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FINITELY REPRESENTED DYADIC SETS
AND THEIR MULTIELEMENTARY REPRESENTATIONS"

CKIHY9EHHO 30BPAZKYBAJIbHI TIAJJUYHI MHOZKWHHA
TA IX MYJIBTIEJIEMEHTAPHI 305PAZKEHH I

We obtaine the direct reduction of representations of a dyadic set § such that |Ind C(S) | <eo to the
bipartite case.

OTpHMaHO NpsiMe 3Be/IeHHs 306paKeHs Aiafuunoi MHOXHHK S, 1o sagoponsHse |Ind C(S) | <o, no
ﬁiKOMTIOI'ICHTHOFD BHIIAOKY.

Introduction. The dyadic sets (= biinvolutive posets) were introduced in [1] (see also
[2]), and for any such S the poset C(S) and the natural map © : ObRep C(S) —
— ObRep S were constructed (see § 1). The representations in Im® are called
multielementary [3] (= normal [4]). In [1, 5] the main statement ([2], 5.8) was proved

[IndS| < e iff |IndC(S)| < ee.

" For a special case it has been proved in [3]; here is only one (up to equivalence and
duality) non-multielementary indecomposable Ex. In the general case non-
multielementary representations of finitely-represented (= matrix-finite [4]) S are in
some sense the modifications of Ex, they were classified in [6, 7].

Here we propose the direct reduction of the general case to bipartite one. For any
string P CS (see § 2) we define the bundle IIp, and the natural map Op:
ObRepIlp, -ObRepS. Put Kp=Im©Op, K =@psKp. The Theorem of § 6 states
that if | IndC(S)| < o, the set K is dense in RepS. IndIlp coincides with
Ind Sy; for some bipartite Sy (such that C(Sp) == C(S) < C(S), see § 2, 3), therefore,
by results of [8], |Ind C(S)| < implies |IndS|< e and we get some description of
IndS.

Non-equivalent representations of C(S) can become equivalent under the ©. In
the appendix we show (without complete proof) how to exclude such ambiguity.

§ 1. Atriple S=(S,<,=), where S is 2 finite set, < an orderon S and = an
equivalence on < C Sx S is called a dyadic set if

1) each equivalence classin SX.§ contains at most two elements;

2) forany s,t,p,s,p’e S suchthat s<t<p, s’<p’ and (s,p)= (s, p’) there

" exists unique '€ S that satisfied s’ <t'<p’, (s,)=(s,¢") and (1, p)=(t',p);

3) (s, £)= (s, ¢’) implies t=¢#/, and (s, t)= (5, t) implies s=s".

If (s, 5)= (s, s"), weset s=s’, and set {s,s"}=S7(s) for s e S such that
|S=(s)|=2 (S=(s)={xe S|x=s}). We will denote s < if |<™(s,#)| =1, and
s=>tif s<t and |<=(s, )| = 2. In the latter case <=(s,#)={(s, 1), (s", ")}, the
pair @ = (s, £) is called edge and " = (s*, ) is the edge, dual to ¢. Put § =
={se s||s=()]=2}.

Note that for any dyadic set S it is possible to construct a vectroid (= subcategory
of modk that is a spectroid in terms [2]) = VectS [3], attaching to any class
{ay,...,a,} € S/=(n<2) avectorspace A with basis {ay, ..., a,} and to any class
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{(aj, by), ..., (ap by} € </= abasicmorphism Xe VA, B), a;X=by,...,a,X =
=b, Forthis ¥, S(V)=S5.

We define quasiorder < onthe Sx N by setting (s, i) < (t,j) if s <¢, and
equivalence on <: ((s, i), (7)) = (¢, '), (¢/,j7)) iff (s;8)=(s,¢t") and i={, j=
=j’. Set (s,i)<(t,j) if |<=((s, i), (t,7))|=1 (equivalentto s <¢), and (s, )= (1,
7) if (s, 0), (s, 8)) = ((t, /), (t,7)) (equivalentto s=t and i=j).

Suppose ¢ to be a function S— N U{0} such that ¢(s) = @(¢) if s=1¢, then
we define So={(s,i)€ Sx N|i<@(s)}. Representation of S (over field k) of
dimension @ is a matrix T (whose sets of rows row T or columns col 7 may be
empty) and bijection t: colT — S¢. Note thatif 7 is a matrix obtained from 7' by
permutations o of rows and B of columns, than (77, ¢") € Rep S, t'=¢p.

If (R, r) is another representation of S, Where r: colR — S, then the pair of
matrices (A, B) is called a morphism from (T,t) to (R,r) if AR=TB and for
entries by; of matrix B hold 1) by=0 if £(i) £7(j) 2) by= by if (¢(i), r(j)) =
= (t(i"), r (j)). Representations of S with defined above morphisms form the
category Rep S; note that Rep S =Rep ¥, ¥/ = VectS, where the objects of Rep ¥
is triples (V,f,X), Ve modk, X € ® ¥ and fe mod k(V, X), see [3].

© Given representation (7, ¢) of S, bijection ¢ translate relations from Sx K to

col T. Put f(x)=a, where t(x)=(a, i), xe colT; col T= Tl(,S?). For xe col T,

x* is such column of T that x*=x. We will write x >y iff x and y are

incomparable elements of col T or of any other (quasi)poset; for the elements of col T
or any other set with equivalence = we will write x~y iff x=y and x#y.

