K. I. Belousov, L. A. Nazarova, A. V. Roiter (Inst. Math. Nat. Acad. Sci. Ukraine, Kiev)

## FINITELY REPRESENTED DYADIC SETS AND THEIR MULTIELEMENTARY REPRESENTATIONS\*

## СКІНЧЕННО ЗОБРАЖУВАЛЬНІ ДІАДИЧНІ МНОЖИНИ ТА ЇХ МУЛЬТІЕЛЕМЕНТАРНІ ЗОБРАЖЕННЯ

We obtain the direct reduction of representations of a dyadic set S such that  $|\operatorname{Ind} C(S)| < \infty$  to the bipartite case.

Отримано пряме зведення зображень діадичної множини S, що задовольняє  $|\operatorname{Ind} C(S)|<\infty$ , до бікомпонентного випадку.

**Introduction.** The dyadic sets (= biinvolutive posets) were introduced in [1] (see also [2]), and for any such S the poset C(S) and the natural map  $\Theta$ : Ob Rep  $C(S) \to Ob$  Rep S were constructed (see § 1). The representations in Im $\Theta$  are called multielementary [3] (= normal [4]). In [1, 5] the main statement ([2], 5.8) was proved

$$|\operatorname{Ind} S| < \infty \quad \text{iff} \quad |\operatorname{Ind} C(S)| < \infty.$$

For a special case it has been proved in [3]; here is only one (up to equivalence and duality) non-multielementary indecomposable Ex. In the general case non-multielementary representations of finitely-represented (= matrix-finite [4]) S are in some sense the modifications of Ex, they were classified in [6, 7].

Here we propose the direct reduction of the general case to bipartite one. For any string  $P \subset S$  (see § 2) we define the bundle  $\Pi_P$  and the natural map  $\Theta_P$ : Ob Rep  $\Pi_P \to \text{Ob Rep } S$ . Put  $K_P = \text{Im } \Theta_P$ ,  $K = \bigoplus_{P \subset S} K_P$ . The Theorem of § 6 states that if  $|\operatorname{Ind} C(S)| < \infty$ , the set K is dense in Rep S. Ind  $\Pi_P$  coincides with Ind  $S_{\Pi}$  for some bipartite  $S_{\Pi}$  (such that  $C(S_{\Pi}) \simeq C(S) < C(S)$ , see § 2, 3), therefore, by results of [8],  $|\operatorname{Ind} C(S)| < \infty$  implies  $|\operatorname{Ind} S| < \infty$  and we get some description of Ind S.

Non-equivalent representations of C(S) can become equivalent under the  $\Theta$ . In the appendix we show (without complete proof) how to exclude such ambiguity.

- § 1. A triple  $S = (S, \leq, \approx)$ , where S is a finite set,  $\leq$  an order on S and  $\approx$  an equivalence on  $\leq \subset S \times S$  is called a *dyadic set* if
  - 1) each equivalence class in  $S \times S$  contains at most two elements;
- 2) for any  $s, t, p, s', p' \in S$  such that  $s \le t \le p$ ,  $s' \le p'$  and  $(s, p) \approx (s', p')$  there exists unique  $t' \in S$  that satisfied  $s' \le t' \le p'$ ,  $(s, t) \approx (s', t')$  and  $(t, p) \approx (t', p')$ ;
  - 3)  $(s, t) \approx (s, t')$  implies t = t', and  $(s, t) \approx (s', t)$  implies s = s'.

If  $(s,s)\approx (s',s')$ , we set  $s\approx s'$ , and set  $\{s,s^*\}=S^{\approx}(s)$  for  $s\in S$  such that  $|S^{\approx}(s)|=2$   $(S^{\approx}(s)=\{x\in S|x\approx s\})$ . We will denote  $s\vartriangleleft t$  if  $|\leq^{\infty}(s,t)|=1$ , and  $s\Rightarrow t$  if  $s\vartriangleleft t$  and  $|\leq^{\infty}(s,t)|=2$ . In the latter case  $|\leq^{\infty}(s,t)|=1$ , the pair  $|\varphi|=(s,t)$  is called *edge* and  $|\varphi|=(s^*,t^*)$  is the edge, *dual* to  $|\varphi|=1$ .

Note that for any dyadic set S it is possible to construct a vectroid (= subcategory of mod k that is a spectroid in terms [2])  $\mathcal{V} = \operatorname{Vect} S$  [3], attaching to any class  $\{a_1, \ldots, a_n\} \in S/\approx (n \le 2)$  a vectorspace A with basis  $\{a_1, \ldots, a_n\}$  and to any class

<sup>\*</sup> Research partially supported by CRDF grant VM1-314.

<sup>©</sup> K. I. BELOUSOV, L. A. NAZAROVA, A. V. ROITER, 1997 ISSN 0041-6053. Укр. мат. журн., 1997, т. 49, № 11

 $\{(a_1,b_1),\ldots,(a_n,b_n)\}\in \leq /\approx$  a basic morphism  $X\in \mathcal{V}(A,B),\ a_1X=b_1,\ldots,a_nX=b_n$ . For this  $\mathcal{V},\ S(\mathcal{V})\simeq S$ .

We define quasiorder  $\leq$  on the  $S \times \mathbb{N}$  by setting  $(s, i) \leq (t, j)$  if  $s \leq t$ , and equivalence on  $\leq$ :  $((s, i), (t, j)) \approx ((s', i'), (t', j'))$  iff  $(s, t) \approx (s', t')$  and i = i', j = j'. Set  $(s, i) \triangleleft (t, j)$ , if  $|\leq^{\approx} ((s, i), (t, j))| = 1$  (equivalent to  $s \triangleleft t$ ), and  $(s, i) \approx (t, j)$  if  $((s, i), (s, i)) \approx ((t, j), (t, j))$  (equivalent to  $s \approx t$  and i = j).

Suppose  $\varphi$  to be a function  $S \to \mathbb{N} \cup \{0\}$  such that  $\varphi(s) = \varphi(t)$  if  $s \approx t$ , then we define  $S_{\varphi} = \{(s, i) \in S \times \mathbb{N} \mid i \leq \varphi(s)\}$ . Representation of S (over field k) of dimension  $\varphi$  is a matrix T (whose sets of rows row T or columns  $\operatorname{col} T$  may be empty) and bijection  $t: \operatorname{col} T \to S_{\varphi}$ . Note that if T' is a matrix obtained from T by permutations  $\varphi$  of rows and  $\varphi$  of columns, than  $(T', t') \in \operatorname{Rep} S$ ,  $t' = t \varphi$ .

If (R, r) is another representation of S, where  $r: \operatorname{col} R \to S_{\varphi'}$ , then the pair of matrices (A, B) is called a *morphism* from (T, t) to (R, r) if AR = TB and for entries  $b_{ij}$  of matrix B hold 1)  $b_{ij} = 0$  if  $t(i) \not \leq r(j)$ ; 2)  $b_{ij} = b_{i'j'}$  if  $(t(i), r(j)) \approx (t(i'), r(j'))$ . Representations of S with defined above morphisms form the category  $\operatorname{Rep} S$ ; note that  $\operatorname{Rep} S \cong \operatorname{Rep} \mathcal{V}$ ,  $\mathcal{V} = \operatorname{Vect} S$ , where the objects of  $\operatorname{Rep} \mathcal{V}$  is triples (V, f, X),  $V \in \operatorname{mod} k$ ,  $X \in \mathcal{V}$  and  $f \in \operatorname{mod} k(V, X)$ , see [3].

Given representation (T, t) of S, bijection t translate relations from  $S \times \mathbb{N}$  to col T. Put  $\bar{t}(x) = a$ , where t(x) = (a, i),  $x \in \operatorname{col} T$ ;  $\operatorname{col} T = \bar{t}^{-1}(\mathring{S})$ . For  $x \in \operatorname{col} T$ ,  $x^*$  is such column of T that  $x^* \approx x$ . We will write  $x \times y$  iff x and y are incomparable elements of  $\operatorname{col} T$  or of any other (quasi)poset; for the elements of  $\operatorname{col} T$  or any other set with equivalence  $x \in \mathbb{N}$  we will write  $x \in Y$  iff  $x \in Y$  and  $x \neq y$ .

Given morphism  $(A, B) \in \text{Rep } S((T, t), (R, r)), B = (b_{xy})$  and pair  $a, b \in S$ , in the natural way the matrix  $B^{ab}$  is defined,  $B^{ab}_{ii} = b_{t^{-1}(a,i)}r^{-1}(b,i)$ .

For  $(T,t) \in \operatorname{Rep} S$  a subset  $X \subset \operatorname{col} T$  is called a block of (T,t) if for any  $x \in X$   $T_{px} \neq 0$  implies  $T_{py} = 0$  for any  $y \notin X$ . A block composition T of (T,t) is the set  $\{T_1, \ldots, T_n\}$ , where  $T_i$  are the blocks of (T,t) and  $\operatorname{col} T = \coprod_{i=1}^n T_i$ ; the triple (T,t,T) is called a block representation. Uniquely correspond to any block  $T_i$  is the set  $T_i^* \subset \operatorname{row} T$   $(p \in T_i^*$  if  $T_{px} \neq 0$  for some  $x \in T_i$  and (up to permutations of rows and columns) a matrix  $T_i$ ,  $\operatorname{col} T_i = T_i$ ,  $\operatorname{row} T_i = T_i^*$ .

