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STRONGLY NONLINEAR DEGENERATE
ELLIPTIC EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS. II

CTPOI'O HEJIMHEWHBIE BHIPOZK/IEHHBIE
SJIVIMIITHYIECKHUE YPABHEHU ST
C PASPBIBHBIMH KOS OOUITUEHTAMM. 11

We use energy methods to prove the existence and uniqueness of solutions of the Dirichlet problem for
an elliptic nonlinear second-order equation of divergence form with a superlinear term [ie., g(x, u)=
v(x)a(x) [u[P~'u, p>1] inunbounded domains. Degeneracy in the ellipticity condition is allowed.
Coefficients a; ;(x, r) may be discontinuous with respect to the variable r.

BuUKOpHCTAHO eHepreTHYHI METOAH IJI4 JOBeeHHS ICIYBAHHA Ta eHHOCTI posB’A3KiB samayi Hipixne
O eTiNTHYHOrO PIBHANKS ApYroro Nopsyiky AuBeprenTiol dopMi 3 cynepninifinmm unedom (To6To
glx,u)=v(x)a(x)|ulP'u, p>1) B HeobMmexenilt obsacTi. B ymMOBi eNinTHYHOCTI 103BOJIAETBCS
BHPOKEHHICTD, KoediienTn a; j(x, r) MOXYTh 6YTH pO3pPHBHHMH BiflHOCHO .

1. Introduction. This work is continuation of [1]. Let £ be an open subset of R™
(m=2). We consider a strongly nonlinear degenerate elliptic equation of the type

m a m au __.1
e a (ko u)=— |+ a@(vE)|uP" W) = f, (%)
Z 0x; ( El / ax_,-J

i=1 [ j=

where p is areal number greater than 1. The equation is degenerate elliptic for a
condition of the following form is fulfilled '

m

Y, @ (60EE 2 vIE (1)

i,j=1 .
forevery & = (§;,E5,...,En)e R™, ae (x,r)e QX R. When Q is bounded, it
is known that there exists a unique weak bounded solution for the Dirichlet problem
related to (*) (see [1]). In this paper we extend these results to an unbounded set 2.
Regularity hypotheses on  and on other data are minima. Our results are in some
respects similar to those of F. Guglielmino, F. Nicolosi [2] and generalize the ones
obtained by A. V. Ivanov, P. Z. Mkrtycjan [3]. The main difference with our results
comes from the fact that we merely use energy methods which allow us to treat a
greater class of functions f. So we do not need, as in [2] and [3], any hypothesys on
the growth of the data at infinity. Moreover, we replace the continuity hypothesys of
coefficients a; ;(x, r) with respect to the variable r with a weaker one (see [4]). In
the non degenerate case, v(x) = 1, the first result where the existence and uniqueness
of a solution of the problem (*) was given without growth at infinity on f is due to
Brezis [5]; then, this result has been generalized in [6] and [7]. Our argument has
some points of contact with the one introduced by J. Diaz, O. Oleinik in [7]. More
precisely, for every R>0 we define

Bp = {xe R™: |x| < R},

Q’R = QnBR)
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and we consider the unique solution uy of problem (*) in Q. Then, taking uyAg
as test function in the integrale equality satisfied by uy (2R <N), we obtain a priori

estimate from above for the norm of uy in Hi(Qp) NI (v(x), Qg) (Lemma
(5.1)); here Ap = 62(%)- where 0 € C“(_IR) is a cut-off function such that

8’(s) = O((1—5)*"1) (+>0). Finally, by diagonal extraction we obtain a weak
solution of (*) with Dirichlet data. The uniqueness of solution is obtained in the same

manner of [7] assuming that a; ; does not depend on r.
2. Function spaces. Let R™ be the Euclidean m-space with generic point x =

T T, ) ¢ _
Hypothesys 2.1. Let v(x) be a positive function defined on ; there exists a real

number g > m/2 such that:

v(x) e L'(Qp), £ LA(Q:)

V()
mg
28—m’
Let D be a bounded open subset of R™. We shall denote by H\l, (D) the
completion of ¢ (D) with respect to the norm

forevery R>0; here 5 =

.

1/
lzllivp = {j vx) {|ul® + |Vu|*} dx} .

D
H\l,’O(D] will be the closure of Cjy (D) in H\l. (D). By Hypothesys 2.1 we get the
imbedding )

HLO (D) < I2(D)

where 2 = e is greater than 2 ; moreover, the inequality
mg+m-—2g
1/2 1/2
{j v(x)fu|2dx] < e(m, g, v)(f v(x)|Vu|2dx]
D D

holds forevery u e H\l,'O(D). Let ue H\l, (D), EcoQ, we will say that u|z =0
if there exists { @x(x)} € C'(D) suchthat @,(x) =0 on E and ¢, (x)— u(x) in
H\I, (D). We also consider
Wy (Qp) = {we Hy(Qr): wlaana, = 0},
W@ = [ W ().
R=0
Obviously by Wy (Qg), Wy (Q) we will denote the dual spaces of W, (Qz) and
W; (€2) respectively. For definitions concerning the spaces H : (v,D), H{lj (v, D)

and Lk(v(x),D), k=1 werefere to [1].