Given morphism (A, B)€ RepS((T, 1), (R, r)), B=(b,,) and pair a,be S, in
the natural way the matrix B is defined, ng = bl . )

For (T,t)e RepS asubset X Ccol T is called a block of (T, t) if for any xe
eX TP_ﬁtO implies pr=0 forany y ¢ X. A block composition T of (T, t) is the

set {7}, ..., T,}, where 7; are the blocks of (7,¢) and colT = H:;l T;; the triple
(T, t, T) is called a block representation. Uniquely correspond to any block 7 is
the set 7" Crow T (,be 17 if T,.#0 for some x & 7;) and (up to permutations of
rows and columns) a matrix T, col T;=T;, row T;= I;".
Block 7 is smallif itis either |Zj|=1, | 7' |=0 or | Z|=|T|=1, T;=(1)
- or G.’;:{xl,xz}, X; XXy, X # Xy, Ty=(1,1). Column y of block representation
(T, ¢, T) is said to be linked with column x, if there exists a sequence of columns
X=X[y 0, Xpq =¥, 0021, suchthat x,; | ~x5; (i=1 o), and x,;, x,,, are
contained in the same block (i=1, o —1).
The set M of block representations consits of such (7, ¢, Z7) that all blocks T,

]

i>1, are small; Z; N col T# @ for i> 1; for any pair of dual columns x, x* col T
precisely one is linked with a column from 7.

For (T,t,7)e M the block 7; will be called main, the blocks T, i > 1,

supplementary. The representation (T, t) is multielementary if there exists (T, ¢,

T) e M. The set of all multielementary representations is denoted by M. A block

representation (T, ¢, 7)€ M and (T,¢)e M are called elementary if 7] is a small
block.
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Let ‘SAzSU{O, 1}, 0O<s<l.forany se S, and $7(0) = {0}, §~(1) = {1}.
Let us introduce a poset C(S). Elements of C(S) are zigzags in S, i. e. the
sequences (Sg,...,Sy,), me N U{0} of elements § such that i Xvp 1=

=1, m—1, andeither s,_; >, and 8, € S\§, or 5,,€ {0,1} and m > 0. For

& Je C(S), S=(5,..«+8,), J=(t, ..., t,), weset S< 7 iff there exists je N U

U {0}, j<min (m, n) such that S;=t or 5;=t€ § if i <j, and either 55 < r_’,'-‘_l,

or s5_; <t, or s <t Denote by y: C(S)— S the map Y(sg, 5y, ..., Sp) = 5.
" Following [4] we will further suppose that | C(S)| < .

Remark 1. In the similar way the (stronger) order < on C(S) can be introduced:
for §=(sg,.--»8m) T=(t.... 20 € C(S) weset ST iff je N U{0} exists
such that j <min (m, n), s;<t; for i <j and at least one of the following conditions
hold: 1) Sp ch., 2) B < f;, 3) SS {fl, 4) :j<{f, j>0, 5) J:m =n, Sn:.'tn_

In the natural way a map ©: ObRep C(S) — ObRep S can be constructed (see,

for instance, [4]). In fact ® may be considered as the map: ObRep C(S) — M.
However, there is no a natural functor Rep C(S)— Rep S. Nevertheless, the results of

[3] imply ,

Proposition 1. The category Rep’C(S) and the functor I. Rep’C(S) — Rep S
exist such that Ob Rep’C(S)=ObRep C(S), Rep C(S) is epivalent to Rep’C(S),
M=1ImI (up to permutation of rows and columns).

Proof. We may set Rep’C(S)=Rep (El, N), where a module N over spectroid
El of elementary representations of S and a functor I: Rep (El, N) — Rep S were
constructed in [3], § 5, 6.

It is easy to see that I(T) = ©®(T) for T € ObRep’C(S).

§2. Let P C S bea string, 1. e. the subset {py,...,p,} C §, such that

Dp=p=...=p

2) if pe P, xe S and x=p or p=x, then xe P,

In this case the dual set P* = {pf’, ..., p;} is also the string. Since |C(S)| < oo,
any § € S is contained in some uniquely determined string [1]; for pair of dual strings
P, P* forall pe P either p<p®, or p*<p (if x xx* then (x,...,%,...,x 1)e
e C(S), and |C(S)|==).

’ o

We say that s e S is seminormal if { Be C(S)|y(B) x s} is a chain’. Point
s is co-seminormal if s* is seminormal. The definition immediately imply

Proposition 2. If xxye S and x is seminormal then y is co-seminormal.

Proposition 3. If |Ind C(S)| < s, then either x or x* is seminormal.

Proof. If x, x* both are not seminormal, then there exist 4, B, C = (C1seevs €
D= (dy, ..., dy)e CS), Ax B, xx {7(A),7(B)}, Cx D, x* x {v(C), v(D)}.
So A4, B, (x,cy...,cy, (x,dy,...,d,) are pairwise incomparable in C(S),
[ Ind C(S8)] = eo.

The string P C S is called normal if any p € P is seminormal, the dual string P*
will be called coriormal. Representation (T,t, T) e M is conormal if for any x e

T, element #(x) is co-seminormal or #(x) € S\ S,

! In [5] the stronger notion of normal point was introduced and the proposition stronger then prop. 3
was proved.