Block  $\mathcal{T}_i$  is small if it is either  $|\mathcal{T}_i|=1$ ,  $|\mathcal{T}_i^*|=0$  or  $|\mathcal{T}_i|=|\mathcal{T}_i^*|=1$ ,  $T_i=(1)$  or  $\mathcal{T}_i=\{x_1,x_2\}$ ,  $x_1\times x_2$ ,  $x_1\not\sim x_2$ ,  $T_i=(1,1)$ . Column y of block representation  $(T,t,\mathcal{T})$  is said to be linked with column x, if there exists a sequence of columns  $x=x_1,\ldots,x_{2\alpha}=y$ ,  $\alpha\geq 1$ , such that  $x_{2i-1}\sim x_{2i}$   $(i=\overline{1,\alpha})$ , and  $x_{2i}$ ,  $x_{2i+1}$  are contained in the same block  $(i=\overline{1,\alpha-1})$ .

The set  $\mathcal{M}$  of block representations consits of such  $(T, t, \mathcal{T})$  that all blocks  $T_i$ , i > 1, are small;  $\mathcal{T}_i \cap \text{col } T \neq \emptyset$  for i > 1; for any pair of dual columns  $x, x^* \in \text{col } T$  precisely one is linked with a column from  $\mathcal{T}_1$ .

For  $(T, t, T) \in \mathcal{M}$  the block  $\mathcal{T}_1$  will be called *main*, the blocks  $\mathcal{T}_i$ , i > 1, supplementary. The representation (T, t) is multielementary if there exists  $(T, t, T) \in \mathcal{M}$ . The set of all multielementary representations is denoted by M. A block representation  $(T, t, T) \in \mathcal{M}$  and  $(T, t) \in M$  are called *elementary* if  $\mathcal{T}_1$  is a small block.

Let  $\hat{S} = S \cup \{0, 1\}$ ,  $0 \lhd s \lhd 1$  for any  $s \in \hat{S}$ , and  $\hat{S}^{\approx}(0) = \{0\}$ ,  $\hat{S}^{\approx}(1) = \{1\}$ . Let us introduce a poset C(S). Elements of C(S) are zigzags in S, i. e. the sequences  $(s_0, \ldots, s_m)$ ,  $m \in \mathbb{N} \cup \{0\}$  of elements  $\hat{S}$  such that  $s_{i-1}^* \times s_i$ ,  $i = \overline{1, m-1}$ , and either  $s_{m-1}^* \times s_m$  and  $s_m \in S \setminus \hat{S}$ , or  $s_m \in \{0, 1\}$  and m > 0. For  $S, \mathcal{J} \in C(S)$ ,  $S = (s_0, \ldots, s_m)$ ,  $\mathcal{J} = (t_0, \ldots, t_n)$ , we set  $S \subseteq \mathcal{J}$  iff there exists  $j \in \mathbb{N} \cup \{0\}$ ,  $j \le \min(m, n)$  such that  $s_i \Rightarrow t_i$  or  $s_i = t_i \in \hat{S}$  if i < j, and either  $s_j \lhd t_{j-1}^*$ , or  $s_{j-1} \lhd t_i$ , or  $s_j \lhd t_j$ . Denote by  $\gamma \colon C(S) \to S$  the map  $\gamma(s_0, s_1, \ldots, s_m) = s_0$ . Following [4] we will further suppose that  $|C(S)| \le \infty$ .

**Remark 1.** In the similar way the (stronger) order  $\leq$  on C(S) can be introduced: for  $S = (s_0, \ldots, s_m)$ ,  $T = (t_0, \ldots, t_n) \in C(S)$  we set  $S \leq T$  iff  $j \in \mathbb{N} \cup \{0\}$  exists such that  $j \leq \min(m, n)$ ,  $s_i \leq t_i$  for i < j and at least one of the following conditions hold: 1)  $s_0 \triangleleft t_0$ , 2)  $s_1 < t_0^*$ , 3)  $s_0^* < t_1$ , 4)  $s_j < t_j$ , j > 0, 5) j = m = n,  $s_n = t_n$ .

In the natural way a map  $\Theta: \operatorname{ObRep} C(S) \to \operatorname{ObRep} S$  can be constructed (see, for instance, [4]). In fact  $\Theta$  may be considered as the map:  $\operatorname{ObRep} C(S) \to \mathcal{M}$ . However, there is no a natural functor  $\operatorname{Rep} C(S) \to \operatorname{Rep} S$ . Nevertheless, the results of [3] imply

**Proposition 1.** The category  $\operatorname{Rep}'C(S)$  and the functor  $I: \operatorname{Rep}'C(S) \to \operatorname{Rep} S$  exist such that  $\operatorname{Ob} \operatorname{Rep}'C(S) = \operatorname{Ob} \operatorname{Rep} C(S)$ ,  $\operatorname{Rep} C(S)$  is epivalent to  $\operatorname{Rep}'C(S)$ ,  $M = \operatorname{Im} I$  (up to permutation of rows and columns).

**Proof.** We may set  $\operatorname{Rep}'C(S) = \operatorname{Rep}(\mathcal{E}l, N)$ , where a module N over spectroid  $\mathcal{E}l$  of elementary representations of S and a functor  $I: \operatorname{Rep}(\mathcal{E}l, N) \to \operatorname{Rep} S$  were constructed in [3], § 5, 6.

It is easy to see that  $I(T) = \Theta(T)$  for  $T \in Ob \operatorname{Rep}' C(S)$ .

- § 2. Let  $P \subset S$  be a *string*, i. e. the subset  $\{p_1, \ldots, p_k\} \subset \mathring{S}$ , such that
- 1)  $p_1 \Rightarrow p_2 \Rightarrow ... \Rightarrow p_k$ ;
- 2) if  $p \in P$ ,  $x \in S$  and  $x \Rightarrow p$  or  $p \Rightarrow x$ , then  $x \in P$ .

In this case the dual set  $P^* = \{p_1^*, \dots, p_k^*\}$  is also the string. Since  $|C(S)| < \infty$ , any  $s \in \mathring{S}$  is contained in some uniquely determined string [1]; for pair of dual strings P,  $P^*$  for all  $p \in P$  either  $p < p^*$ , or  $p^* < p$  (if  $x \times x^*$  then  $(x, \dots, x, \dots, x, 1) \in C(S)$ , and  $|C(S)| = \infty$ ).

We say that  $s \in \mathring{S}$  is seminormal if  $\{\mathcal{B} \in C(S) | \gamma(\mathcal{B}) \times s\}$  is a chain<sup>1</sup>. Point s is co-seminormal if  $s^*$  is seminormal. The definition immediately imply

**Proposition 2.** If  $x \times y \in \mathring{S}$  and x is seminormal then y is co-seminormal. **Proposition 3.** If  $|\operatorname{Ind} C(S)| < \infty$ , then either x or  $x^*$  is seminormal.

**Proof.** If x,  $x^*$  both are not seminormal, then there exist  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $C = (c_1, \ldots, c_n)$ ,  $\mathcal{D} = (d_1, \ldots, d_m) \in C(S)$ ,  $\mathcal{A} \times \mathcal{B}$ ,  $x \times \{\gamma(\mathcal{A}), \gamma(\mathcal{B})\}$ ,  $C \times \mathcal{D}$ ,  $x^* \times \{\gamma(\mathcal{C}), \gamma(\mathcal{D})\}$ . So  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $(x, c_1, \ldots, c_n)$ ,  $(x, d_1, \ldots, d_m)$  are pairwise incomparable in C(S),  $|\operatorname{Ind} C(S)| = \infty$ .

The string  $P \subset S$  is called *normal* if any  $p \in P$  is seminormal, the dual string  $P^*$  will be called *conormal*. Representation  $(T, t, T) \in \mathcal{M}$  is *conormal* if for any  $x \in \mathcal{T}_1$  element  $\bar{t}(x)$  is co-seminormal or  $\bar{t}(x) \in S \setminus \mathring{S}$ .

<sup>&</sup>lt;sup>1</sup> In [5] the stronger notion of *normal point* was introduced and the proposition stronger then prop. 3 was proved.

**Proposition 4.** If  $|\operatorname{Ind} C(S)| < \infty$  and (T, t) is elementary, then conormal  $(T, t, T) \in \mathcal{M}$  exists.

Proof. See [9], prop. 2.3.