Remark 2.2. If D is a bounded open subset of R™ satisfying cone-property and
Hypothesys 2.1 holds, then

HY(D) « H'(v, D).
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Moreover, for any bounded open subset D of R™, we have
HY (D) = H)(v, D).

For more details about these spaces we refere to [8, 9].

3. Hypotheses on coefficients, main result. It is reasonable to postulate the
following hypotheses on the coefficients of () :

Hypothesys 3.1. The functions a; ;&,r) (i,j=1,2,...,m) are defined and

measurable in Q x IR, moreover
a j (x,1)

e L™ (Qsx R)

for every Se RY,

Hypothesys 3.2. Function a(x) is defined and measurable in €, moreover
a(x)e L™¥mE2tm) Qo forevery Se R*, a(x) 2 ag > 0, ae. xe Q and
some constant ag.

Let us denote by &f-_j_x(x) = a; ;(x, 5).

Hypothesys 3.3. Forevery S € R™, forevery £> 0 there exists a compact subset
K, s Q5 with meas(Qg\K; 9 < €, such that the functions of the family
{@;;(x), seR, i,j=12,...,m} areequicontinuous on K ;.

We refere to [4] for further details concerning the last hypothesys.

Remark 3.4. It is easy to check that the Hypothesys 3.3 can be formulate with A
instead of Qg, where A is any bounded open subset of €.

Let fe W{," () and p>1. A function u(x)e W\, (€) is called a weak solution
of problem (*) if a(x)] ul”'ue B (v,Q) and

I }Z“n_ ai'j(x,u(x))%(x)gg(x)dx +
O ij=1 J f
+ [ a@v@ P u@ e@dx = (£, 0() @)

Q

for every @ € W,(Q)NLE.(Q), ¢ with compact support in L. Now, we can

formulate the main result. .
Theorem. Under-the condition (1) and hypotheses 2.1, 3.1 3.3 there exists a

weak solution u(x) of problem ().
4. Preliminary Lemmas. Let us introduce the cut-off function

Ag = e'%%j for R>0, 3)

where 6 € C”(RR) issuch that 8(s) = 1 if |s| < % and 0(s) = 0 if |s| = 1.
Remark 4.1. We can choose 0(s) such that

8’ =0((1-5)"1), t>0. @)
t
In this way, 0 = O[%—SLJ forevery 5s=0.

Lemma 4.2. Let D a bounded open subset of R™ and u(x)e H (D) with
compact supportin D, then u(x)e Hi,'o(D)‘
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Proof. Since u(x)e HL(D), there exists a sequence of functions { gu(x)}
such that @,(x)e C'(D), h=1,2,..., and [ @,(x) - u@)|l; yp—=0 if 21— 0;
moreover, there exists an open subset @ of D such that

suppu c @ < @ < D.
Letus fix @(x) in Cy (R™) such that @(x) = 1 in suppu and supp ¢ c'®. If we
put ¥(x) = @ (x)o(x), h=1,2,..., then we get
wy(x) € Cy(D), forevery h=1,2,...,
and
lwp(x) = u@)lli,y,p—=0 if A—0.
From density of Cj (D) in Cé (D) with respect to H\l, (D), we have the assertion of

Lemma.
Lemma 4.3. Let D be a bounded open subset of R™ satisfying cone-property.

If hypotheses 2.1, 3.1, 3.3, with D instead of g, are satisfied, then the operator
B: H'(v,D) = (H'(v,D))"
such that

(Bwv) = [ 3 ”(x,u)ia” w,ve H'(v, D),

D ij=1

is sequentially weakly continyous.
Proof. Analogous to [10, p. 57— 60].

Lemma 4.4. Let D a bounded open subset of R™ and u(x)e HY°(D).
Then, there exists a sequence of function hP(x) such that hP(x) = H&;G (D) N

N L*(D), p=1,2,..., and hy(x)— u(x) in Hy°(D) for p—>ee.
Proof. Forevery p=1,2,..., it will be sufficient to define
hy(x) = sgnumin (|ul, p)

(see [8, Prop. (2.7), p. 10]).
5. Proof of Theorem. Let us fix fe W: () and let us indicate by fy, Ne N,

the extension of f from W () to W, (L) such that
Hf“w‘, @ = ”fN”W @)

It is clear that f is a continuous linear functional on Hg (v, Q). Now, we consider
the problem

(P
& 0
- = Z a;, j (x, “N)— + a(x)(v)|uy [P uy) = in Qp,
© =1 ox; j=1 xJ"
u=20 on 0Qy.

