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SINE-GORDON TRANSFORMATIONS IN NONEQUILIBRIUM
SYSTEMS OF BROWNIAN PARTICLES *

HEPETBOPEHHS CHHY C-I'OPJOH Y HEPIBHOBA2KHHX
CHUCTEMAX BPAYHIBCHbKHMX YACTHHOK

Finite volume grand canonical correlation functions of nonequilibrium systems of d-dimensional
Brownian particles, interacting through a regular (Jong-range) pair potential with integrable first partial
derivatives, are expressed in terms of expectation values of Gaussian random field. The initial
correlation functions coincide with the Gibbs correlation functions corresponding to a more general pair
long range potential, Nonequilibrium Euclidean action is introduced, satisfying a thermodynamic
stability property.

Ins nepiBHoBaX<HOl GaraTOKOMIOHEHTHOI cHCTeMM OpayHIBCBKHX YacTHHOK, IO B3aeMOJIIOTh 3aBjA-
KH (a/IeKOCAKHOMY) TapHOMY MOTeHLIaNny 3 iIHTerpoBHHMH YACTKOBHMH MOXIIHHMH ApPYroro Hopsf-
KY, B obsacTi ckinuennoro o6’emy Kopesanifni yHkuii BeqMKoOro KaHoHIiYHOro aHcaMbJ110 BHpaKeHi
¥ TepMiHax MaTeMaTHYHOro criofiiBalna pyHKUiH KiNbKoX raycciBcbKHX BHIAJKOBHX noJiis. IloyaT-
KoBi Kopessuitiui dyHkuil 36iraloTses 3 riGociBcbKUME KopessuifanmMy (hyHKLI MM, 10 BigToBiga-
10Th GiMLII 3aranbLHOMY TApHOMY NoTeHUiany B3aemopil. Beellena HepiBHOBa’sKHA eBKJIifiBChKa i,
1[0 33/IOBOJIBHSE YMOBY TepMoaUHaMiumol eTifkocTi.

1. Introduction. Nonequilibrium system of n interacting Brownian particles is
described by the Smoluchowski equation for the probability density pg(X,, ) of

finding n particles in the point X, = (x;,...,x,) of nd-dimensional space [1]

d - "
EPD(er) = Z,IVJ(B ivjpﬂ(Xw f}+ Po (er)vjyﬂ (Xn))’
Jj=

where Uy (X,,) = Zl<k<j<u $g (xj —x;) is the potential energy of the particles, B

i : 0 . i
is the inverse temperature, V; = F. It is the forward Kolmogorov equation for the
X .
J
gradient stochastic differential equations

a .
5% =~ (VU)X +w(®),  j=1,....m,

where w;(f) are independent processes of white noise. Solutions of the infinite -
particle gradient stochastic differential equation (j=1, 2, ..., =) for different subsets

of the set of infinite locally finite configurations were constructed in [2—6]. The

infinite particle system of Brownian particles, described by the thermodynamic limit of

grand canonical (nonequilibrium) correlation functions, was investigated in series of

papers [7—12] for the case of short range (integrable) pair potential ¢, and Gibbs

initial correlation functions.

In this paper, we consider the grand canonical correlation functions of d-
dimensional systems of interacting Brownian particles with a long-range regular pair
potential ¢, inclosed in a compact domain A at initial moment, whose boundary
does not have any influence upon particles afterwards (it is possible to impose other
boundary conditions valid at any moment). We assume that the components of the
vector-valued function (Vd,) are
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SINE-GORDON TRANSFORMATIONS IN NONEQUILIBRIUM SYSTEMS ... 1405

integrable and that at the initial moment the correlation functions coincide with the
Gibbs correlation functions of the system with the long range pair potential % $o(x)+

+ ¢, (x), where ¢;(x) may also be long range.

The considered systems include 1-d systems of charged particles, interacting via
the regularized 3-d Coulomb potential. We generalize the Sine—Gordon (SG)
transformation for the systems in which a particles has the charge e € E {r}, where
E.{r} is the set on areal line with » elements.

The considered initial Gibbs correlation functions are given by

A X ()i 8) =
H—I 2 Z (Y _[ Po (Xm’ an (g)m’ (e’)n »th)l) an ’ (1)
n>0 (e i

where summation and integration are performed over the set E {r} and d -
dimensional space, respectively.

(&) = (1s1 €)s  Ziay, = H %,
z, is the activity of the particle with the charge e,
pé‘(X,,,(e),,;oml) = xa(X)exp {~B U(X,, ()},
U(X, (e),) = Uo( w (€)n) + Up(Xy (e),),
Uo(1)(Xns (e},,) = 2 eeiom (- xe).

lsk<j=n

These correlation functions are generalized solutions of the gradient diffusion
Bogoliubov hierarchy [7, 13]

d -
gf p(Xm1 (6)_," : 1‘) .