A bundle (of posets)  $\Pi = \Pi_1 \sqcup \Pi_2$  is the pair of posets  $(\Pi_1, \leq_1)$ ,  $(\Pi_2, \leq_2)$  with given equivalence  $\approx$  on  $\leq \leq \leq_1 \sqcup \leq_2$ , such that

- 1)  $(s, t) \sim (s', t')$  implies  $s, t \in \Pi_i$ ,  $s', t' \in \Pi_j$ ,  $i \neq j$ ;
- 2) for any  $s, t, p, s', p' \in \Pi$  such that  $s \le t \le p$ ,  $s' \le p'$  and  $(s, p) \approx (s', p')$  there exists unique  $t' \in \Pi$  that satisfied  $s' \le t' \le p'$ ,  $(s, t) \approx (s', t')$  and  $(t, p) \approx (t', p')$ ;
- 3)  $(s, t) \approx (s, t')$  implies t = t', and  $(s, t) \approx (s', t)$  implies s = s'; As for dyadic sets, given bundle  $\Pi$ , we introduce the relations  $\approx$ ,  $\triangleleft$ ,  $\Rightarrow$  and \* on  $\Pi$  and  $\Pi \times \mathbb{N}$  (for instance,  $s \approx s'$  iff  $(s, s) \approx (s', s')$ ).

Suppose  $\varphi = \varphi_1 \sqcup \varphi_2 \colon \Pi \to \mathbb{N} \cup \{0\}$  to be a function such that  $\varphi(s) = \varphi(s^*)$ , we define  $\Pi_{\varphi} = \{(s,i) \in \Pi \times \mathbb{N} \mid i \leq \varphi(s)\}$ ,  $(\Pi_1)_{\varphi} = \{(s,i) \in \Pi_{\varphi} \mid s \in \Pi_1\}$ ,  $(\Pi_2)_{\varphi} = \{(s,i) \in \Pi_{\varphi} \mid s \in \Pi_2\}$ . A representation of  $\Pi$  of dimension  $\varphi$  is the quadruple  $(T_1,t_1,T_2,t_2)$ , where  $T_1,T_2$  are the matrices and  $t_i \colon \operatorname{col} T_i \to (\Pi_i)_{\varphi}$  are the bijections. Given another representation  $(R_1,r_1,R_2,r_2)$  of  $\Pi$ , the quadruple of matrices  $(A_1,A_2,B_1,B_2)$  is said to be a morphism from  $(T_1,t_1,T_2,t_2)$  to  $(R_1,r_1,R_2,r_2)$  if  $A_1T_1=R_1B_1,A_2T_2=R_2B_2$  and for entries  $b_{ij}^{\alpha}$  of matrices  $B_{\alpha}$  hold 1.  $b_{ij}^{\alpha}=0$  if  $t_{\alpha}(i) \not\leq r_{\alpha}(j)$ ; 2.  $b_{ij}^{\alpha}=b_{i'j'}^{\beta}$  if  $(t_{\alpha}(i),r_{\alpha}(j))\approx (t_{\beta}(i'),r_{\beta}(j'))$ . So, we have defined the category  $Rep\Pi$ .

Let C be an aggregate, and  $L = (L_1, L_2)$  be a pair of C-modules. A representation of pair  $(C, L) = (C, L_1, L_2)$  is a collection  $(V_1, f_1, V_2, f_2, X)$ , where  $V_1, V_2 \in \text{mod } k$ ,  $X \in C$  and  $f_1 : V_1 \to L_1(X)$ ,  $f_2 : V_2 \to L_2(X)$  are linear maps. A morphism from  $(V_1, f_1, V_2, f_2, X)$  to another representation  $(W_1, g_1, W_2, g_2, Y)$  is a triple  $(\phi_1, \phi_2, \psi)$ , where  $\phi_i \in \text{mod } k(V_i, W_i)$ ,  $\psi \in C(X, Y)$  and  $f_i \circ L_i \psi = \phi_i \circ g_i$ , i = 1, 2. So, we have defined the category Rep(C, L) of the pair's representations.

The bundle  $\Pi=\Pi_1\sqcup\Pi_2$  allows us to construct an aggregate C, the object set of it spectroid is  $\Pi/\approx$ , for  $s_1,s_2\in\Pi$   $C(\Pi^=(s_1),\Pi^=(s_2))=$  linear hull of the set  $\{(x,y)|x\in\Pi^=(s_1),y\in\Pi^=(s_2),x\leq y\}$  and the pair of modules  $L_1,L_2,L_i(\Pi^=(s))=$ . = linear hull of  $\Pi_i^=(s)$ , the action of C on  $L_i$  is obvious. It is evident that  $\operatorname{Rep}(C,L)\cong\operatorname{Rep}\Pi$ .

Let K be a module over aggregate C,  $i: K' \to K$  an inclusion of submodule and  $\pi: K \to K'' = K/K'$  a projection on factor. K' is said to be a *component* in K if for any  $X, Y \in C$  and a map  $\alpha \in \operatorname{mod} k(K''X, K'Y)$  there exists  $\xi \in C(X, Y)$  such that  $K\xi = \pi X \circ \alpha \circ iY$ . For arbitrary submodule  $K' \subset K$  (not supposed to be a component), the functor

$$F_{K'}$$
: Rep  $(C, K) \rightarrow \text{Rep } (C, K', K'');$ 

$$F_{K'}(V,f,X) = \big(\operatorname{Ker}(f\circ\pi X),f',\operatorname{Im}(f\circ\pi X),\operatorname{can},X\big),$$

is defined, where f' is unique linear map for which  $f' \circ iX = f | \text{Ker}(f \circ \pi X)$ , and can:  $\text{Im}(f \circ \pi X) \to K''(X)$  is a subspace inclusion.

**Lemma 1.** Given a component  $K' \subset K$ , functor F induced an injection  $\operatorname{Ind}(C, K)$  into  $\operatorname{Ind}(C, K', K'')$ . The only isoclass does not contained in the image of F is the class of (0, 0, k, 0, 0).

Proof is easy (see [8], § 7).

Corollary 1. Given the bundle  $\Pi$ , the dyadic set  $S_{\Pi}$  and the functor  $\operatorname{Rep} S_{\Pi} \to \operatorname{Rep} \Pi$  exist that the image of induced injection  $\operatorname{Ind} S_{\Pi} \to \operatorname{Ind} \Pi$  does not contain the only class of  $(T_1, t_1, T_2, t_2)$ , where  $\operatorname{col} T_1 = \operatorname{col} T_2 = \operatorname{row} T_1 = \emptyset$ ,  $|\operatorname{row} T_2| = 1$ .

**Proof.**  $S_{\Pi}$  is built as follows:  $S = \Pi$ ,  $\leq_S = \leq_{\Pi} \cup \leq$ , where  $s \leq t$  iff  $s \in \Pi_1$ ,  $t \in \Pi_2$ ,  $\approx_S = \approx_{\Pi}$ .

Stated Corollary allows us to transfer definitions for dyadic sets to bundle case, for instance, we set  $C(\Pi) = C(S_{\Pi})$ . The image of  $M(S_{\Pi})$  in Rep  $\Pi$  will be called a set of multielementary representations of bundle  $\Pi$ .

A bundle  $\Pi$  is bipartite if it contains exactly 2 strings P and  $P^*$ . It is clear that  $\Pi$  is bipartite iff  $S_{\Pi}$  is bipartite in sense of [8].

We say that exceptional representation Ex of bundle  $\Pi$  is such  $(T_i, t_i, T_j, t_j)$  (where  $\{i, j\} = \{1, 2\}$ ) that

$$T_{i} = \begin{pmatrix} a & b & c & p \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \quad T_{j} = \begin{pmatrix} a^{*} & b^{*} & d & q \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

(we write here over  $x \in \operatorname{col} T_i$  the element  $\bar{t}_i(x) \in \Pi_i$ ), where  $\Pi_i$ ,  $\Pi_j$  contain full subposets

and  $(a, b) \sim (a^*, b^*)$ .

**Proposition 5.** If a bundle  $\Pi$  is a bipartite and  $|\operatorname{Ind} C(\Pi)| < \infty$ , then

a. Any  $(T_1, t_1, T_2, t_2) \in \text{Ind }\Pi$  is either multielementary or exceptional.

b. If Rep  $\Pi$  contains a faithful multielementary  $(T_1, t_1, T_2, t_2) \in \operatorname{Ind} \Pi$ , then either P or  $P^*$  is normal.

Proof. See [8], Th. 2.

Remark 2. Moreover, [8] implies  $\Theta_{\Pi}$ : ObRep  $C(\Pi) \to Ob$  Rep  $\Pi$ ,  $C(\Pi) = C(S_{\Pi}) = C_1 < C_2$  ( $C_i = \gamma^{-1}(\Pi_i)$ ), Ind  $C(\Pi) = Ind C_1 \sqcup Ind C_2$ ). If the string P is normal, then  $\Theta_{\Pi}$  induces the bijection between  $Ind C_2 \setminus \{0\}$  and  $Ind \Pi \setminus Ind (\Pi_1 \setminus \mathring{\Pi}_1)$ .