ISSN 0041-6053. Ykp. sam. sxypi., 1997, m. 49, N¢ 11



1468 K. 1. BELOUSOV, L. A. NAZAROVA, A. V. ROITER

Proposition 4. If |Ind C(S)} < e and (T, t) is elementary, then conormal (T,
t, T)e M exists.

Proof. See [9], prop. 2.3.

A bundle (of posets) TI=TI, L II, is the pair of posets (ITj, <;), (I, <) with
given equivalence = on <=<; LU <,, such that

1) (s, 8)~ (s, ¢') implies s,te IT;, 5, ¢" € IT;, i#j;

2) forany s,t,p,s,p’ € Il suchthat s<t<p, s'<p’ and (s,p)= (s, p’) there
exists unique ¢’ € II thatsatisfied s'<¢'<p’, (s, )= (s, ¢") and (z,p)= (¢, p");

3) (s,t)=(s,t") implies t=¢’, and (s, t)= (s, ) implies 5s=1s";

As for dyadic sets, given bundle II, we introduce the relations =, <, => and * on I
and TIx N (forinstance, s=s" iff (s, s)= (s, 5")).

Suppose @=¢; U@,: II->N U {0} to be a function such that @(s) = o (s"),
we define I, ={(s,i)e MXxN|i<@(s)}, () ={(si)e Hylse I},
(IL)e={(s,i)e Iy|se I, }. A representation of I1 of dimension ¢ is the
quadruple (T}, t;, Ty, t;), where Ty, T, are the matrices and ¢;: colT; — (II;), are
the bijections. Given another representation (R, ry, Ry, r5) of II, the quadruple of

" matrices (Ay, Ay, By, By) is said to be a morphism from (T4, [, Ty, ;) to (Ry, 7y,
Ry, 19) if AjTy=RyBy, AyTo = Rsz and for entries b of matrices B, hold
L b =0 if t,(i) #Ero(j) 2. bj = b o 1 (t(0), 7 (7)) = (i), 73 (J ). So, we
have defined the category RepIl.

Let C be an aggregate, and L = (L,, L,) be a pair of C-modules. A repre-
sentation of pair (C, L) = (C, L, Ly) is a collection (Vy,fi, V,, f5, X), where V,
V,e modk, Xe C and f;: Vi— L(X), fo: Vo— L,(X) are linear maps. A
morphism from (Vy, f;, Vo, fo, X) to another representation (Wy, g1, Wy, g5, ¥) is a
triple (91, 92, ), Where ;€ modk(V, W), ye C(X,Y) and fioLiy=g;og;, i =
=1, 2. So, we have defined the category Rep (C, L) of the pair’s representations.

The-bundle IT=TII; U TII, allows us to construct an aggregate C, the object set of
it spectroid is I1/=, for 5,5, € I C(I1(s,), IT=(s,)) = linear hull of the set { (x,
y)|xe II=(s,), y € I17(s,), x <y} and the pair of modules L, L,, L;(IT%(s)) =

. = linear hull of II7 (s), thc actionof C on L; is obvious. It is evident that Rep(C,

_L)=RepIlL -

Let K be amodule over aggregate C, i: K’ — K an inclusion of submodule and
n: K—K"'=K/K aprojection on factor. X’ is said to be a component in K - if for
any X, Ye C andamap o€ modk(K”X, K'Y) there exists £ e C(X,Y) such that
KE =nX oa o iY. For arbitrary submodule E'CK (not supposed to be a
component), the functor

Fy.: Rep (G K) — Rep (G K, K”);
Fe.(V,f, X) = (Ker (fonX),f’, Im (fo nX), can, X),

is defined, where f’ is unique linear map for which f’ o iX =f|Ker(fonX), and
can: Im(fenX)— K”(X) is a subspace inclusion.

Lemma 1. Given a component K’ C K, functor F induced an injection
Ind (C, K) inte Ind (G, K, K'). The only isoclass does not contained in the image
of F isthe class of (0,0, k, 0, 0),
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Proof is easy (see [8], § 7).

Corollary 1. Given the bundle 11, the dyadic set Sy and the functor
Rep Sy — RepIl exist that the image of induced injection Ind Sy — IndIl does not
contain the only class of (Ty, ty, Ty, t5), where colT; =colT, =rowT| = &,
[row Ty | =1. '

Proof. Sy is built as follows: §=1II, Sg=<p U =, where s <t iff se II;,
teIly, =g==q.

Stated Corollary allows us to transfer definitions for dyadic sets to bundle case, for -
instance, we set C(IT)= C(Sy;). The image of M(Sy) in RepII will be called a set

of multielementary representations of bundle IL

A bundle II is bipartite if it contains exactly 2 strings P and P". It is clear that
IT is bipartite iff Sy is bipartite in sense of [8].

We say that exceptional representation Ex of bundle II is such (T} t;, T, ;)
(where {i,7}={1,2}) that

a b ¢ p a b d g
T, = [1 0 1 0], ;r} =711 0 0
1 0 01 (1 0 1 1)

(we write here over x & col T; the element 7;(x) € II;), where II; II; contain full
subposets

c e e p a* o=>o b*
d a1 9 4 cu,
a o=yo b " g & # 4

and (a, b) ~ (a*, b*).
Proposition 5. Ifa bundle 1 is a bipartite and |Ind C(I1)| < co., then
a. Any (Ty,ty, T, t;) € IndIL is either multielementary or exceptional.
b. If RepIl contains a faithful multielementary (Ty, ty, To, ;) € IndIl, then

either P or P* is normal.
Proof. See [8], Th. 2.
Remark 2. Moreover, [8] implies ©r: ObRep C(IT) - ObRepII, C(II) =

CSy=C1 < Cy (C;=y (L) IndC(I)=Ind C; U Ind G;). If the string P is
normal, then ©p induces the bijection between Ind Cy\ {0} and
Ind T \Ind (I, \ IT,).