-1 ap(Xm:(e)m; ) , aUU (Xm,(e)m}
T X, {B ox,, Pl ™,

+ z J- dxm-l'lp( +1:(e)m+11 ) BXm

€+l

aUD (xm—!»l! €m+1 |Xm: (e)m) }

where
UO( m+ 1 € m+1| )_

m
= UD(xm-i—ll (e)m+1) - Uﬂ(xm’ (e)m) = Z em+lej¢0 (xj —Xmt1)»
Ful

summation and integration in the third term are performed over the set E,{r} and d-

dimensional space, respectively, —— is m d-valued operation of differentiation,
m

suggesting that applying twice it demands the summation over indices of X,,. In this
notation; the Smoluchovski equation coincide with the above equation if we put the
third term in its right side equal to zero.
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1406 W. 1. SKRYPNIK

The proposed SG transformations express the correlation functions in terms of
expectation values of functions of random fields

PA Xy @i 1) = B! [ 1(d(9)5) PP (Xpps (@3 11(@),) exp{Z* ((9)s: )}, ()
Ep = [ R(d@),) exp{L*(9)s: )}, s=1,2.3,

where 1(d(9),) = [, 1@, (®); = (@1, -, @), @5, 5=1,2, depend on x
and @5 depends on (x,t). Measures |L; are homogeneous Gaussian with the
covariances ¢;(x), [=0,1; (~Ady)(x)d(t), [=3. Functions LA, pA will be called
nonequilibrium (Euclidean) action and (random) correlation functions, respectively.

The most important property of the Lagrangian LY s the property of the
thermodynamic stability

|LA(@)s) s 1) < |ALLE),

where | A| is the volume of the compact domain A. The functions p appearing on

the right-hand side of eq. (2) are uniformly bounded in A.
A starting point in the derivation of the rcpresentaﬂon is the following relation for

the solution of the Smoluchowski equation
p°(Xn ) = [ n(d(@)) Py, K ®), $=1,2,3.

A description of the system in terms p?q,): (eq. (9)) is achieved after a reduction of the

Smoluchowski equation to the heat equation for pj (eq. (6)) and applying the FK
(Feynmann — Kac) formula (3.1) [14]. The FK formula reduces our »n particle system
to the Gibbs system defined on a space of nd-dimensional Wiener paths with
“potential energy” expressed in terms of three positive-definite two-particle potentials
and a three-particle potential. The first two two-particle potentials (¢gy, ¢ ;) are

defined on the Wiener paths at initial and final moments, the third one (-—Vz%) is
defined on the paths on all time interval. The Gibbs factor with these potentials can be
eliminated then by introduction of the above three Gaussian measures by a standard
equality used in deriving the usual SG transformation (egs. (15), (16))

EXP{—E z ejek'¢0([)(xj_xk)} =

ij=1

~ . . En .

= Jum)( P1(2)) €XP 4 & 5 e Oy () s 3)
I=1

n Bl
SXP{_ 2 €k j J (=Adg) (w; (1) — wy (T))d'c} =

Jik=1 0

n Bt
= J p3(d(p3)cxp{ D ¢ j (Ps(Wj(T)’T)d’C}- @
J=1 0

The nonequilibrium action is given by
A =
LE((9)s, 1) = mE A ((9)s)s
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where Z,((9),) is the grand partition function of the distribution p?q,} D IF ¢y s

; A . S .
sh()rl-raqgr%, ‘thcn all the functions L™ exist on a finite time interval for small values of
the activities (depending on time). If this potential is long-range, then

thermodynamically stable LI\((PJ does not exist and the thermodynamically stable

LM((9),), s=2,3, are well defined on a finite time interval. For s =3 the function
has the most simple form. It corresponds to the Gibbs system defined on Wiener paths
with the three particle potential

B—I

0

!
(Vo) (w (1) (Vo) (wy (1)) dt .

The Gibbs factor containing this potential can be reduced (eq. (17)) by an analog of
above formulas (-) to the Gibbs factor containing imaginary two-body potential
defined on the extended space of Wiener paths. The Lagrangians are expressed in
terms of series (high-temperature expansion) involving all the connected parts of
correlation functions of a Gibbs system defined on Wiener paths. In a usual Gibbs
system the necessary condition of convergence of the expansion is the condition of
integrability of a pair potential. The analog of this condition in our system is the
integrability of the function |Vé,]|.

Our approach was inspired by the Ginibre's approach [15] based on a reduction of
the Gibbs quantum system with the help of the FK formula to the classical Gibbs
system on Wiener paths. The substantial difference between our and Ginibre’s
approach is that we have to treat the system on Wiener paths with a three-particle
potential. Our technique permits (o solve the Kirkwood — Saltsbourg (KS) equation for
classical and quantum systems with this sort of a three-particle potential. This
approach establishes an interesting correspondence between the inverse temperature in
quantum systems and time in nonequilibrium systems of interacting Brownian
particles, making possible the application of low-temperature expansions of the former
in studing a long-time behavior in the latter.

