize the notion of invertibility of fractional ideals in the case of submodules. Many papers have discussed the notion of invertible submodules (see, for example, [3, 11]).

For any R-module M, consider $T=\{t \in S \mid$ for some $m \in M, t m=0$ implies $m=0\}$. We can see that T is a multiplicatively closed subset of S. For any submodule N of M, we define $N^{\prime}=\left[M:_{R_{T}} N\right]$. Following the concept of invertible ideal, we call a submodule N of M is invertible if $N^{\prime} N=M$. Then M is called a Dedekind module if every non-zero submodule of M is invertible and M is called a Prüfer module providing every finitely generated non-zero submodule is invertible. The examples of Dedekind modules are the \mathbb{Z}-module \mathbb{Q} and \mathbb{Z}_{p} for prime p.

An R-module M is called a multiplication module provided for each submodule N of M there exist an ideal I of R such that $N=I M$, i.e., $I=\left[N:_{R} M\right]$. If P is a maximal ideal of R, then we define

$$
\begin{equation*}
T_{P}(M)=\{m \in M \mid(1-p) m=0 \text { for some } p \in P\} \tag{2.1}
\end{equation*}
$$

Next, M is P-cyclic if there exist $p \in P$ and $m \in M$ such that $(1-p) M \subseteq R m$. In El-Bast (2007) it has been shown that M is multiplication module if and only if for every maximal ideal P of R either $M=T_{P}(M)$ or M is P-cyclic.

Now we show the property of λ-module dealing with the invertibility property of submodules of multiplication modules. Let us recall an important property in paper [1], that is for any finitely generated faithful multiplication R-module and for any invertible submodule N of $M,\left[N:_{R} M\right]$ is an invertible ideal of R.

Proposition 2.1. Let M be an R-module. Then we have the following assertions:

1. If I is a multiplication ideal of a ring R and M is a multiplication R-module, then $\lambda(I)$ is a multiplication R-module.
2. Every invertible submodule N of a faithful multiplication finitely generated module M is a λ-module.
3. If M is a faithful multiplication module over an integral domain R, then M is $a \lambda$-module and for any ideal I of $R, I^{-1}=(\lambda(I))^{-1}$.

Proof. 1. Let P be a maximal ideal of R. Consider the set T_{P} in (2.1). If $T_{P}(M)=M$ or $T_{P}(I)=I$, then $T_{P}(I M)=I M$. Hence $\lambda(I)$ is a multiplication module. Now suppose that $T_{P}(I) \neq I$ and $T_{P}(M) \neq M$. Then I and M are P-cyclic. Therefore there exist elements $p_{1}, p_{2} \in$ $\in P, a \in I, m \in M$ such that $\left(1-p_{1}\right) I \subseteq R a$ and $\left(1-p_{2}\right) M \subseteq R m$. It follows that $(1-p) I M \subseteq$ $\subseteq R(a m)$ where $p=p_{1}+p_{2}-p_{1} p_{2} \in P$. Thus $\lambda(I)=I M$ is P-cyclic. This proves that $\lambda(I)$ is a multiplication R-module.
2. According to Proposition 2.1 of [1], for any invertible submodule N of $M,\left[N:_{R} M\right]$ is an invertible ideal of R. By using (2), we can easily obtain that $N=\left[N:_{R} M\right] M$ is a multiplication R-module. If $r \in \operatorname{Ann}_{R}(N)$, then $r N=0$ and hence $r M=r N^{-1} N=0$. This implies $r=0$. Therefore, N is faihtful multiplication R-module. By using Theorem 2.12 of [12], we conclude that N is a λ-module because every faithful multiplication module is λ-module.
3. It is obvious by Theorem 2.12 of [12] and Lemma 1 of [2].

Now we are ready to display the connection of Dedekind module with λ-module by using the following Corollary 3.8 of [3]. We recall a module M is divisible if for any $0 \neq r \in R, M=r M$.

Lemma 2.1. Let M be a Dedekind divisible R-module. Then R is a field.
It is easy to understand that any vector space is a λ-module. Moreover, we have the following direct consequences of Lemma 2.1.

Proposition 2.2. If M is a Dedekind divisible R-module, then:

1) M is λ-module;
2) for any $N \in \sigma[M], N \in \lambda$;
3) the class of λ is closed under submodules and homomorphic images.

Now we apply a result in paper [1].
Lemma 2.2. If M is a faithful multiplication module, then M is a Dedekind (Prüfer) module if and only if R is a Dedekind (Prüfer) domain.