§3. Let P CS beastring, p<p* forall pe P. Wedefinethe set Kp =Kp. as
consisting of block representations (T, {7}, ..., %}), k=2 such that

—for i>2 the blocks T; are small;

—for i>2, TN col T#Q;

—if xe col T then x or x* is linked with y € 7} U %;

—for x<x* such conditions are equivalent:

a. both x, x* are linked with some elements of 7; U Z5;

b. xe T, N ~Lpy;
o. e TN FYPY;
For (T,t,T)e Kp the blocks 7;, T, will be called main, the blocks T;, i > 2,
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complementary. Let K be a set of representations (T,#) @ ... ® (7}, t,), where for
some string Q; C.S and a block composition (7}, t;, Tj)e Ko,

Define the bundle I, =II; UII,, I, = (CSO\y(P)U P, II, =
=(CE\y(P*) UP* If xeII;\P, ye P, then x<y (x>y) iff y(x) <y
(v(x)>y), and the same for Il,; orderon P, P*, II;\P and II,\P* is induced by
the orders on § and C(S); (1, P2)~ (41, 42) if 91,92 € P* and (py, p2) ~ (915 92)
in S. Itis easy to see that C(IIp)= C; < C,, where C; = C, = C(S). Asin
multielementary case, the map ©p: ObRepII, — ObRep S can be constructed,
Im ©p = Kp, where Kp consists of such (7, ¢) thatallow a block composition (7, 1,
T)e Kp: For i =1, 2 the matrix 7; attached to block 7; e 7 coincides with the

matrix T; of (Ty, ), Ty, t;) € RepIl,; each complementary block of 7 is attached in

the natural way to some element b;, j> 0 in zigzag B = (by, ..., b,) € Supp U
U Supp T;, where T; € RepIl, corresponds to T;.

Proposition 6. The category Rep’Il, and the functor Jp: RepIl, — Rep S
exist such that ObRep’II, — ObRepIl,, ReplIl, is epivalent to RepIl,, ImJp =
= Kp up to permutation of rows and columns (Jp and ©p coincide as objects
map).

Proof. See [9], prop. 3.1.

Corollary 2. Given X, Y € RepIl,, then

1) @p(X ® Y) = ©p(X) ® Op(Y);

2) if X=VY, then Op(X)=0p(Y).

Representation T, =(T,t) € RepS is exceptional if there exist a string P in S
and exceptional representation Ex € RepIT, such that ©p(Ex)= .Texz.

It is easy to see that (since |C(S)| < =) only a finite number of exceptional
representations of dyadic S exists.

Proposition 7. Any (T, t) e K is equivalent to a direct sum of exceptional and
multielementary representations.

Proof. Bounding to direct summand we can suppose that for some block

. composition 7 and string P we have (T,t, 7)€ Kp. Then (T, t;, Ty, 1) € RepIl,
exist such that ®p(7T”,t")= (T, t). But (T}, 1), Ty, 1)) = Ex; @ ... ® Ex,® (R, ry,
Ry, r5), where (Ry, ry, Ry, 1) is multielementary representation of bundle. Since ©p
maps multielementary to multielementary and exceptional to exceptional, we finish the

* proof, using the corollary 2.

Remark 3. If the dyadic set S is weakly completed poset, i. e. § does not

contain edges, it is known that the sets M, and, consequently, K are dense in Rep S,

as it was proved in [10] (see also [1], p. 4).

The natural transformations P: M— Kp, P*: M— Kp are defined: if (T, t,
The M, then P((T,2, T)) =(T.1,T"), P*((T.1, T)) = (T 1, T"), where T; =
- q—iz = rI-’ﬂ,

T, = {xe Ufaz T|x ~y for some ye T, #(x) e P*},

5" = {.xe UL_22 T x ~y. for some ye 7;, f(x)e P}.

2 Bvery exceptional representation is indecomposable; this fact is not used.
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After the proper pen‘nutation the other columns form complementary blocks Z;", 7;”,
i>2.
A'subset X C C(S) is called locally linear, if there are no B, B, € X, such that

B, x B, in C(S) end Y(B,) = ¥(B,). Representation T € Rep C(S) is locally

linear, if Supp T C C(S) is a locally linear subset. Denote by Rep C(S), Ind C(S)
the subsets of locally linear representations contained in resp. sets.

For Be C(S), B=(zg ..., z,), set h(B)=m if z, € S, h(B)=m—1 if z, €
€ {0,1}. For Te RepC(S), height of T is the integer A(T) = sup{h(B)|Be
€ Supp T'}. A representation T e Ind C(S) is said to be of minimal height if h(T) =
=inf{A(T")|T" e Ind C(S), O(T)=0O(T)}.

Proposition 8. If |Ind C(S)| < e, the set ©(Ind C(S)) is dense in Ind M.