The proposed generalized SG transformation might permit one to construct for the
systems an analog of the Glimm - Jaffe —Spencer—Federbush— Brydges cluster
expansion [16], applied by us to nonequilibrium systems of Brownian particles with
short-range (regularized Yukawa potential) [12], perform the mean-field
(Debye — Huckel) limit [17— 18] and compute quasiequilibrium fluctuations (results
concerning equilibrium hydrodynamical fluctuations in nonequilibrium systems of
interacting Brownian particles are obtained in [9] 5 see also [20]). We hope that a more
profound generalization of the SG transformation may be devised [21] in dealing with
the 3-d system of charged particles. Our results can be generalized to the case of
stable short-range pair potential ¢, and to the casc of the potential energy U,
expressed through many-particle short-range potentials.

Qur paper is organized as follows: in the second section, we formulate our two
main theorems and give formal algebraic formulac for the calculation of the action
LA((q))I‘.), The formulae for the case s =3 are given in an abstract form and their
understanding demands an application of the FK formula, given in the third section. In
latter we also introduce the generalized Gibbs ensemble on Wiener paths with complex
pair potential and write down the KS equation [22] in the nonintegrated form (last
equalities of the paragraph). In the fourth section we give estimates of L” norms of
functions satisfying this equation and establish the convergence of high-temperature
expansion with the help of three propositions, proving the theorems.

2. Main results. SG transformation. In this section, we introduce a generating

functional of the sequence p;\ of our nonequilibrium correlation functions p A(Xm.
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1408 W. I. SKRYPNIK

(€),,; t), Gaussian measures [L;(d¢;), mentioned in the introduction, new equilibrium

correlation functions pf}ph , s=1,2,3, given by eq. (9) whose connection with pf&
is given by eq. (10). The functions correrspond to the grand canonical ensemble,
related to the n-particle distributions ﬁg‘m’ (X, (€),;t), which solve the Cauchy
problem for the heat equation, to which the Smoluchowski equation is reduced by the
“Euclidean” gauge transformation (5). For s = 2 the functions correspond to the
initial data with the factorized dependence on the coordinates of n particles. For s=3
the functions are given by eq, (8). The clarification of this formula with the help of the

formula is postponed to the next section. The section ends with the formal
algebraic formulas (12), (13), expressing the grand partition function

Exl(9);) = Z z (o )" j PO(g), (Xns ()n31)dX,
nzo™ (e’)
and the correlation functions p&); through the connected parts Qg(q,)x of
distributions fi{a,)s .
The considered correlation functions can be represented in the following form
8" FA (j; 1) =1, A =gl
Sj(xls 81). * .Sj(xm, em)

PA (X €)mi ) =
where
QUDEDW X o, | b 0 @i )

nZO e,

n

(X, e) = ] ixse)-

s=1

Lct K1(2)(d91(2)), H3(d;) be the Gaussian measures on the probability space Q;,
=1, 2, 3, with the covariances

_[J-L(d@l(Z))fPl(z)(x) P2y (M) = do1)(x=»)s
[ 13 (de3) 3 (50 9300, 8) = (—AdQ)(x—¥)8(t~s),

where A = V2 is the d-dimensional Laplacian.

Theorem 1. Let ¢y, ¢, be bounded positive-definiter functions.

1. If Abgy, ¢, are bounded integrable functions and (components of) (V ¢g)
bounded by a bounded monotone decreasing integrable functions,

then there exists a function Ay(t) increasing in t and a function

LAG,tl (9),),  s=1,2,3,

on Q°xR" such that for |j(x)| < 1 and Y, lz,| < exp{-Ag(1)} the
following equality

FAG; 1) = [ n(d(9),) exp{Z* (j; 1l(9)5)}
and the inequality

ISSN 0041-6053. Yxp. mam. xypn., 1997, m. 49, N* 10
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-1
| 2G5 ()| < [I~Z{zg!eXP{Ao(f)}J
hold for s=1,2,3. Here
Ao() = A(E) + £Be2[09(0) + 6 (0) + 2(-00)O)].

2. If (V%)2 is bounded by a bounded monotone decreasing integrable
functions, then the above equality and inequality hold for s =3.

3. If condition 2 is satisfied and A ¢, is an integrable function, then the
previous equality and inequality hold for s=12,3.

Theorem 2. If condition 1 of Theorem 1 is satisfied, then there exist a function
LM(9),, t) on QxR and a function p(q,) (X, (€),:1) on R 9% E " xR*
such that the representation (2)is true for s = 1, 2, 3 and Ee lz,] <

< exp{-Ao(t)}. Moreover, for the function LA the inequality from Theorem 1
holds and

. -1
’p&p): (Xm’ (g)m ) r)l = Jz(e)m ! e-XP{AO (f)m} [1 - Z Ize | exp {AO (I)}] .