Proposition 2.3. Let M be a faithful multiplication module and Prüfer. Then $\sigma[M] \subseteq \lambda$.
Proof. By assumption and according to a result in Lemma 2.2 we obtain that R is a Prüfer domain. Proposition 1.2 shows that λ is equal to the category of R-modules. It is clear that $\sigma[M] \subseteq \Lambda$.

For the converse, we give in the following corollary.
Corollary 2.1. Let R be a semisimple ring, M a faithful multiplication module and Prüfer. If M is a subgenerator for any semisimple module, then $\sigma[M]=\lambda$.

Proof. Applying Proposition 2.3, $\sigma[M] \subseteq \lambda$. Now take any $N \in \lambda$. Since R is a semisimple ring, N is also a semisimple module. Moreover, $N \in \sigma[M]$ and we prove $\lambda \subseteq \sigma[M]$ as well.

We recall a sufficient condition of a Dedekind module in Lemma 3.3 of [1].
Lemma 2.3. Let R be an integral domain and M a faithful multiplication module. If for any non-zero prime submodule P of M is invertible, then M is Dedekind.

Proposition 2.4. Let R be an integral domain and M a faithful multiplication module. If for any non-zero prime submodule P of M is invertible, then $\sigma[M] \subseteq \lambda$.

Proof. It is obvious by applying Lemmas 2.3 and 2.2.
The following propositions are another properties of a Dedekind module.
Proposition 2.5. Let M be a faithful multiplication Dedekind module over an integral domain R. If I is an ideal of R, then M is a λ-module over I and $\lambda(I)$ is a λ-module over R.

Proof. Since I is an ideal of $R, \lambda(I)=I M$ is a submodule of M. Hence $I M$ is an invertible submodule. We have $I^{-1}=(\lambda(I))^{-1}$ due to Proposition 2.1, i.e., I is an invertible ideal of R. By using a result in [7], we conclude that I is a λ-module over R. For any ideal B and C of R we have

$$
(B \cap C) \lambda(I)=(B \cap C) I M=(B I \cap C I) M=B I M \cap C I M=B \lambda(I) \cap C \lambda(I)
$$

This proves our assertion.
Now we give a sufficient condition of λ-module.
Proposition 2.6. Let M be a multiplication Dedekind R-module. Then every R-module is a λ-module.

Proof. According to Theorem 3.12 of [3], a multiplication Dedekind R-module implies the ring R is a Dedekind domain, i.e., a Prüfer domain. It means every R-module is a λ-module.

If M is an R / I-module, then under scalar multiplication $a m=(a+I) m, M$ becomes an R modules for every $a \in R$ and $m \in M$. Conversely, if M is an R-module, then M is an A / I-module with respect to $(a+I) m=a m$ for every $a+I \in R / I$ and $m \in M$.

Proposition 2.7. Let R be a ring, M an R-module and I an ideal of R where $I \subseteq\left[0:_{R} M\right]$. M is a λ-module over R if and only if M is a λ-module over R / I.

Proof. If M is a λ-module over R, then $(B \cap C) M=B M \cap C M$ for every finitely generated ideals B, C of R. Suppose $B / I, C / I$ be any ideals of R. Then $(B / I \cap C / I) M=((B \cap C) / I) M$. Since $(B \cap C) M=B M \cap C M,((B \cap C) / I) M=(B / I) M \cap(C / I) M$. This gives $(B / I \cap C / I) M=$ $=(B / I) M \cap(C / I) M$. So, M is a λ-module over R / I.

Conversely, let M is a λ-module over R / I. Suppose B, C be any ideals of R with $B M \neq\{0\}$ and $C M \neq\{0\}$. Clearly, $B+I / I, C+I / I$ are an ideals of R / I. Since M is a λ-module over R / I, $((B+I / I) \cap(C+I / I)) M=(B+I / I) M \cap(C+I / I) M$. On the other hand, $((B+I / I) \cap(C+$ $+I / I)) M=((B+I \cap C+I) / I) M$, consequently $((B+I \cap C+I) / I) M=(B+I / I) M \cap(C+I / I) M$. Then $(B+I \cap C+I) M=(B+I) M \cap(C+I) M$. Since, $I \subseteq(0: M),(B+I) M \cap(C+I) M=$ $=B M \cap C M$. So, M is a λ-module over R.
3. Chain modules and $\boldsymbol{\lambda}$-modules. In this section, we consider chain modules and the relationship with λ-modules.