- § 3. Let  $P \subset S$  be a string,  $p < p^*$  for all  $p \in P$ . We define the set  $K_P = K_{P^*}$  as consisting of block representations  $(T, t, \{T_1, \ldots, T_k\})$ ,  $k \ge 2$  such that
  - for i > 2 the blocks  $T_i$  are small;
  - for i > 2,  $\mathcal{T}_i \cap \text{col } T \neq \emptyset$ ;
  - $-\text{if } x \in \text{col } T \text{ then } x \text{ or } x^* \text{ is linked with } y \in \mathcal{I}_1 \cup \mathcal{I}_2;$
  - for  $x < x^*$  such conditions are equivalent:
  - a. both x,  $x^*$  are linked with some elements of  $\mathcal{I}_1 \cup \mathcal{I}_2$ ;
  - b.  $x \in \mathcal{T}_1 \cap \bar{t}^{-1}(P)$ ;
  - c.  $x^* \in \mathcal{I}_2 \cap \bar{t}^{-1}(P^*);$

For  $(T, t, T) \in K_P$  the blocks  $T_1$ ,  $T_2$  will be called main, the blocks  $T_i$ , i > 2,

complementary. Let K be a set of representations  $(T_1, t_1) \oplus \ldots \oplus (T_n, t_n)$ , where for some string  $Q_i \subset S$  and a block composition  $(T_i, t_i, T_i) \in K_{Q_i}$ 

Define the bundle  $\Pi_P = \Pi_1 \sqcup \Pi_2$ ,  $\Pi_1 = (C(S) \setminus \gamma^{-1}(P) \cup P)$ ,  $\Pi_2 = (C(S) \setminus \gamma^{-1}(P^*)) \cup P^*$ . If  $x \in \Pi_1 \setminus P$ ,  $y \in P$ , then x < y (x > y) iff  $\gamma(x) < y$   $(\gamma(x) > y)$ , and the same for  $\Pi_2$ ; order on P,  $P^*$ ,  $\Pi_1 \setminus P$  and  $\Pi_2 \setminus P^*$  is induced by the orders on S and C(S);  $(p_1, p_2) \sim (q_1, q_2)$  if  $q_1, q_2 \in P^*$  and  $(p_1, p_2) \sim (q_1, q_2)$  in S. It is easy to see that  $C(\Pi_P) = C_1 < C_2$ , where  $C_1 \simeq C_2 \simeq C(S)$ . As in multielementary case, the map  $\Theta_P$ : ObRep  $\Pi_P \to$  Ob Rep S can be constructed, Im  $\Theta_P = K_P'$ , where  $K_P'$  consists of such (T, t) that allow a block composition  $(T, t, T) \in K_P$ : For i = 1, 2 the matrix  $T_i$  attached to block  $T_i \in T$  coincides with the matrix  $T_i$  of  $(T_1, t_1, T_2, t_2) \in \text{Rep }\Pi_P$ ; each complementary block of T is attached in the natural way to some element  $b_j$ , j > 0 in zigzag  $\mathcal{B} = (b_0, \dots, b_n) \in \text{Supp }\overline{T_1} \cup U$  Supp  $\overline{T_2}$ , where  $\overline{T_i} \in \text{Rep }\Pi_i$  corresponds to  $T_i$ .

**Proposition 6.** The category  $\operatorname{Rep}'\Pi_P$  and the functor  $J_P: \operatorname{Rep}\Pi_P \to \operatorname{Rep}S$  exist such that  $\operatorname{Ob}\operatorname{Rep}'\Pi_P \to \operatorname{Ob}\operatorname{Rep}\Pi_P$ ,  $\operatorname{Rep}\Pi_P$  is epivalent to  $\operatorname{Rep}\Pi_P$ ,  $\operatorname{Im}J_P = K_P'$  up to permutation of rows and columns  $(J_P \text{ and } \Theta_P \text{ coincide as objects map}).$ 

**Proof.** See [9], prop. 3.1.

Corollary 2. Given  $X, Y \in \text{Rep }\Pi_p$ , then

- 1)  $\Theta_P(X \oplus Y) \simeq \Theta_P(X) \oplus \Theta_P(Y)$ ;
- 2) if  $X \simeq Y$ , then  $\Theta_P(X) \simeq \Theta_P(Y)$ .

Representation  $T_{\text{ex}} = (T, t) \in \text{Rep } S$  is *exceptional* if there exist a string P in S and exceptional representation  $\text{Ex} \in \text{Rep } \Pi_P$  such that  $\Theta_P(\text{Ex}) = T_{\text{ex}}^2$ .

It is easy to see that (since  $|C(S)| < \infty$ ) only a finite number of exceptional representations of dyadic S exists.

**Proposition 7.** Any  $(T, t) \in K$  is equivalent to a direct sum of exceptional and multielementary representations.

**Proof.** Bounding to direct summand we can suppose that for some block composition T and string P we have  $(T, t, T) \in K_P$ . Then  $(T_1, t_1, T_2, t_2) \in \operatorname{Rep} \Pi_P$  exist such that  $\Theta_P(T', t') = (T, t)$ . But  $(T_1, t_1, T_2, t_2) \simeq \operatorname{Ex}_1 \oplus \ldots \oplus \operatorname{Ex}_n \oplus (R_1, r_1, R_2, r_2)$ , where  $(R_1, r_1, R_2, r_2)$  is multielementary representation of bundle. Since  $\Theta_P$  maps multielementary to multielementary and exceptional to exceptional, we finish the proof, using the corollary 2.

**Remark 3.** If the dyadic set S is weakly completed poset, i. e. S does not contain edges, it is known that the sets M, and, consequently, K are dense in Rep S, as it was proved in [10] (see also [1], p. 4).

The natural transformations  $P: \mathcal{M} \to K_P$ ,  $P^*: \mathcal{M} \to K_P$  are defined: if  $(T, t, T) \in \mathcal{M}$ , then P((T, t, T)) = (T, t, T'),  $P^*((T, t, T)) = (T, t, T'')$ , where  $\mathcal{T}_1 = \mathcal{T}_1' = \mathcal{T}_2''$ ,

$$\begin{split} \mathcal{T}_2' &= \big\{ x \in \bigcup_{i \geq 2} \, \mathcal{T}_i \big| \, x \sim y \quad \text{for some} \quad y \in \mathcal{T}_1, \ \bar{t}(x) \in P^* \big\}, \\ \mathcal{T}_1'' &= \big\{ x \in \bigcup_{i \geq 2} \, \mathcal{T}_i \big| \, x \sim y \quad \text{for some} \quad y \in \mathcal{T}_1, \ \bar{t}(x) \in P \big\}. \end{split}$$

<sup>&</sup>lt;sup>2</sup> Every exceptional representation is indecomposable; this fact is not used.

After the proper permutation the other columns form complementary blocks  $T_i'$ ,  $T_i''$ , i > 2.

A subset  $X \subset C(S)$  is called *locally linear*, if there are no  $\mathcal{B}_1$ ,  $\mathcal{B}_2 \in X$ , such that  $\mathcal{B}_1 \times \mathcal{B}_2$  in C(S) and  $\gamma(\mathcal{B}_1) = \gamma(\mathcal{B}_2)$ . Representation  $T \in \operatorname{Rep} C(S)$  is *locally linear*, if  $\operatorname{Supp} T \subset C(S)$  is a locally linear subset. Denote by  $\overline{\operatorname{Rep}} C(S)$ ,  $\overline{\operatorname{Ind}} C(S)$  the subsets of locally linear representations contained in resp. sets.

For  $\mathcal{B} \in C(S)$ ,  $\mathcal{B} = (z_0, \dots, z_m)$ , set  $h(\mathcal{B}) = m$  if  $z_m \in S$ ,  $h(\mathcal{B}) = m-1$  if  $z_m \in S$  is the integer  $h(T) = \sup \{h(\mathcal{B}) \mid \mathcal{B} \in S \in S \in S \}$ . A representation  $T \in \overline{\operatorname{Ind}}(C(S))$  is said to be of minimal height if  $h(T) = \inf \{h(T') \mid T' \in \overline{\operatorname{Ind}}(C(S)), \Theta(T') \cong \Theta(T)\}$ .

**Proposition 8.** If  $|\operatorname{Ind} C(S)| < \infty$ , the set  $\Theta(\overline{\operatorname{Ind}} C(S))$  is dense in  $\operatorname{Ind} M$ .