Proof. We remind thatif A= (a, aj,...,a) e C(S), then %A= (ay,...,a,)
[3]. For T e Ind C(S) we denote B(T)={Ae SuppT|Ax A’e SuppT, y(A)=
=y(4)}, h() = EFLEB(T) h(A4). We will prove our statement by induction by

R(T). R(T)#0. Taking some proper = — closed subset of , we can suppose that
©(T) is a faithful representation. There exist B,, B, € Supp T such that B, x B,
and v(B,)=v(B,)=qe S. Let Q beastringin S, ge Q and Q* the dual string,
and, for defineteness, g < g*. Representation O Q( T) is indecomposable (remark 2).
It may be not faithful for IT,, but it is faithful for some bipartite bundle Iy CIIg
(0, Q* C Ip). The definition of the order on C(S) immediately implies that
' a} B, 2 Bit B,, and since y( aﬁ.A B)x g% i=1,2, thestring Q* in IIj is not
normal, and, therefore, the string @ in Il is normal (see prop. 5). By remark 2
there exists T € Ind C, C Ind C(I1), C, = C(S) such that Q°(T) = Q(7) and
O(T) = @(T) Our constructions imply Supp T \Wwlig*)={ 82 AlAe SuppT,
ae Q}. Itis easy to see that y~'(Q*) N B(T) =& (since Q is normal in IIp);
9% Ae B(T) implies Ae B(T). Thus, R(T) < h(T)-
Remark 4. Define a subset U(S) C C(S), we have S=(sp,...,5,)€ U(S) iff
for any i,j=0, m—1, s{ #s;. The proof also shows that for any T € Ind U(S)

representation T € IndU(S) N Ind C(S) exists such that ©(T) = (T) (see [9],
remark 3.2). '

Proposition 9. Let |IndC(S)| <o, P be a string, SuppT C P, and h(T) >
> 1. Then T is not of minimal height.

Proof. Construct T as in the proof of prop. 8 (clearly, P is normal in IIp). If

Ae Supp T Ny~ 1(P), then h(A)=1, if Be Supp T Ny~ !(P), then B = 32 D,
“De SuppT, h(B)=h(D)-1. T e Ind C(S) since e Ind C(S).

§4. Let C beaposet, (K, M) a corresponding module over aggregate, X =
=@ Vect C, M=® VectC, considered as module over himself, x € C.
Module M contains submodule N: for ye C
0, ¥ S x;
Niy)y= { '
M(y), y>xor yxzx

and a factormodule L =M /N is defined.
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We will call a representation T'= (V,f, X)e Rep (X, M) = Rep C x-projective, if
1) Supp T N C3(x)=J;

2) the linear map V —2— M(X) -5 L(X) is injective. _ ‘
Condition 2 is equivalent to linear independence of rows of submatrix of representation
matrix 7, which consists of columns that are less x. In the dual manner, the definition

of x-injectivity can be done. In order to do this, we need to consider submodule
N, CM,
i y<xor'yxux

Nl()’)={M(y)’ - .

and demand the fulfilment of two conditions:
1) Supp TN C5(x)=I;

2) the linear map v, M(X) == M/N,(X) is surjective.

Proposition 10. If Te Rep (K, M), and SuppT N C3(x) = &, then T is
x-projective iff any representation of the form T’ = (V, (f9), X ® x) is isomorphic
to T@® (0,0, x).

The proof is trivial.

In analogous way the dual proposition 1* for x-injective representations is

formulated (with substitution (k, 1, x) for (0, 0, x)).

Proposition 11. If x,ye C, x<y, Te IndC, SuppT N CS(x)=, SuppT N
N C2(y)=, and T is neither x-injective nor y-projective, then there exists an
indecomposable T’ € Ind C such that Supp T’ = Supp T U {x, j;}.

In order to prove this statement, an indecomposable with the support Supp TU {x}
should be considered. The condition 2 from the definition of y-projectivity does not
hold for this representation because it does not for T.

We remind that the edge @ =a = b is 1) maximal iff there is no x such that b <
<x, a=>x andno y suchthat y<a, y= b; 2) equippedby u iff u x {a,b}. Set
eq(@)=|{Be C(S)|Y(B) x{a,b}}|. If eq(p) is at least 2 we say that @ is
twice equipped. If the dual edge ¢ =a* = b* is equipped, the edge ¢ is called
coequipped.

" Fix amaximal edge 9 =a=> b in dyadic S, and suppose |Ind C(S)|< . For
definiteness, we suppose that a < a*, and, therefore, b < b*, let P be a string
containing @. :

Lemma 2. Let 4, Be C(S), vy(A) < a, y(B) = b*. Then there isno T €
e Ind C(S) suchthat J=SuppT D {4, B}.

Proof. Suppose that such T exists. Clearly, 4 < B. Define 7 = {Xe J|X x
x {4, B}}. The Kleiner’s list of faithful finitely represented posets shows that 7 #
0. Let Xe 7, xe y(X).

1. xg PUP*. If xe P, and x<b, then x <b* and X< B; if x> b, then
owing to maximality of a = b we have a<x, and A< X

2. x3{a,b,a*, b*}. Otherwise a<x or x<b*. If, for definiteness, a <x, then
1 implies that a <x, so, A< X

3./7|=1 and x¢ S. Otherwise 2 implies that the edges a = b and a* = b*
are twice equipped (that contradicts to |Ind C(S)] < e, [1]).