If the condition 2 (3) of Theorem 1 is satisfied, then the above conclusion hold for
s=3 (£=2,3).
The theorems are proved with the help of the obvious equalities

LA(@)s 1) = L(154] (9)y),

8" exp {I* (j; ¢l (@)s)}} G=1.
8 (xy, e)...07(xy, 1)

pz\q)}_,, (Xm’ (&) t) = {exp {— * (7] ((P)g)}

The first step in proving the theorems is to transform the Smoluchowski equation
into the heat equation with an interaction term with the help of a kind of a gauge
transformation

pg (Xm (e)n 5 th)) = exp {"’ g UU (Xm (e)n} ﬁA (Xn* (e)n 5 1‘M:’l) ’ (5)

g ( (e)n » th:'i) B—l ( E pO ( (e)n;thJI) T+

= (0x J)"‘

+ V(Xn) ( ne (8)11;II¢I)J’

n 2 2
- 33 P ()

3xj

BA (X, (0 0101) = % (%) exp {-B U1 (X, (), }-
From this and eq. (3) it follows that

ISSN 0041-6053. ¥xp. smam. sypi., 1997, m. 49, N2 10



1410 W. I. SKRYPNIK

P (Xy. ()3 210) = BXP{E(PG(U) b3 e?} X
j=1
x [ widop IT exp{f@ejcpl cxg}ﬁé CAMORTIINE ©)
j=1

Since the solution of the Cauchy problem for the heat equation depends linearly and
continuously in different functional spaces on the initial data the similar representation

can be obtained with the help of eq. (3) for the function ﬁg appearing on the right-
hand side of equality (7)

PO (X, ()3 tldy) = CXP{E% © 3 ef} X
j=1

% [ 1 (d93) TT 80c.0p) (X (@ni1), , Q)

J=1

where ﬁg(,.q,z) (X, (€),;1t) is the solution of the Cauchy problem of the above heat
equation with the following initial data

o0, (X (€,50) = T exp {f(ﬁfz)”z > e 9y cxj)} RN

j=1 j=1

It can be shown (the FK formula and (4) are to be used) that the following equality
holds

Bo.0y) (X (@n31) = [] exp { S0P e}} x
i=l1 J=1
X [ 13 (d93) Bl 0009 Kns (On3 1), 8)

where 56\(_.@2,%) coincide with the functions f)OA(_.% y at the initial moment.
Now let us define the correlation functions (s=1, 2, 3)

A
p(q:p)‘,r (Xnv (0')" ’ t) =

” TN T ’ "
= =y (((p)s) : Z ; z Zée’))m_(g')" J qu pg{(@}s](xm- Xn ; t) ’ ®)

n=0"" (e},

where

ﬁé\(q}), (Xm (e)n ) f) =

= E,xp{i g z EJ- [O]] (xj)} ﬁ’g\(.,w)mn)(}fﬂ, (e)n;t), s=2,3;
J=1

ﬁgcpl (er (e)n;r) = SXP{":\/E 2 €; q}l(xj)} ﬁﬁ (Xm @n:tld1),
Jj=1 =

zf.” = exp {% do (0)&_.,2} 5 zf.z) = exp {g ¢ (0) e_,z} zgl),

ISSN 0041-6053. Ykp. smam. xcypr., 1997, m. 49, N® 10
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= o {ZC-M)OZ} D, (\) =),

and B, ((9),) is the grand partition function of the sequence p‘é‘w),} , coinciding with
the numerator in the expression for pf},)s for m = 0. As a result, we obtain that the
following representation holds for correlation functions
. =1 =
PAXms @ms ) = ER | 1((d9),) B ((9)s) Ploy, Ko ()3 1) - (10

Now we are able to prove the equalities in the theorems formally. In order to do
this we have to use the sequence of the connected parts . v of the sequence p of
correlation functions [16]. They are defined by the equalities (p(z,),n=0)

p =exp,v, V=In,(e+p), =1, eZ) =0, n>0; py=0,

where z; may be elements of arbitrary set, exp,, In, are operations given with the

help of multiplication, defined by the operation * on the space of sequences, as usual
functions exp and In do and

(WxV)(Z) = Y, WIOHV(Z,\Y), W(D)=W,.
' YeZ,

The space of sequences with this multiplication becomes on algebra. Let us define the
linear (multiplicative with respect to *) functional on it

0y = 3 =TI i@)dots)p(z,).

nz20"" k=1
Since (W V); = (W);(V);, the following formal equality is true
- (exp,v); = exp{(v);}.
Putting z = (x, ) and using the last equality we obtain

FMGit) = [ n(d(e),) exp{(¥g, )}, s=1.2,3, (11)

where {’Oﬁ(qz)_,. is the sequence of connected parts of [33@): . Hence, we gave the
formal proof of the equalities of the theorems:

g4((0),) = exp {LM((9);. 1)}, 5=1,2,3, (12)

where )
LAG 1)) = (g, )
LA(@)ss8) = By, €)= (e
Let w&!) denote the sequence such that W * y&!) = ¢ and D, denote the operation
(Dzy)(Y) = ¥(Z,Y).