Proof. We remind that if  $\mathcal{A}=(a,a_1,\ldots,a_n)\in C(S)$ , then  $\partial_{a^*}^2\mathcal{A}=(a_1,\ldots,a_n)$  [3]. For  $T\in \operatorname{Ind} C(S)$  we denote  $B(T)=\{\mathcal{A}\in\operatorname{Supp} T|\mathcal{A}\times\mathcal{A}'\in\operatorname{Supp} T,\ \gamma(\mathcal{A})==\gamma(\mathcal{A}')\}$ ,  $\overline{h}(T)=\sum_{\mathcal{A}\in B(T)}h(\mathcal{A})$ . We will prove our statement by induction by  $\overline{h}(T)$ .  $\overline{h}(T)\neq 0$ . Taking some proper  $\approx$  - closed subset of S, we can suppose that  $\Theta(T)$  is a faithful representation. There exist  $\mathcal{B}_1, \mathcal{B}_2\in\operatorname{Supp} T$  such that  $\mathcal{B}_1\times\mathcal{B}_2$  and  $\gamma(\mathcal{B}_1)=\gamma(\mathcal{B}_2)=q\in \mathring{S}$ . Let Q be a string in S,  $q\in Q$  and  $Q^*$  the dual string, and, for defineteness,  $q<q^*$ . Representation  $\Theta_{\Pi_Q}(T)$  is indecomposable (remark 2). It may be not faithful for  $\Pi_Q$ , but it is faithful for some bipartite bundle  $\Pi_Q'\subset\Pi_Q$   $(Q,Q^*\subset\Pi_Q')$ . The definition of the order on C(S) immediately implies that  $\partial_{q^*}^2\mathcal{B}_1\times\partial_{q^*}^2\mathcal{B}_2$ , and since  $\gamma(\partial_{q^*}^2\mathcal{B}_i)\times q^*$ , i=1,2, the string  $Q^*$  in  $\Pi_Q'$  is not normal, and, therefore, the string Q in  $\Pi_Q'$  is normal (see prop. 5). By remark 2 there exists  $\overline{T}\in\operatorname{Ind} C_2\subset\operatorname{Ind} C(\Pi)$ ,  $C_2\simeq C(S)$  such that  $Q^*(\overline{T})=Q(T)$  and  $\Theta(T)\simeq\Theta(\overline{T})$ . Our constructions imply  $\operatorname{Supp} \overline{T}\setminus\gamma^{-1}(Q^*)=\{\partial_{q^*}^2\mathcal{A}|\mathcal{A}\in\operatorname{Supp} T,a\in Q\}$ . It is easy to see that  $\gamma^{-1}(Q^*)\cap B(\overline{T})=\emptyset$  (since Q is normal in  $\Pi_Q'$ );  $\partial_{q^*}^2\mathcal{A}\in\mathcal{B}(\overline{T})$  implies  $\mathcal{A}\in\mathcal{B}(T)$ . Thus,  $\overline{h}(\overline{T})<\overline{h}(T)$ .

Remark 4. Define a subset  $U(S) \subset C(S)$ , we have  $S = (s_0, \ldots, s_m) \in U(S)$  iff for any  $i, j = \overline{0, m-1}$ ,  $s_i^* \neq s_j$ . The proof also shows that for any  $T \in \operatorname{Ind} U(S)$  representation  $\overline{T} \in \operatorname{Ind} U(S) \cap \overline{\operatorname{Ind}} C(S)$  exists such that  $\Theta(T) \simeq \Theta(\overline{T})$  (see [9], remark 3.2).

**Proposition 9.** Let  $|\operatorname{Ind} C(S)| < \infty$ , P be a string,  $\operatorname{Supp} T \subset P$ , and h(T) > > 1. Then T is not of minimal height.

**Proof.** Construct  $\overline{T}$  as in the proof of prop. 8 (clearly, P is normal in  $\Pi'_P$ ). If  $\mathcal{A} \in \text{Supp } \overline{T} \cap \gamma^{-1}(P)$ , then  $h(\mathcal{A}) = 1$ , if  $\mathcal{B} \in \text{Supp } \overline{T} \cap \gamma^{-1}(P)$ , then  $B = \partial_{\chi^*}^2 \mathcal{D}$ ,  $\mathcal{D} \in \text{Supp } T$ ,  $h(\mathcal{B}) = h(\mathcal{D}) - 1$ .  $\overline{T} \in \overline{\text{Ind }} C(S)$  since  $T \in \overline{\text{Ind }} C(S)$ .

§ 4. Let C be a poset, (K, M) a corresponding module over aggregate,  $K = \oplus \text{Vect } C$ ,  $M = \oplus \text{Vect } C$ , considered as module over himself,  $x \in C$ .

Module M contains submodule N: for  $y \in C$ 

$$N(y) = \begin{cases} 0, & y \le x; \\ M(y), & y > x \text{ or } y \times x, \end{cases}$$

and a factormodule L = M/N is defined.

We will call a representation  $T = (V, f, X) \in \text{Rep}(\mathcal{K}, M) \simeq \text{Rep } C$  x-projective, if

- 1) Supp  $T \cap C^{\geq}(x) = \emptyset$ ;
- 2) the linear map  $V \xrightarrow{f} M(X) \xrightarrow{\operatorname{can}} L(X)$  is injective. Condition 2 is equivalent to linear independence of rows of submatrix of representation matrix T, which consists of columns that are less x. In the dual manner, the definition of x-injectivity can be done. In order to do this, we need to consider submodule  $N_1 \subset M$ ,

$$N_1(y) = \begin{cases} 0, & y < x \text{ or } y \times x; \\ M(y), & y \ge x, \end{cases}$$

and demand the fulfilment of two conditions:

- 1) Supp  $T \cap C^{\leq}(x) = \emptyset$ ;
- 2) the linear map  $V \xrightarrow{f} M(X) \xrightarrow{\operatorname{can}} M/N_1(X)$  is surjective.

**Proposition 10.** If  $T \in \text{Rep}(K, M)$ , and  $\text{Supp } T \cap C^{\geq}(x) = \emptyset$ , then T is x-projective iff any representation of the form  $T' = (V, (f\varphi), X \oplus x)$  is isomorphic to  $T \oplus (0, 0, x)$ .

The proof is trivial.

In analogous way the dual proposition  $1^*$  for x-injective representations is formulated (with substitution (k, 1, x) for (0, 0, x)).

**Proposition 11.** If  $x, y \in C$ ,  $x \le y$ ,  $T \in \text{Ind } C$ ,  $\text{Supp } T \cap C^{\le}(x) = \emptyset$ ,  $\text{Supp } T \cap C^{\ge}(y) = \emptyset$ , and T is neither x-injective nor y-projective, then there exists an indecomposable  $T' \in \text{Ind } C$  such that  $\text{Supp } T' = \text{Supp } T \cup \{x, y\}$ .

In order to prove this statement, an indecomposable with the support Supp  $T \cup \{x\}$  should be considered. The condition 2 from the definition of y-projectivity does not hold for this representation because it does not for T.

We remind that the edge  $\varphi = a \Rightarrow b$  is 1) maximal iff there is no x such that  $b < \langle x, a \Rightarrow x$  and no y such that  $y < a, y \Rightarrow b$ ; 2) equipped by u iff  $u \times \{a, b\}$ . Set eq  $(\varphi) = |\{\mathcal{B} \in C(S) | \gamma(\mathcal{B}) \times \{a, b\}\}|$ . If eq  $(\varphi)$  is at least 2 we say that  $\varphi$  is twice equipped. If the dual edge  $\varphi = a^* \Rightarrow b^*$  is equipped, the edge  $\varphi$  is called coequipped.

Fix a maximal edge  $\varphi = a \Rightarrow b$  in dyadic S, and suppose  $|\operatorname{Ind} C(S)| < \infty$ . For definiteness, we suppose that  $a < a^*$ , and, therefore,  $b < b^*$ , let P be a string containing  $\varphi$ .

**Lemma 2.** Let  $\mathcal{A}, \mathcal{B} \in C(S), \ \gamma(\mathcal{A}) \leq a, \ \gamma(\mathcal{B}) \geq b^*$ . Then there is no  $T \in Ind C(S)$  such that  $\mathcal{J} = Supp T \supset \{\mathcal{A}, \mathcal{B}\}.$ 

**Proof.** Suppose that such T exists. Clearly,  $\mathcal{A} < \mathcal{B}$ . Define  $\overline{\mathcal{I}} = \{X \in \mathcal{I} | X \times \mathcal{A}, \mathcal{B}\}$ . The Kleiner's list of faithful finitely represented posets shows that  $\overline{\mathcal{I}} \neq \mathcal{A}$ . Let  $\mathcal{X} \in \overline{\mathcal{I}}$ ,  $x \in \gamma(\mathcal{X})$ .

- 1.  $x \notin P \cup P^*$ . If  $x \in P$ , and  $x \le b$ , then  $x \triangleleft b^*$  and X < B; if x > b, then owing to maximality of  $a \Rightarrow b$  we have  $a \triangleleft x$ , and A < X.
- 2.  $x \times \{a, b, a^*, b^*\}$ . Otherwise a < x or  $x < b^*$ . If, for definiteness, a < x, then 1 implies that  $a \triangleleft x$ , so,  $\mathcal{A} < \mathcal{X}$ .
- 3.  $|\overline{\mathcal{I}}| = 1$  and  $x \notin \mathring{S}$ . Otherwise 2 implies that the edges  $a \Rightarrow b$  and  $a^* \Rightarrow b^*$  are twice equipped (that contradicts to  $|\operatorname{Ind} C(S)| < \infty$ , [1]).
- 4.  $b \triangleleft a^*$ , in the opposite case  $b \times a^*$ , and  $\mathcal{I}$  contains subset  $(1, 3, 3) \longrightarrow \{X; (b, 0), (b, 1), (b, x); (a^*, 0), (a^*, 1), (a^*, x)\}$ ,  $|\operatorname{Ind} C(S)| = \infty$ .

5. X contains subset  $\{A, B, U, V, X\}$ , where



It follows from 3 and the Kleiner's list of faithful finitely represented posets (see [2], 5.4).