4. b <a*, in the opposite case b 3 a*, and 7 contains subset (1, 3, 3) — {.X;

(5,0), (b, 1), (b, x); (a",0), (a", 1), (a", x) }, |Ind C(S)|= 0.
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5. X contains subset {4, B, U, ¥, X}, where

SSN‘U
14 a4 e X.

It Iollows from 3 and the Kleiner’s list of faithful finitely represented posets (see [2],
5.4).

6. Y(U) 2 a*. Indeed, if y(U)e P*, then (W) >x {b* a*}, and two
incomparable points x and y(U) equip the edge a* = b* (|Ind C(S)| < o). If
Y(U) e P*, then y(U)<a*, and y(U)<b* owing to maximality of a = b; in this
case U<B. - ‘

7. In analogous way, it is checked that y(7) < b.

8. Now, y(V)< b <a* <y(U), and we obtain the contradiction V< U

Proposition 12. If T € Ind C(S) is not (b*, 0)-projective, then it is (a, 1)-
injective.

Proof. By the lemma 2 either (1) Supp 7' N C(S8)3(b* 0) =, or (2) SuppT N
N C(S)*(a, 1)=D. Suppose that the (1) holds (for (2) the proof is similar). If T is
not (&* 0)-projective, then by proposition 10 an indecomposable with support

Supp T'U { (b* 0)} exists, and again by the lemma 2, Supp T N C(S5)%(a, 1) = @.
Either T is (a, 1)-injective, or we can construct an indecomposable representation of

C(S) with support Supp T U {(* 0), (a, 1)}, so we have once more contradiction
to the lemma 2. The statement is proved.
<

§ 5. Given amaximal edge ¢ =a= b, a<a* in S, the dyadic set S: =S5 can
be obtained from S by ,,excluding” the edge a = b, i. e. S9=5 as sets, Sgq = <g,
meq ==g and (x,y)~ga (¥, y") iff (x,9)~5(¥,»"), (x, )€ {9, ¢*}. We have
ObRep S = ObRep ST Moreover, C(S) = C(S™) as sets, the order on C(S™) is
strengthening of the order on C(S). Hence if  C(S) is finitely represented, then
C (Sd) is finitely represented too.

Let (T,2) € RepS, x,x*e col T, x<x*, xe i '({a,b}). If t(x)=(a,i) (resp.
t(x)= (b, i)) then the pair x, x* is not essential if the morphism (A4, B) & Rep Sx
(T~ 7)) (resp. (A, B)e RepS™((T*, ), X) exists such that Bf = B’ , Bjf =

= f;b', j#i, where rowT =@, colT"={y<y*}, £ (y)=b (resp. |[rowT|=
=2, colT*={z<z*}, f'(z) =a, and T* is the unit matrix). B is the matrix
(with one row here) attached to the pair a, b in § 1.

The representation (T, t) is @-injective (resp. @-projective) if any pair x, x*,
where f(x) =a (resp. f(x) =>b) is not essential. For arbitrary string Q C S block
representation (7, ¢, 7)€ Ko (S 9 is @-quasibijective if any essential pair x < x*
(7(x) € {a,b}) issuchthat xe 7}, x* € I, (so,if (T,t, T) is ¢-quasibijective,
then essential pair can exist only if Q N {a, b} = D).

Lemma 3. If (T,t)e RepS~is @-projective or @-injective, (R, r) == (T, 1)
in RepS”, then (R,r)=(T,t) in RepS.

(-projectivity or @-injectivity of (7, ¢) implies the existence of morphism (A4,
B)e RadRep Sq((T, 1), (R, r)) with arbitrary B®, that implies the lemma.
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Lemma 4. Given (T,t)e Kq, (T, t)=® (Ty ty), such that for some string Oy
and block composition T * répresentation ( Ty ty, T%) € Ko (%) is quasi-
bijective, then the isomorphism (R, r) == (T,t) in Rep g implies the existence of
(T',t'") e K, (R, r) =(T’,t') in Reps.

As in lemma 3 we can prove that isomorphism (4, B): (T, t) = (R, r) exists such
that B # Ba"J only if +~1(a,i)e T, t=!(b,j)e TP. Then the isomorphism
(A, B) € RepS ((T",t'), (R, r)) exists such that B, # Bxy only if #(x) = a*,
F(y) = b%, xe Uy Tf, y € Up Tf. The definition of Kp (§ 3) implies that (7",
e K. _

. Let {x<x*}CcolT, f(x)e {a,b}. If (T.t,T)e M, set T(x,x*)=|{x
*YN T e {0,1}, and,if (T, 8, T) e Kp, set T(x,2)=|{xx*}N(ZUT)|e
e {0,1,2}.

Given (T.t, Ve M, P((T,t,T)) = (T.t, T e Kp, P*((T.t, T) = (T, ¢,
T")) € Kp. We say that '

(T, t, T) is M-bijective if x, x* € col T, f(x) € {a, b} and T(x, x*)=0 imply
the pair x, x* is not essential; .

(T, t, T) is P-bijective if x,x* € colT, #(x) € {a,b} and T(x,x*) = T'(x,
x*)=1 imply the pair x, x* is not essential;

(T, t, T) is P*-bijective if x,x* € colT, f(x) e {a, b} and T(x, x*)= T"(x,
x*)=1 imply the pair x, x* is not essential.