Proposition 3.1. Let M be a chain R-module and faithful. Then $\sigma[M] \subseteq \lambda$.
Proof. For any $N \in \sigma[M]$, according to (15.1) of [15], $N=\oplus_{\Lambda} R m_{\lambda}$, where $m_{\lambda} \in M^{(\mathbb{N})}$. Since M is chain, $N=R m_{0}$ for some $m_{0} \in M^{(\mathbb{N})}$. Now take any ideals B and C in the ring R. We only have to prove that $B N \cap C N \subseteq(B \cap C) N$. Take any $x \in B N \cap C N$. Then $x=b m_{0}$ for some $b \in B$ and $x=c m_{0}$ for some $c \in C$. Hence $x=b m_{0}=c m_{0}$ and moreover $(b-c) m_{0}=0$. Since M is faithful, $b=c$ and we obtain that $x \in(B \cap C) N$.

For the converse of Proposition 3.1 we need an extra condition as we give in the next corollary.
Corollary 3.1. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator for all semisimple R-modules. Then $\sigma[M]=\lambda$.

Proof. We apply Proposition 3.1. It is known that a module over a semisimple ring is semisimple. Take any R-module N in λ, then N is semisimple. From the assumption, $N \in \sigma[M]$.

According to the properties of $\sigma[M]$ in (15.1) of Wisbauer [15], we obtain the following corollary.
Corollary 3.2. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator for all semisimple R-modules. Then:

1) λ is a hereditary pretorsion class, i.e., λ is closed under submodules, homomorphic images and any direct sums;
2) for any $N \in \lambda, N=\sum R m$, where $m \in M^{(\mathbb{N})}$;
3) pullback and pushout of morphisms in λ belong to λ.

Corollary 3.3. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator for all semisimple R-modules. If N is M-injective, then N is K-injective for all $K \lambda$-module.

Proof. If N is M-injective, then N is K-injective for any $K \in \sigma[M]$. But according to Corollary 3.1, $\sigma[M]=\lambda$. Hence N is K-injective for any $K \in \lambda$.

Now we recall the following definition from Definition 2.6 of [10].
Definition 3.1. Let M and N be R-modules. We says that M rises to N, denoted by $M \uparrow N$, if every M-injective module is N-injective.

Based on this definition and properties of injectivity in $\sigma[M]$ we conclude that if $N \in \sigma[M]$, then $M \uparrow N$, but the converse is not necessary true. Theorem 2.8 of [10] has given a sufficient condition such that the converse is holds.

Corollary 3.4. Let R be a semisimple ring, M a chain R-module, faithful and a subgenerator for all semisimple R-modules. For any module N which is $M \uparrow N, N$ is M-injective if and only if N is K-injective for all $K \in \lambda$.

Proof. It is straightforward from Corollary 3.3 and Theorem 2.8 of [10].

References

1. M. M. Ali, Invertibility of multiplication modules, New Zealand J. Math., 35, 17-29 (2006).
2. M. M. Ali, Invertibility of multiplication modules, II, New Zealand J. Math., 39, 45-64 (2009).
3. M. Alkan, B. Saraç, Y. Tiraş, Dedekind modules, Commun. Algebra, 33, 1617-1626 (2005).
4. R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. and Math. Sci., 27, 1715-1724 (2003).
5. H. Ansari-Toroghy, F. Farshadifar, On multiplication and comultiplication modules, Acta Math. Sci. Ser. B., 31, № 2, 694-700 (2011).
6. S. Çeken, M. Alkan, P. F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392, 265-275 (2013).
7. D. D. Anderson, On the ideal equation $I(B \cap C)=I B \cap I C$, Canad. Math. Bull., 26, № 3, $331-332$ (1983).
8. Z. A. El-Bast, P. F. Smith, Multiplication modules, Commun. Algebra, 16, № 4, $755-779$ (1988).
9. M. D. Larsen, P. J. McCarthy, Multiplicative theory of ideals, Acad. Press, Inc., USA (1971).
10. S. R. Lopez-Permouth, J. E. Simental, Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 362, 56-69 (2012).
11. B. Saraç, P. F. Smith, Y. Tiraş, On Dedekind modules, Commun. Algebra, 35, 1533-1538 (2007).
12. P. F. Smith, Mapping between module lattices, Int. Electron. J. Algebra, 15, 173 - 195 (2014).
13. U. Tekir, On multiplication modules, Int. Math. Forum, 2(29), 1415-1420 (2007).
14. I. E. Wijayanti, R. Wisbauer, Coprime modules and comodules, Commun. Algebra, 37, № 4, 1308 - 1333 (2009).
15. R. Wisbauer, Grundlagen der Modul- und Ringtheorie: ein Handbuch für Studium und Forschung, Verlag R. Fischer, München (1988).
16. S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37, 273-278 (2001).