- 6.  $\gamma(\mathcal{U}) \geq a^*$ . Indeed, if  $\gamma(\mathcal{U}) \notin P^*$ , then  $\gamma(\mathcal{U}) \times \{b^*, a^*\}$ , and two incomparable points x and  $\gamma(\mathcal{U})$  equip the edge  $a^* \Rightarrow b^*$  ( $|\operatorname{Ind} C(S)| < \infty$ ). If  $\gamma(\mathcal{U}) \in P^*$ , then  $\gamma(\mathcal{U}) < a^*$ , and  $\gamma(\mathcal{U}) \lhd b^*$  owing to maximality of  $a \Rightarrow b$ ; in this case  $\mathcal{U} < \mathcal{B}$ .
  - 7. In analogous way, it is checked that  $\gamma(\mathcal{V}) \leq b$ .
  - 8. Now,  $\gamma(\mathcal{V}) \leq b \triangleleft a^* \leq \gamma(\mathcal{U})$ , and we obtain the contradiction  $\mathcal{V} < \mathcal{U}$

**Proposition 12.** If  $T \in \text{Ind } C(S)$  is not  $(b^*, 0)$ -projective, then it is (a, 1)-injective.

**Proof.** By the lemma 2 either (1) Supp  $T \cap C(S)^{\geq}(b^*, 0) = \emptyset$ , or (2) Supp  $T \cap C(S)^{\leq}(a, 1) = \emptyset$ . Suppose that the (1) holds (for (2) the proof is similar). If T is not  $(b^*, 0)$ -projective, then by proposition 10 an indecomposable with support Supp  $T \cup \{(b^*, 0)\}$  exists, and again by the lemma 2, Supp  $T \cap C(S)^{\leq}(a, 1) = \emptyset$ . Either T is (a, 1)-injective, or we can construct an indecomposable representation of C(S) with support Supp  $T \cup \{(b^*, 0), (a, 1)\}$ , so we have once more contradiction to the lemma 2. The statement is proved.

§ 5. Given a maximal edge  $\varphi = a \Rightarrow b$ ,  $a < a^*$  in S, the dyadic set  $S_{\varphi}^{\triangleleft} = S^{\triangleleft}$  can be obtained from S by "excluding" the edge  $a \Rightarrow b$ , i. e.  $S^{\triangleleft} = S$  as sets,  $\leq_{S^{\triangleleft}} = \leq_{S}$ ,  $\approx_{S^{\triangleleft}} = \approx_{S}$  and  $(x, y) \sim_{S^{\triangleleft}} (x', y')$  iff  $(x, y) \sim_{S} (x', y')$ ,  $(x, y) \notin \{\varphi, \varphi^*\}$ . We have Ob Rep  $S = \text{Ob Rep } S^{\triangleleft}$  Moreover,  $C(S) = C(S^{\triangleleft})$  as sets, the order on  $C(S^{\triangleleft})$  is strengthening of the order on C(S). Hence if C(S) is finitely represented, then  $C(S^{\triangleleft})$  is finitely represented too.

Let  $(T, t) \in \text{Rep } S$ ,  $x, x^* \in \text{col } T$ ,  $x < x^*$ ,  $x \in \bar{t}^{-1}(\{a, b\})$ . If t(x) = (a, i) (resp. t(x) = (b, i)) then the pair  $x, x^*$  is not essential if the morphism  $(A, B) \in \text{Rep } S^{\triangleleft}(X, (T^-, t^-))$  (resp.  $(A, B) \in \text{Rep } S^{\triangleleft}((T^+, t^+), X)$ ) exists such that  $B_{i1}^{ab} \neq B_{i1}^{a^*b^*}$ ,  $B_{j1}^{ab} = B_{j1}^{a^*b^*}$ ,  $j \neq i$ , where row  $T^- = \emptyset$ , col  $T^- = \{y < y^*\}$ ,  $\bar{t}^-(y) = b$  (resp.  $|\text{row } T^+| = 2$ , col  $T^+ = \{z < z^*\}$ ,  $\bar{t}^+(z) = a$ , and  $T^+$  is the unit matrix).  $B^{ab}$  is the matrix (with one row here) attached to the pair a, b in § 1.

The representation (T, t) is  $\varphi$ -injective (resp.  $\varphi$ -projective) if any pair x,  $x^*$ , where  $\bar{t}(x) = a$  (resp.  $\bar{t}(x) = b$ ) is not essential. For arbitrary string  $Q \subset S^{\triangleleft}$  block representation  $(T, t, T) \in K_Q(S^{\triangleleft})$  is  $\varphi$ -quasibijective if any essential pair  $x < x^*$  ( $\bar{t}(x) \in \{a, b\}$ ) is such that  $x \in T_1$ ,  $x^* \in T_2$  (so, if (T, t, T) is  $\varphi$ -quasibijective, then essential pair can exist only if  $Q \cap \{a, b\} \neq \emptyset$ ).

**Lemma 3.** If  $(T, t) \in \text{Rep } S^{\triangleleft}$  is  $\varphi$ -projective or  $\varphi$ -injective,  $(R, r) \simeq (T, t)$  in  $\text{Rep } S^{\triangleleft}$ , then  $(R, r) \simeq (T, t)$  in Rep S.

 $\varphi$ -projectivity or  $\varphi$ -injectivity of (T, t) implies the existence of morphism  $(A, B) \in \operatorname{Rad} \operatorname{Rep} S^{\triangleleft}((T, t), (R, r))$  with arbitrary  $B^{ab}$ , that implies the lemma.

**Lemma 4.** Given  $(T, t) \in K^{\triangleleft}$ ,  $(T, t) = \oplus (T_{\alpha}, t_{\alpha})$ , such that for some string  $Q_{\alpha}$  and block composition  $T^{\alpha}$  representation  $(T_{\alpha}, t_{\alpha}, T^{\alpha}) \in K_{Q}(S^{\triangleleft})$  is quasibijective, then the isomorphism  $(R, r) \simeq (T, t)$  in  $\operatorname{Rep} S^{\triangleleft}$  implies the existence of  $(T', t') \in K$ ,  $(R, r) \simeq (T', t')$  in  $\operatorname{Rep} S$ .

As in lemma 3 we can prove that isomorphism  $(A,B): (T,t) \to (R,r)$  exists such that  $B_{ij}^{ab} \neq B_{ij}^{a^*b^*}$  only if  $t^{-1}(a,i) \in \mathcal{T}_1^{\alpha}$ ,  $t^{-1}(b,j) \in \mathcal{T}_1^{\beta}$ . Then the isomorphism  $(\overline{A},\overline{B}) \in \text{Rep } S\left((T',t'),(R,r)\right)$  exists such that  $B_{xy} \neq \overline{B}_{xy}$  only if  $\overline{t}(x) = a^*$ ,  $\overline{t}(y) = b^*$ ,  $x \in \bigcup_{\alpha} \mathcal{T}_2^{\alpha}$ ,  $y \in \bigcup_{\beta} \mathcal{T}_2^{\beta}$ . The definition of  $K_P$  (§ 3) implies that  $(T',t') \in K$ .

Let  $\{x < x^*\} \subset \text{col } T$ ,  $\bar{t}(x) \in \{a, b\}$ . If  $(T, t, T) \in \mathcal{M}$ , set  $\mathcal{T}(x, x^*) = |\{x, x^*\} \cap \mathcal{T}_1| \in \{0, 1\}$ , and, if  $(T, t, T') \in K_P$ , set  $\mathcal{T}'(x, x^*) = |\{x, x^*\} \cap (\mathcal{T}_1 \cup \mathcal{T}_2)| \in \{0, 1, 2\}$ .

Given  $(T, t, T) \in \mathcal{M}$ ,  $P((T, t, T)) = (T, t, T') \in K_P$ ,  $P^*((T, t, T) = (T, t, T'')) \in K_P$ . We say that

(T, t, T) is *M-bijective* if  $x, x^* \in \text{col } T$ ,  $\bar{t}(x) \in \{a, b\}$  and  $T(x, x^*) = 0$  imply the pair  $x, x^*$  is not essential;

(T, t, T) is P-bijective if  $x, x^* \in \text{col } T$ ,  $\bar{t}(x) \in \{a, b\}$  and  $T(x, x^*) = T'(x, x^*) = 1$  imply the pair  $x, x^*$  is not essential;

(T, t, T) is  $P^*$ -bijective if  $x, x^* \in \text{col } T$ ,  $\bar{t}(x) \in \{a, b\}$  and  $T(x, x^*) = T''(x, x^*) = 1$  imply the pair  $x, x^*$  is not essential.

**Remark 5.** It is obvious that  $T'(x, x^*) \le \min \{ T'(x, x^*), T''(x, x^*) \}$  and, therefore, that if  $(T, t, T) \in \mathcal{M}$  is M-bijective and P- (resp.  $P^*$ -) bijective, then P(T, t, T) (resp.  $P^*(T, t, T)$ ) is  $\varphi$ -quasibijective.

**Proposition 13.** Given  $Z \in \operatorname{Ind} C(S)$  that is  $(b^*, 0)$ -projective, then  $\Theta(Z) = (T, t, T)$  is P-bijective.

Proof. It is easy to see, ([9], prop. 5.1).

Proposition 13, the dual proposition and proposition 12 imply

Corollary 3. If  $|\operatorname{Ind} C(S)| < \infty$ , then any  $(T, t, T) \in \mathcal{M}$  is either P-bijective or  $P^*$ -bijective.