Remark 5. 1t is obvious that Z'(x, x*) < min { 7°(x, x*), 7%/(x, x*)} and,
therefore, that if (7, ¢, 7) e M is M-bijective and P- (resp. P*- ) bijective, then
P(T,t, T) (resp. P*(T, ¢, 7)) is @-quasibijective.

Proposition 13. Given Z e Ind C(S) that is (b*, 0)-projective, then © (Z) =
=(T,t, T) is P-bijective.

Proof. Itis easy to see, ([9], prop. 5.1).

Proposition 13, the dual proposition and proposition 12 imply

Corollary 3. If |IndC(S)| < o, then any (T.t,T)e M is either P-
bijective or P*-bijective.

Let (T,t, T) e M. Complementary block Z; is said to be bad if it is either T, =

={u}, f(u) e S=(a), |T'|=1, or T={v}, f@) e S=(b), |T;'|=0, or T;={x,

¥y} £(x) € S({a,b}), |ZT|=1, #(y) equips that edge from the pair ¢, ¢* that
contains 7(x). The following proposition is almost evident.

Proposition 14. (T, t, T) e M is M-bijective if (and only if) there are no pairs
x,x" € col T, x<x* suchthat t(x) € {a,b} and x, x* belong to bad block.

§6. In§ 6 S denotes a dyadic set, |Ind C(S)| < oe.

The pair of edges a = b, ¢ = d we call crossed, if d 3 {a, b}, a % {c, d}
(then ¢ <1b). The pair of dual edges @ =a=> b, ¢* =a* = b* we call admissible, if
no one of @, ¢@* is crossed with coequipped edge.

Remark 6. If every pair of dual maximal edges is not admissible, then for any
edge ¢, max {eq(¢),eq(9*)}23.

Remark 7. If ¢, ¢* is a pair of dual maximal edges and both edges are equipped,
then this pair is admissible, because both crossed edges cannot be coequipped,
otherwise |Ind C(S)|=<= (see[1], N2 17).
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Proposition 15. There exists an admissible pair of dual maximal edges.

Proof. Suppose the contrary. Then for any pair of maximal dual edges a = b,
a* = b* there exists an edge ¢ =>d such that the edges a => b, ¢ = d are crossed,
and the edge c* = d* is equipped. Edge c¢=>d is not maximal, because in the
opposite case, by remark 7, the pair ¢ = d, ¢* = d* is admissible. If z < ¢, d< d,
and ¢ = d — maximal edge, then by remark 6 one of the edges ¢ = d, ¢* = d*
is three times equipped, the other contains eqmppcd subedge ¢ = d or c* = d* but
this contradicts to [1] N® 14. -

Proposition 16. If ¢ =a = b, ¢* = a" = b* is the admissible pair of dual

maximal edges, and T, = (T, t) is exceptional representation of S < then there
exists string Q C S and block composition T such that (T, t, T) is ¢-
quasibijective, (T,t,T)e KS 4

Proof. See [9], prop. 6.2.

Proposition 17. If o =a= b, ¢* = a* = b* is a maximal admissible pair of
edgesin S, (T,t, T)e M is a locally linear indecomposable of minimal height,
then (T,t, T) is M-bijective.

Proof. Since.proposition 4 we will consider, thatif (7, ¢) is elementary, then (7,

o T) is conormal. If (T, ¢t 7) is not M-bijective, then by proposition 14 there are
x<x* (#(x) € {a, b}), both in the bad (complementary) blocks. Suppose Supp T 2
S B, where B=(by,...,b,) and 1 <n <m exists such that b, , =g, b, = a,
by =t ¢ 3x{a b} andeither £=1 or ¢ {a" b"}, another cases may be

considered in similar way. If te §, then we have [1], N2 12, therefore, in fact m =
=n+ 1. The point g* is not seminormal, so, g=5,_j, ..., b; are not co-seminormal
(prop. 2, 3), s0, T is not elementary. We will prove that T is not of minimal height.

Since T is not elementary and b, is seminormal, there exists D € Supp 7, D x
3 B and u=vy(D) such that u=> b; or b; = u (u# b, by locally linearity). B x
3 D implies b, x u*, bf, so, b, isnot seminormal. Butif n>2, then b, is also
not co-seminormal (see above), that contradicts to prop. 3. Therefore, n=2, B= (q,
a,t), u* xa=b,. '

If ¢g=> u, then u* x b, {¢"=> u*} 3 {a= b}, that contradicts to finite
representability of C(S) ([1], N®21). We conclude that it is possible only u* = g%,
u* < b, then

u* o—po q*'

ao§bb

is a crossed pair of edges, and admissibility of @, ¢* implies that u= g Iis
nonequipped.

Let P be astring in S containing u => g. We will show that y(Supp T) C P, and
then prop. 9 will finish the proof of statement.