Using' the equality (w~!) = (y)~! (provided (y) exists) the following relation is
easily proved

pap)‘ (Xﬂ’ (e)h ; f) = 036\({(;)]:) " DXJlll-(e)m ﬁg((P)) =

] 4’ £ s
= E ; z Z(e)m»(e')n J dXﬂ p&.)_‘_ (Xmi (g)mixm (e )m)' (13)
nz0"" (e,
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1412 W. L. SKRYPNIK

In order to prove the theorems we have to prove the convergence of the series
which defines operation (-)(j). The most straight forward method to do it is to apply
the FK formula, reduce the above connected parts to the connected parts of a
generalized Gibbs system and use the reccurent KS equation.

3. FK formula and KS equation. In this section we fulfill the reduction of the
considered nonequilibrium system to the Gibbs system with an imaginary pair potential
defined on the space of Wiener paths. At first we introduce the Gibbs grand canonical

correlation functions, depending on the Wiener paths W,,, pf",jp)’ (X> Wy (€),,) (eq.
(17)) with the help of the FK formula (14). Equality (18) connects the functions with
the functions pf}p}s (X (€)m3t). The FK formula clarifies the Gibbs structure of the
functions ﬁg(fph (egs. (15), (16)). Then with the help of eq. (19), which is an analog
of eq. (3), we introduce a new additional set of Wiener paths W, ,,, starting from the
origin (the Wiener paths, appearing in the FK formula, start from X, and are denoted

by W1,m), and the correlation functions p*"\(W(I)m', (e),,) which correspond to
the Gibbs ensemble on Wiener paths W,,,, and complex (imaginary) pair potential
(s =3). The imaginary pair potential is defined with the help of a stochastic integral.
Equation (20) establishes a relation between the functions and p{}p)f . Further we

define the functions pj (Weaym|Way,) which satisfy the recurrent KS equation (23).

The connected parts G‘S(q,)s , correlation functions p?(‘;)‘ , and the action L" are
expressed through them by egs. (21), (22). Let us write down the expression for the

functions P using the FK formula [14].
ﬁg (Xm (e)n ) t) =0
= [ Py, (W) xa W)™ exp{-BLV,(W,) + Uy (W, B~')]},  (14)

where
1

3
V(W) = —B~ [ V(W@ ')dr,
0

Py (dW,) is the Wiener measure on a probability space (Qg)” of nd-dimensional

paths, concentrated on the paths, starting from X,,, Q8 is the probability space of d-
dimensional paths. To simplify notation we omit the dependence of V,, Uy on (e),.

The function V, is the sum of two terms V, = Uj + U3,

sy
1 [ 4L )

Uy(W,) = == ,
2 == ) T aw,

gk 2
1 AU,y (W, (1))

Ub(w)y = B= gy =0 T2

3( n) B4 { aWL

82
where ——— is the nd-dimensional Laplasian, || - || is the Euclidean norm in nd-

n
dimensional space.

Now the functions ﬁg((p)s defined in the first section can be written down as
follows

ISSN 0041-6053. Y&p. sam. xypu., 1997, m. 49, N* 10
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0,00 X (€538) = [ Py (aW, Jexp{ﬂﬁfﬁf” > e @a(w; (B r))}

j=1
x exp{~BV, (W)}xa (W, B7'5), (15)
ﬁOA(-,((p){a\u) (Xu' (6’)” > I) = J PX,,r (dFVII) 3)(1){‘-[3[]; (Wz)}x;\ (H]n (B_Ir)) X

n B_II
X exp {E(B;’Z)m 2 e {:(pz (w; B'n) + j @3 (w; (1))d1:”. (16)
j=1 0
Thus, we performed the reduction of the nonequilibrium system of interacting
Brownian particles to the generalized Gibbs system with the phase space R X E {r} X

X Qd, caracterized by the correlation functions

p(cp):( m? m:(g)m)
' E E (eJN,(e)n_[ IPX (dWy) exp{—=B Uz (W,,, W)} x

:150 (.63’]11.I
X 2n (W B0, W (B™'1)) exp{i(B/2)"* [0 (X W) + off (X3 WHI}, (17)
Uy = Us +...+ U3, s=1,2,3, U[W) = U;(W, "),

Bl
o (X W) = S e |2 Y2, (xp) + 93 (w; B7'1) + B J 03 (w; (1)dr |,

j=1

O X W) = Y g [27 29 (x)) + @2 (w; B7'D)],

i=1

o (X, W) = S e 00x) = o™ (%)
J=I1
The following relation is valid

Pler, K @) = [ P (dWyn) pliy. (Xins Wops (€)) - (18)

It is necessary to perform the thermodynamic limit for these functions in order to prove
our theorems. The functions have the algebraic structure of the reduced density
matrices of quantum system with two and three particle potentials. If the three-

particles potential ¢o(x, y) = (Voy(x), Vdg(y)) were not present, then we would
immediately use the Ginibre technique to prove the convergence of high temperature
expansions for the correlation functions in the thermodynamic limit. To circumvent

this difficulty we introduce the sequence of new functional variables W, ,e (XQ "
which help us to reduce the Gibbs system with the three-body potential to the Gibbs

system with a pair imaginary potential with the one-particle phase space R?x E{r}x
(xQn)*:

n B~ i
exp{-BU; (W)} = | Pocd%.n)exp{f EX [ (dwy;(n),V U(%)ncn))}
i=1 0

= [ Ry(dWy,,) exp {~BUS" (W)}, (19)
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1414 W. I. SKRYPNIK