Let  $(T, t, T) \in \mathcal{M}$ . Complementary block  $\mathcal{T}_i$  is said to be bad if it is either  $\mathcal{T}_i = \{u\}$ ,  $\bar{t}(u) \in S^{\approx}(a)$ ,  $|\mathcal{T}_i^*| = 1$ , or  $\mathcal{T}_i = \{v\}$ ,  $\bar{t}(v) \in S^{\approx}(b)$ ,  $|\mathcal{T}_i^*| = 0$ , or  $\mathcal{T}_i = \{x, y\}$ ,  $\bar{t}(x) \in S^{\approx}(\{a, b\})$ ,  $|\mathcal{T}_i^*| = 1$ ,  $\bar{t}(y)$  equips that edge from the pair  $\varphi$ ,  $\varphi^*$  that contains  $\bar{t}(x)$ . The following proposition is almost evident.

**Proposition 14.**  $(T, t, T) \in \mathcal{M}$  is M-bijective if (and only if) there are no pairs  $x, x^* \in \text{col } T, x < x^*$  such that  $\bar{t}(x) \in \{a, b\}$  and  $x, x^*$  belong to bad block.

§ 6. In § 6 S denotes a dyadic set,  $|\operatorname{Ind} C(S)| < \infty$ .

The pair of edges  $a \Rightarrow b$ ,  $c \Rightarrow d$  we call *crossed*, if  $d \times \{a, b\}$ ,  $a \times \{c, d\}$  (then  $c \triangleleft b$ ). The pair of dual edges  $\varphi = a \Rightarrow b$ ,  $\varphi^* = a^* \Rightarrow b^*$  we call *admissible*, if no one of  $\varphi$ ,  $\varphi^*$  is crossed with coequipped edge.

**Remark 6.** If every pair of dual maximal edges is not admissible, then for any edge  $\varphi$ , max  $\{ eq(\varphi), eq(\varphi^*) \} \ge 3$ .

**Remark 7.** If  $\varphi$ ,  $\varphi^*$  is a pair of dual maximal edges and both edges are equipped, then this pair is admissible, because both crossed edges cannot be coequipped, otherwise  $|\operatorname{Ind} C(S)| = \infty$  (see [1],  $\mathbb{N}^2$  17).

**Proposition 15.** There exists an admissible pair of dual maximal edges.

**Proof.** Suppose the contrary. Then for any pair of maximal dual edges  $a\Rightarrow b$ ,  $a^*\Rightarrow b^*$  there exists an edge  $c\Rightarrow d$  such that the edges  $a\Rightarrow b$ ,  $c\Rightarrow d$  are crossed, and the edge  $c^*\Rightarrow d^*$  is equipped. Edge  $c\Rightarrow d$  is not maximal, because in the opposite case, by remark 7, the pair  $c\Rightarrow d$ ,  $c^*\Rightarrow d^*$  is admissible. If  $\overline{c}\leq c$ ,  $d\leq \overline{d}$ , and  $\overline{c}\Rightarrow \overline{d}$  — maximal edge, then by remark 6 one of the edges  $\overline{c}\Rightarrow \overline{d}$ ,  $\overline{c}^*\Rightarrow \overline{d}^*$  is three times equipped, the other contains equipped subedge  $c\Rightarrow d$  or  $c^*\Rightarrow d^*$  but this contradicts to [1]  $\mathbb{N}^2$  14.

**Proposition 16.** If  $\varphi = a \Rightarrow b$ ,  $\varphi^* = a^* \Rightarrow b^*$  is the admissible pair of dual maximal edges, and  $T_{\text{ex}} = (T, t)$  is exceptional representation of  $S^{\triangleleft}$ , then there exists string  $Q \subset S^{\triangleleft}$  and block composition T such that (T, t, T) is  $\varphi$ -quasibijective,  $(T, t, T) \in K_0^{\triangleleft}$ .

Proof. See [9], prop. 6.2.

**Proposition 17.** If  $\varphi = a \Rightarrow b$ ,  $\varphi^* = a^* \Rightarrow b^*$  is a maximal admissible pair of edges in S,  $(T, t, T) \in \mathcal{M}$  is a locally linear indecomposable of minimal height, then (T, t, T) is M-bijective.

**Proof.** Since proposition 4 we will consider, that if (T, t) is elementary, then (T, t, T) is conormal. If (T, t, T) is not M-bijective, then by proposition 14 there are  $x < x^*$  ( $\bar{t}(x) \in \{a, b\}$ ), both in the bad (complementary) blocks. Suppose Supp  $T \ni \exists B$ , where  $B = (b_1, \ldots, b_m)$  and 1 < n < m exists such that  $b_{n-1} = q$ ,  $b_n = a$ ,  $b_{n+1} = t$ ,  $q^* \times \{a, b\}$  and either t = 1 or  $t \times \{a^*, b^*\}$ , another cases may be considered in similar way. If  $t \in \mathring{S}$ , then we have [1],  $N^0$  12, therefore, in fact m = n + 1. The point  $q^*$  is not seminormal, so,  $q = b_{n-1}, \ldots, b_1$  are not co-seminormal (prop. 2, 3), so, T is not elementary. We will prove that T is not of minimal height.

Since T is not elementary and  $b_1$  is seminormal, there exists  $\mathcal{D} \in \operatorname{Supp} T$ ,  $\mathcal{D} \times \mathcal{B}$  and  $u = \gamma(\mathcal{D})$  such that  $u \Rightarrow b_1$  or  $b_1 \Rightarrow u$  ( $u \neq b_1$  by locally linearity).  $\mathcal{B} \times \mathcal{D}$  implies  $b_2 \times u^*$ ,  $b_1^*$ , so,  $b_2$  is not seminormal. But if n > 2, then  $b_2$  is also not co-seminormal (see above), that contradicts to prop. 3. Therefore, n = 2,  $\mathcal{B} = (q, a, t)$ ,  $u^* \times a = b_2$ .

If  $q \Rightarrow u$ , then  $u^* \times b$ ,  $\{q^* \Rightarrow u^*\} \times \{a \Rightarrow b\}$ , that contradicts to finite representability of C(S) ([1],  $\mathbb{N}^2$  21). We conclude that it is possible only  $u^* \Rightarrow q^*$ ,  $u^* < b$ , then

$$u^* \Leftrightarrow q^*$$
 $a \Leftrightarrow b$ 

is a crossed pair of edges, and admissibility of  $\varphi$ ,  $\varphi^*$  implies that  $u \Rightarrow q$  is nonequipped.

Let P be a string in S containing  $u \Rightarrow q$ . We will show that  $\gamma(\operatorname{Supp} T) \subset P$ , and then prop. 9 will finish the proof of statement.

If  $|\operatorname{Supp} T| = 2$ , it is evident. If  $|\operatorname{Supp} T| > 2$ , then according to the Kleiner's list of faithful finitely represented posets [2], 5.4, there exists  $C \in \operatorname{Supp} T$ ,  $C \times \{B, D\}$ ; if  $v = \gamma(C)$ , then admissibility of the pair  $\varphi$ ,  $\varphi^*$  implies  $\operatorname{eq}(u \Rightarrow q) = 0$ ,  $v \in P$ . Hence (up to rename v and u), we have  $a \times \{v^* \Rightarrow q^*\}$ .

Note that eq  $(a^* \Rightarrow b^*) \le 1$ , because the edge  $a \Rightarrow b$  is equipped by the point  $q^* \in \mathring{S}$  (see [2],  $N^{\circ}$  1); eq  $(v^* \Rightarrow q^*) \le 3$  (see [1],  $N^{\circ}$  3). Consequently,  $v^* \Rightarrow q^*$  can

be equipped (except for a) by the only point  $s \notin \mathring{S}$ ; if  $t \times \{a \Rightarrow b\}$   $(t \notin \mathring{S})$  then t and s can not exist simultaneously.

 $\mathcal{B}=(q,a,1)$  or (q,a,t), by the definition of bad block. Now it is obvious that C=(v,1). For  $\mathcal{D}$  there exist two possibility:  $\mathcal{D}=(u,a,1)$  or (u,s), s>a, so,  $\mathcal{B}$  lie in the only antichain of cardinality 3 in Supp T (more longer edge  $v\Rightarrow q$  give the case [1],  $\mathbb{N}^{2}$  22 $^{i}$ ). Hence, by [2], 5.4, either Supp  $T=\{\mathcal{B},\mathcal{C},\mathcal{D}\}$ , or Supp  $T=\{\mathcal{B},\mathcal{C},\mathcal{D}\}$ , where  $\mathcal{E}\times\{\mathcal{C},\mathcal{D}\}$ ,  $\mathcal{E}$  is comparable with  $\mathcal{B}$ . We claim that  $w=\gamma(\mathcal{E})\in P$ . Indeed, in the opposite case in  $\mathcal{S}$  there is the following fragment

$$\begin{array}{ccc}
v & u & q \\
\circ \Longrightarrow \circ \Longrightarrow \circ & & \\
\bullet & w & & \\
\end{array}$$

the edge  $v \Rightarrow q$  is twice equipped (by a). We obtain the case [1],  $N^{\circ}$  (14<sup>3</sup>)\*.