If |Supp T'| =2, itis evident. If | Supp T'|>2, then according to the Kleiner’s list
of faithful finitely represented posets [2], 5.4, there exists Ce Supp 7, £ x { B, D};
if v =y(C), then admissibility of the pair ¢, ¢* implies eq(u=>¢g) =0, ve P.
Hence (up to rename v and u), we have a x {v* = g}

Note that eq (a* = b*) < 1, because the edge a = b is equipped by the point

g e S (see [2], N® 1); eq(v* => g*) <3 (see [1], N®3). Consequently, v* = ¢* can
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be equipped (except for a) by the only point s & So; if txx{a=b} (t¢ ) then ¢
and s can not exist simultaneously.
B=(g,a,1) or (g,a,t), by the definition of bad block. Now it is obvious that
C= (v, 1). For D there exist two possibility: D= (4, a,1) or (u,5), s >a, so, B
lie in the only antichain of cardinality 3 in Supp 7' (more longer edge v = g give the
case [1], N2 22). Hence, by [2], 5.4, either SuppT={B C, D}, or SuppT={B, C
. D, E}, where Ex {C D}, E is comparable with B. We claim that w=vY(E) € P.
Indeed, in the opposite case in S there is the following fragment

v u gq
o=>o=po v=>q,

j

the edge v = ¢ is twice equipped'(by a). We obtain the case [l],N‘-‘(143)*.
Theorem 1. If S is a dyadic set and |IndC(S)| < e, then K is dense in
Rep S.

The theorem is proved by induction by the number of edges in S. The base of
induction — the weakly completed case — was studied in [10] (see remark 3).

Choose, owing to prop. 15, a maximal admissible pair ¢, ¢*, and build S< Our
aim is to show that any (7, t)e IndS is equivalent to (7”,¢") € K. The induction
hypothesis and prop. 7 imply thatin S~ any (T, t) = @ (T} t;), each (T 1) is
indecomposable and either exceptional or multielementary, in the latter case, by prop. 8
we can assume (T, ;)= ©(Z;), Z; € Ind C(S). Due to lemma 4 it is sufficient to

- prove that, for some string Q in S and some block composition, (T} ¢, ;) e K; is
@-quasibijective. For exceptional representations it is checked in prop. 16, for
multielementary ones it follows from corollary 3 and prop. 17, using remark 5.

Appendix. In the appendix we denote by S a dyadic set with | Ind C(S)| < ce.

Given the poset (C, <), the width of te C is w(t)=w( C*(®)) + 1.

Lemma 5. Width of any zigzag in C(S)\U(S) is not greater than 2.

Proof is a consequence of the properties of the normal points (notion of that points
is introduced in [5], 2.2, details of the proof see [9], lemma 7.1).

Proposition 18. Let I1 =II; UII, be a bipartite bundle, T is a faithful
indecomposable representation of C(I1), y(T) C I1;, |IndC(II)| < . Then
w(II, \TL,) <1.

See proof of prop. 7.1 in [9], where in Fig. on p. 26 should be A < B instead of
B < A, after this Fig. “can be B < A”, and 6 lines below in Cys “B < A~
instead of “4 < B™. B

Owing to U(S) C C(S), U(S) carries two order relations: < and < (see remark
1), and order £ is a strengthening of the order <. So, the natural functor Rep (U(S),
'<)— Rep (U(S), <) is defined, that is bijection on the objects. Composing the
inverse bijection map with inclusion Rep (U(S), <) — Rep (C(S), <) and with ©,
we obtain the map @: Ind(U(S), £) — Rep (C(S), <) Sy Rep S.

Denote by L(S) a set of all locally linear representations from Rep (U(S), <).

Representations T'e L(S) is said to be binormal, if
1) v(Supp T) contains precisely one string P of length greater than 1;

2) w(Supp T\y"!(P)) =1.
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" Binormal representation is said to. be positive, if either equ(P) > equ (P*), or
equ(P)=equ(P*) and p<p* for p e P, where
equ(P) = [{Xe Supp T\v"!(P)|v(X) x P N y(Supp T) } |,

equ(P*) = | {95 e U(S)| Ve SuppT,pe P}

Let L'(S) be the set of positive binormal indecomposables; L£'(S) be the set of
locally linear non-binormal in Ind (U(S), £). Let £, (S)= L(S) U L(S).

Theorem 2. Any multielementary non-elemenrary3 T e IndS is equivalent to
representation in ® (L, (S)).

Proof. Let Ty e Ind C(S), ©(T}) = (T,t), and P CS be a such string that
Y(SuppT) NP#D. Set (T,t, T')=P(T,t, T), where (T,¢,T)e M, andlet Q
€ IndIIp, be an indecomposable such that Jp(Q) = (T, ¢, 7*). Define the bundle

p=Supp Q.
If T| is non-binormal or binormal positive, set R=T,, P; = P*. Otherwise, P N
N II% is normal, then by remark 2, R e Ind C(S) exists such that P*(©(R), r, R) =
.=(T,t, T"), where (O(R),r, R)e M, and set P, = P, obtained R is positive.
Owing to (7, t) is not elementary and lemma 5, Supp R C U(S); local linearity of R
follows from that for 7| by remark 4.

Normality of P; in IIj and proposition 18 immediatly imply that < |Supp R=

:S]SuppR So, indecomposability of R in Rep C(S) implies it indecomposability in

(C(S), £). Theorem is proved.
In fact for any T considered above the unique R € L, (S) exists such that

@ (R) =T, but we don’t supply the proof in this article.

Proposition 19. Let R € L'(S). Assume for string P CS, |P Ny(R)| > 1.
Then P N Supp R is not normal in the bundle T1p M Supp @p(R).

Proof. See [9], prop. 7.2. 1
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3 For elementary representations the non-uniques is completely described in [3].
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