Us Waye) = Y, 05 (W 11 Wiay i) s
1<k<j<n

05 Wy Viy) = 5107 Oy =15 w3) = 65 0y —v1303)],

B .
Or (w3 wy) = J (dwy (1), Voo (Wi (1)) s Weayn = (Wi Wa)
0

where (-,-) is the scalar product of the 3-d Euclidean space, and ¢ (w;; w,) is the
stochastic integral. The function ¢} (w;v) is a measurable function on L*((x Q)%
Py). Indeed, this function is defined almost everywhere in w (w is a continuous

function) as a limit in the topology of Lz(Qd, Py) of integral Riemannian sums, i.e., is
a measurable function in v. This function is also measurable in w, since it is defined
as a limit of the almost everywhere convergent sequence of measurable functions (a

sequence of functions converging in the topology of (24 Py) has a subsequence
converging almost everywhere). The integral sums are cylindrical functions in w, v.
Hence, the limit is a measurable function.

Now we express the correlation function pf}p): introduced in the first section as
follows

Plor, Ko @Om3 D) = [ R, 0y (@Waym)s Piay, (Wzyms (€m) (20)
pE}p);_; (H{[Z)m’(e)m) = H"l(((p) )X

X Z Z e I dX;, [ Bxz.0)(dWay,) exp{~BUE) (Woayms Weayn)} X
;120 (ez’),1

X xa (W B7'0), W, B7'0) exp i (B/2) 2 [ofm) (X; W) + o (X", W)},
Upy = Us +...4 Uy, §=1,2,3.

Let vB( 5) be the connected parts of the Gibbs factors p(; produced by the potential
U, - Letus also define the following functions

~k(—])

p(.'r} (“)EZJHH (e)m ’ WE?.)m (e’ )u) = (pD(E) D'W(z],,,,(e)m pB(E))(H}E}Z)n ; (6’)") J

From the definition of the multiplication #*, connected parts and the inverse sequence

p~! given above, we deduce the proposition and the corollary.
Proposition 1. The folloving equalities are true

Vﬁ(q))_,( Xy (@)nit) = _[ Fx,.0) (dWaym) Vorsy (Ways (€n) X
X xa (Win B7'1) exp{i(B/2)'? 03 (X; W)}, (21)
Vot WMaym @©n) = Py (Was €] Woayiar1ys (©arny)
Pter, Kor (@] Xi (€)),) =
= [ Rx,.0)@Waym)s | Bxz.00 (@Wayn)s Py (Weyms (€)m| Wity (€)n) %
X %p (Wi (B0, W, (B7'0)) exp{i(B/2) 2 [0fR) (X, W) + o{f) (X', W)]}.
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Corrollary. The following relations are valid

p?cp)s (wzjm’ (e)m) =

1 T4 s £
> = 2 Z((:))m,{e’)" f ax, I Bix: 0y (@W2y) Prsy (Weayms (@m | Wiayns (€))) X
nz0 """ (e,

X X (W B7'8), W, (B'1)) exp{i(B/2)! 2 [0 (X, W) + o (X', W]}, (22)
LA tl(e),) =

((j)},, I Fix,,0) (@Wayn) V‘{k}(.\')l(WEZ)m (€)n) Jn (X, €) X

u>0 (e),,
X xp (Wi, B0 exp{i(B/2) % 0{8 (X, W)} .

In order to prove our theorems with the help of this corollary we have to use the
standard recurrent KS equations

p?.s‘) (W,(Z)m: (g)ml “’Efi}n ) (g!)n) =

= exp{-BUG Wyl Wer. )Y 2 Ky Wiy Wy ) ¥
{I}e(l,....n)

1]

X pesy Weayam\ 19> Wy iap» (@13 @i | Wy iapys (€)mr 1) » (23)
where VV(Z)J = (Wl,j= Wz'j), (n\{l}) = (1, o n)\{l}, jém and

K;.s') (I’V(IZ)nl W](Z),j) =

n
= [T (Kl Wyl Wy, ;) = exp{-Bog (Wl Wy, ;)T — 11,
r=}

n
> e 0 Wyl Wy, ) s

r=l, ref
pzr) (MZ)m I @) 2= cxp{—ﬁ UE;') ("V(?.)m)}

For snnphclty, we omit a dependence of functions Km on ¢, é.
4. Main bounds. In this section, the crucial estimate (27) is proved by induction
with the help of the KS equation, which yields the convergence of the series in egs.