**Theorem 1.** If S is a dyadic set and  $|\operatorname{Ind} C(S)| < \infty$ , then K is dense in Rep S.

The theorem is proved by induction by the number of edges in S. The base of induction — the weakly completed case — was studied in [10] (see remark 3).

Choose, owing to prop. 15, a maximal admissible pair  $\varphi$ ,  $\varphi^*$ , and build  $S^{\triangleleft}$ . Our aim is to show that any  $(T,t) \in \operatorname{Ind} S$  is equivalent to  $(T',t') \in K$ . The induction hypothesis and prop. 7 imply that in  $S^{\triangleleft}$  any  $(T,t) \cong \oplus (T_i,t_i)$ , each  $(T_i,t_i)$  is indecomposable and either exceptional or multielementary, in the latter case, by prop. 8 we can assume  $(T_i,t_i)=\Theta(Z_i)$ ,  $Z_i\in \operatorname{\overline{Ind}} C(S)$ . Due to lemma 4 it is sufficient to prove that, for some string Q in  $S^{\triangleleft}$  and some block composition,  $(T_i,t_i,T_i)\in K_q^{\triangleleft}$  is  $\varphi$ -quasibijective. For exceptional representations it is checked in prop. 16, for multielementary ones it follows from corollary 3 and prop. 17, using remark 5.

**Appendix.** In the appendix we denote by S a dyadic set with  $|\operatorname{Ind} C(S)| < \infty$ . Given the poset  $(C, \leq)$ , the width of  $t \in C$  is  $w(t) = w(C^{\times}(t)) + 1$ .

**Lemma 5.** Width of any zigzag in  $C(S)\setminus U(S)$  is not greater than 2.

**Proof** is a consequence of the properties of the normal points (notion of that points is introduced in [5], 2.2, details of the proof see [9], lemma 7.1).

**Proposition 18.** Let  $\Pi = \Pi_1 \sqcup \Pi_2$  be a bipartite bundle, T is a faithful indecomposable representation of  $C(\Pi)$ ,  $\gamma(T) \subset \Pi_1$ ,  $|\operatorname{Ind} C(\Pi)| < \infty$ . Then  $w(\Pi_2 \setminus \mathring{\Pi}_2) \leq 1$ .

See proof of prop. 7.1 in [9], where in Fig. on p. 26 should be  $\mathcal{A} < \mathcal{B}$  instead of  $\overline{\mathcal{B}} < \overline{\mathcal{A}}$ , after this Fig. "can be  $\overline{\mathcal{B}} < \overline{\mathcal{A}}$ ", and 6 lines below in  $C_4$ , " $\overline{\mathcal{B}} < \overline{\mathcal{A}}$ " instead of " $\overline{\mathcal{A}} < \overline{\mathcal{B}}$ ".

Owing to  $U(S) \subset C(S)$ , U(S) carries two order relations:  $\leq$  and  $\bar{\leq}$  (see remark 1), and order  $\bar{\leq}$  is a strengthening of the order  $\leq$ . So, the natural functor  $\operatorname{Rep}(U(S), \leq) \to \operatorname{Rep}(U(S), \bar{\leq})$  is defined, that is bijection on the objects. Composing the inverse bijection map with inclusion  $\operatorname{Rep}(U(S), \leq) \to \operatorname{Rep}(C(S), \leq)$  and with  $\Theta$ , we obtain the map  $\Phi \colon \operatorname{Ind}(U(S), \bar{\leq}) \to \operatorname{Rep}(C(S), \leq) \xrightarrow{\Theta} \operatorname{Rep}S$ .

Denote by  $\mathcal{L}(S)$  a set of all locally linear representations from Rep  $(U(S), \leq)$ . Representations  $T \in \mathcal{L}(S)$  is said to be binormal, if

- 1)  $\gamma(\operatorname{Supp} T)$  contains precisely one string P of length greater than 1;
- 2)  $w(\operatorname{Supp} T \setminus \gamma^{-1}(P)) = 1$ .

Binormal representation is said to be *positive*, if either equ(P) > equ( $P^*$ ), or equ(P) = equ( $P^*$ ) and  $p < p^*$  for  $p \in P$ , where

equ 
$$(P) = |\{X \in \text{Supp } T \setminus \gamma^{-1}(P) | \gamma(X) \times P \cap \gamma(\text{Supp } T)\}|,$$
  
equ  $(P^*) = |\{\partial_p^2 \mathcal{Y} \in U(S) | \mathcal{Y} \in \text{Supp } T, p \in P\}|.$ 

Let  $\mathcal{L}^+(S)$  be the set of positive binormal indecomposables;  $\mathcal{L}^n(S)$  be the set of locally linear non-binormal in  $\mathrm{Ind}(U(S), \leq)$ . Let  $\mathcal{L}_1(S) = \mathcal{L}^+(S) \cup \mathcal{L}^n(S)$ .

**Theorem 2.** Any multielementary non-elementary  $T \in \operatorname{Ind} S$  is equivalent to representation in  $\Phi(L_1(S))$ .

**Proof.** Let  $T_1 \in \overline{\operatorname{Ind}} C(S)$ ,  $\Theta(T_1) \simeq (T, t)$ , and  $P \subset S$  be a such string that  $\gamma(\operatorname{Supp} T) \cap P \neq \emptyset$ . Set (T, t, T') = P(T, t, T), where  $(T, t, T) \in \mathcal{M}$ , and let  $Q \in \operatorname{Ind} \Pi_P$  be an indecomposable such that  $J_P(Q) = (T, t, T')$ . Define the bundle  $\Pi_P' = \operatorname{Supp} Q$ .

If  $T_1$  is non-binormal or binormal positive, set  $R = T_1$ ,  $P_1 = P^*$ . Otherwise,  $P \cap \Pi'_P$  is normal, then by remark 2,  $R \in \operatorname{Ind} C(S)$  exists such that  $P^*(\Theta(R), r, \mathcal{R}) = (T, t, T')$ , where  $(\Theta(R), r, \mathcal{R}) \in \mathcal{M}$ , and set  $P_1 = P$ , obtained R is positive. Owing to (T, t) is not elementary and lemma 5,  $\operatorname{Supp} R \subset U(S)$ ; local linearity of R follows from that for  $T_1$  by remark 4.

Normality of  $P_1$  in  $\Pi'_P$  and proposition 18 immediatly imply that  $\leq |_{\text{Supp }R} =$  $= \leq |_{\text{Supp }R}$ . So, indecomposability of R in Rep C(S) implies it indecomposability in  $(C(S), \leq)$ . Theorem is proved.

In fact for any T considered above the unique  $R \in \mathcal{L}_1(S)$  exists such that  $\Phi(R) \simeq T$ , but we don't supply the proof in this article.

**Proposition 19.** Let  $R \in \mathcal{L}^n(S)$ . Assume for string  $P \subset S$ ,  $|P \cap \gamma(R)| > 1$ . Then  $P \cap \text{Supp } R$  is not normal in the bundle  $\Pi_P \cap \text{Supp } \Theta_P(R)$ .

Proof. See [9], prop. 7.2.

- Nazarova L. A., Roiter A. V. Representations of biinvolutive posets. Kiev, 1991. 32 p. -(Preprint / Inst. Math. Acad. Sci.; Nº 91.34).
- Gabriel P., Roiter A. V. Representations of finite-dimensional algebras // Encyclopaedia Math. Sci. Vol. 73. Algebra 8. – New York: Springer, 1992. – 177 p.
- 3. Belousov K. I., Nazarova L. A., Roiter A. V., Sergeichuk V. V. Elementary and multielementary representations of vectroids // Ukr. Mat. Zh. − 1995. − 47, № 11. − P. 1451-1477.
- Guidon T., Hassler U., Nazarova L. A., Roiter A. V. Two reduction algorithms for dyadic sets // Comptes-Rendus Acad. Sci., Paris, Sér. I. – 1996. – 322. – P. 915–920.
- Nazarova L. A., Roiter A. V. Representations of biinvolutive posets II. Kiev, 1994. 72 p. -(Preprint / Inst. Math. Acad. Sci.; Nº 94.2).
- 6. Hassler U. Representations of Dyadic Sets, Pt 1: Inaugural-Dissertation. Zürich, 1996. P. 1-62.
- 7. Guidon T. Representations of Dyadic Sets, Pt 2: Inaugural-Dissertation. Zürich, 1996. P. 1–47.
- Nazarova L. A., Roiter A. V. Representations of bipartite completed posets // Comment. Helv. Math. – 1988. – 63. – P. 498–526.
- Belousov K. I., Nazarova L. A., Roiter A. V. Finitely represented dyadic sets and their multielementary representations. – Kiev, 1997. – 30 p. – (Preprint / Inst. Math. Acad. Sci.; № 97.6).
- Nazarova L. A., Roiter A. V. Representations and forms of weakly completed posets // Linear algebra and representations theory. – Kiev, 1983. – P. 19–54. – (Inst. Math. Acad. Sci. USSR).

Received 11.08.97

<sup>&</sup>lt;sup>3</sup> For elementary representations the non-uniques is completely described in [3].