(22). As aresult, our theorems are true, provided A(¢) = A; () + BB™(1).
Indeed, from egs. (18), (22), eq. (28) and the Schwartz inequality we derive

IPA(Xm) (e)m: r)l = | ((:))ml Z [2 |Z(S):] ”p*”(m,nlq) S

nz0L e

U{.:) (H](Z)ml ME)J) =

uld

=
é |exp{mA()} [l - 2 exp{A®}|z" I]

-1
LAGitlee),) < 1Al [1 = > 129 cxp{A(t)}]

if 3, 12 < exp{-A)}.
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1416 W. 1. SKRYPNIK

The most simple case corresponds to s = 3. For it we do not need to use the RG
(Ruell — Ginibre) symmetrization. For the cases s =1, 2 we need to use it. In order to
simplify notation we denote by p*, K", U’ the function pfy, Kpy. Ug).
respectively, and derive the bounds for the case s =1 crucial for our theorems. All
bounds for s=2, 3 are majorized by similar bounds for s=1.

RG symmetrization exploits the stability (positive-definiteness) of the potentials
60, 1. Let % jm)(Xpms Wi, ;) be the characteristic function on Q; of the set where

the following inequality holds
2
e -
ReU" (Wayn | Wy 1) = 2101(0) + B~ £(=Ado)(0)].

From the stability of the potentials

m 2
2 Z {U’* (Maym Wiz, ) + %"(tbl 0) + (—A%)(O))} =

J du m e e; [ o (wy ; B7'E) — wi B7') -

k; 1
— Ay (wy,; (1) = w ()] 2 0
it follows that

-1
m m
2 Xim =1, XGm = [ 2 xu,m)J Xjm) - 24)
Jj=1 ji=1
After multiplying both sides of the recurrent KS equation defined at the end of the

second section by xa'm) and summing over j from 1 to m, we obtain the
symmetrized recurrent KS equation

m
P* (Wayms (@m| Weyns €) = X, Xljumy eXp{~BU™ (Weaym | Wiay, ;) X

j=1
x 2 K (WonlWa,;) x
{}e(l,...n)
X P* (Wayms Wy 1y (@emr1ys €y | Waymr iy (€)mv 1)) - 25

Let us set
1P* s (Weaym) = | dX;r [ Brz o @Wiay)l p* (Wiayms (€Dl Wiapms (€))], (26)
19" g Wiy W) = ([ B @, )(10" s Wiy i), |
(K (Wl W, )T = [ By (@5, (K" (Wal Wiayn)) .

Once more we shall not write down a dependence of |p*|,, [p*|,. g on (e),. From
the Holder inequality and the symmetrized recurrent KS equation it follows that

10" 12 (Waym) < 2 Xj.m exp{B B" ()}z  Tin Q,j dx] [ Py (@w) x
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X K;f(q—lj (Wa| W) |p*|n,q (Wymeny | Woimrn)s  (0\D = (1, ..., m\(L, ..., D),

where

=2
B'(1) = - [01(0) + B 1(-A00)(0)],

€ =maxe, m()=(1,...,j-1,j+1,..., m).
E{r}

Let us take the product over j of the KS equation and use the generalized Holder
inequality

jnmx)m(dx; < H (] 15 @ pE) .
j=1

As aresult

J PO (d%,m) ]p‘]g (T’Véz)ﬂl) <

1
< exp{gBB'®} Y, X (Her =, '(n )Jx
;

i Mkl P=t

x [ T 6 B @[ [ R ) Kipegon (g, | RE] " x

r=1

1/q
[_[ PO (d% m(J,.)) (|P |n g(WEZ)m(;,}' (g)m(})l Wi (ﬂ\! ) (e )(n\l J)) }

By applying the Holder inequality twice, using (24) and extending a summation over [,
from 0 to e, we obtain the estimate (27) for m + n, assuming it holds for m + n —
— 1, denoting

l/q
qu = { max esssup‘l- dX;J Py, (dW, 1) Ry (dwg)IK*(%[W”)[q} ;

(e)m (E }n Wy & ‘Qd
Thus, we proved the following proposition
Proposition 2. [f A; ) = In Enz 0 : g s bounded, then

l/q
” P* ”(m,.ﬂlq) = I;Il&)( esssup [J- PO (dWZ,m) (lpln(WZ(m))g] <

O Wim
< n! exp{(m+n)[A; ) +BB*®]}. . @7

‘With the help of the next proposition, we shall prove that A; (¢) 1is finite.
Proposition 3. If the conditions of the Theorem 1 are true then there exists the
constant K; such that the following inequality holds
Ky, < ()2 (28)
Proof. Applying once more the Holder inequality, we obtain

K¥ < max es.v.supJ- _[Px (@W,) Ky (wi| W),

ng
(e, w0y
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1418 W. I. SKRYPNIK

(K | W) = [ Fo(dwy) By (dWs,) |K* (Wa| Wiy, )|,

Form the definition of K* we immediately derive

I
|K* (Wa| Wy < (B2 exp {BB"0)})" I 16" (Wl W5 ;).
. i=1
Now let us take into consideration that ¢* = ¢f + ¢5 + ¢§ represent the above
product to the power g as a sum oOver U{n_,} = (1,...,n), of products

[67]™ 051" |95 | multiplied by 27", and using the bounds (in the first the
generalized Holder inequality is used)

n
[ By (dwy) By (@Wy,) TT 05 (Wl W5,)17 <
i=1

< 27 TT[[ By(@ws) ot (wy —wy ;| wy)|o"
j=1

]I;‘n -

Bt -
= 29 g} H (05w — wi i DT o3(w) = [ I (V%(W(TDZ&J ’

(Zn)= 0
-1
3 i nl <t (qn)!([g-nji) < 1892 g2 ( y0/2,

we obtain

K;(wi| W) < (n)'/? K “"H|¢l(3)fwl Wi ),
j=1

where
*n 1 " "
Kog = 5(12029)*@Bexp BB 0} +1),  10liz) = 0] + [05] + 95].
From this we immediatly derive

Ky = KooKz, Ky = GSSS;;PJ dx’_[ Py (dw') |§](3) (wy = w),
WEy

K(*s) = K +K, + K3, K = esssup_[ dx’J P (dw”) | 0L (wy — w")].

wel),

It is obvious that after changing the order of intagration in the expressions for K, s =
1,2, we get

P [axloyl, K3 < Bt [ dxlAgg ()]

To prove proposition (25) we have to prove that K3 is finite. In all our following
estimates we use the fact that for monotone integrable bounded functions h, g the
following bound is valid

[ dy £z = DA < f[""]nhuL +h[|x|)IIfH;} 29)

This bound is obtained by splitting the integral into integrals over two domains:
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| x| [ x|
= —, & =y
|y 5 57 5
using the monotonicity of the functions, the fact that in these domains either |y| = *-*I;:l

|x|

or |[x-y|= S and after that enlarging the domains to the whole space.

Now letus put £ = P%, © < B~!¢, where

P(lx]) = (demy "2 exp {—’4—'}

Then using the bound

Pl = ep{-plEL b, P - (W),

we derive

[ ay P x=nDiaiyl) < w2 (e +exp{ gl }uhzﬂmnr <

< 12 () 4 expf-p L Loz < i, 30)
2 8t
Here, we computed the norm of PPI*: !|P[2]1|IL1 = 292 From the Holder

inequality, assuming that |V¢y| < 2 and n is a monotone bounded integrable
function, we obtain with the help of the above bound

-1 1/2
K3 = esssup de[ﬁfrd'cj P"(b,Df#(b’—x—w('c)l)dy} <
Qg, w(0)=0 0
< esssup iy (W),
where
gl 1/2
ww = | dx[ | d'ch,(lw(fc)—x!)dy} : @31)

0

Now, to prove that K3 is bounded, it is sufficient to prove that there exists the
positive number % such that

| (B w))" By(dw) < agR",

for some agy and all positive integers. Indeed, assuming that k' is not bounded, it is
easily shown that the inverse inequality holds, since on a set of nonzero measure a,

the function is greater than arbitrary number 4 .
Let us put

X)* = nt [ drgy [ dy P (InD) Ry —xal) x
T[ﬁ_lq(n}
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1420 W. I. SKRYPNIK

1
x T P (ly; = yj-1) B (lyj = %51
i=2
where t[t](,) = 0<t;<1,<...<t. Then with the help of the hélder inequality and
the definition of the Wiener mtegral we derive
| Roaw) (B w))" < I = [ dx, 1(X,).

Let us apply the inequality derived from inequalities (29), (30) and trivial bound

o[- ]

J = Dh (b v < 2(1++27) 5 (). (:2)
As aresult,
(1%)? < m2(1++29) O A GO E
T[B "](n}
X H P h!(i)’j o _;D hr(]yn—l '—xnl)-

j=1
Repeating the above argument as in the case of inequality (30) and with its help we
obtain (1<B~'¢)

|y;1- b 1|
J Pt =Sa-al) B s = 50 2y [ 25 )y <
|6, = %1
[ ”2;.'.;]1 jPT(b’n-—l"'yn—zl)hf(b’n—l_xn—lDd)’n-l +

[lxﬂ - ll] .[ Pt(b’u— ~ Yn- Zi)hl[h”;ixnl)dyn-—l -2

<o ) (gt =)

|xn - x.-x—ll |yn—2 —I_.,'
+ hx( 2 hr 2£+1 .

Since T;-1; < By, for [=1, we have
s 2 [ n (5)) + g (n(5))]

Iul = n! J-dXﬂ 1 J- d’r(n)de1~ PT!([yll)}l!(lyl xll)x
B )y

1/2

n_2 —X
x T Po-sm oy =yl hllyy = (2222t | iea
j=1

Here we used the fact that the square root of a finite sum is less than the sum of square

roots of its elements. Iterating this bound n times we obtain 2" terms of the
following form
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[ alelos V)T S o ()"

<pla,
0<L<n, Y, L =n.

Hence,

I, < (#fﬁ_laﬂhfmllf_l )n = a= zmuz(l +\/?) ag=1.

Thus we proved the following proposition.
Proposition 4. The function h;'(w) defined by eq. (31) is bounded almost

everywhere if h is an integrable function.
By proposition 4 we end the proofs of inequality (28) and propositions 1—3.
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