The existence of a solution wuye H(l) (v,Qy) satisfying (Py) in the sense that
a(X)|uy|?u e  in (v, Qp), and the integral identity (2) holds when replacing Q by
Qy for every @ € Hi(v,Qy)NL*(Qy) is a consequence of the results of [1],
Theorem 3.1.
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These results also imply that a(x)|uy|”*! € L' (v, Q) and the integral identity
(2) also holds for @ = uy.
We proceed to show that

J' 2 a,j(x,uN)auN a(”_NA_iﬂdx 4
.QRIJ'—I 3x:-

+ [ a@) V) |uy|P* Agdx = (fy, uyAg), (5)
Qp

forevery 0<R<N.
Fix Ne N and define, forevery p=1,2, ...,

T,(uy) = sgnuymin (|uy|, p).
By definition (3) and Lemma 4.4 we have that~
T,(uy) Ag € Hy (v, Q) N L* (Qy)
and
T,(uy)Ag —uyAg in Hy(v,Qy) as p—>ee.

Then, setting ¢ = T,(uy) Ag in the integral identity satisfed by uy(x) on Q, and
making p — == we obtain (5).

We extend the function uy by zero over Q\Qy and, for simplicity, we denote
again by wuy this extension. The convergence of uy as N — o= will be consequence
of the following useful auxiliary result

Lemma 5.1. Let ge Wi (Qy), ue W, (Qy) such that a(x)|u|? e L(v,
Qp) and the inequality

j E a; j (x, u)a—u —~—a(uAR) dx +
: axj

Qx ij=1 axf
+ [ a@v@|ulP Agdx < (g, ulg), ©)
Q‘R

holds, for every R € [0, N]. Then, for every R e [1, N], it follows the inequality

J v(x)|Vul|*dx + _[ v(x) |u@)|Pdx <
Qg2 Qgsa

< ARM2PDI(G-D 4 g R=2pED (=D ||y (x| + CR? | gll} 7

E(Qg) W Q)

here B and C are constant independent of €, R and u, while the constant A

. ai i (x’ ?')
independent of u, is linearly depend on Mp = esssup |———1|.
Qg xR | V()

Proof. Let R=1. From (6), hypotheses 3.1, 3.2 and assumption (1) we have
[ v Vul @ (Ix)dx + aq [ v(x) [ul?* 6 (|x])dx <

Q‘l 3 Q‘l

< 2Ge [ vVl 6 (Ixl)dx + ;8 [ v(o)lul?* o(x])dx +
Q Q
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+ G (M, 8) [ vx)[o(lx])|~/ P Do ()PP P D gx 4
Q

m 2
e v(x){E 2 (ue? () +iuez(le>lz}dx + ol ©®
Q i=1 f

for any & and & positive numbers, where we have used the Hoélder and the Young
inequalities; here and in the sequel we denote by C; a constant independent of wu.

Choosing 8(s) such that (4) holds we have
P = I \-'(x)Iﬂ(lxl)l—ﬂ(.n—l)|B:(|xi)|2(p+1}/('p_1)dx <

Q
< % [ v (1 = x4/ @D (1 — [x])2PHIE-DIPD g <
Q
1/s /s
< %[ J' v(x)-f dx} [ I (1 — rxD(Zf(P—l)—?-(P‘H))J’:’(P“Udx
Q By

where ~1-+l, = 1.
s s

Therefore, setting ¢ > R-'—l-%, we get
P—

P < Csllv®)lpa,)- (&)

Analogously, we obtain

mn 2
J V) 3 |- e (x| dx < G [ Vo) Va0 (1xDas +
i=l i

foR Q
+ G g({ v ) |ul? 02 (|x]) dx + Cg (g)zﬂp_nuv(x)||mgl) ; (10)
.
[ v |u6®(x])*dx <
Q
< gjv(x)w“ez(lxl)dx + Cg[g]zl(ﬂ_nllv(x)ﬂymF’, (11)

Q

¢

- s I‘r’.f
where P = [J-B (1 - |x|)4pr;,- /(p=1) dx)
1
From (8) by (9), (10) and (11) we have

[ v vul?*(Ixl)dx + ag [ v(x) [ul?*' 0% (|x])dx <
Q, Q

< Cpt J v(x) |Vul? 6% (|x])dx + C;; 8 J v(x) |u| P 0% (|x])dx +
Q Q

1 2
+ Cp (M, & 8) vl )y + Cia (€ O @), + E”g”WJ(QNJ'

By the definition of 6(s) and Holder inequality it follows

ISSN 0041-6053. Yip. smam. sypit., 1997, m. 49, N* 12
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[ v vul?dx + | v [P dx <
Qurz Q2

’ < G M) + Cis Gl ) + Cis ||3||W )
For the general case R> 1, we consider g € (Hj (Qy)* such that (Z,w) = (g, w)
forany we W, (Qp) and ||Zllz1q,) = llgllwrq,). Then, there exist f;(x)e
. L?‘(l,QN] (i=0,1,2,...,m), such that
v 5
~ I am
@o) = | {fomﬁL Zﬁa—}dx
. X;
Qy i=1
forany ®e H}(Qy).

If we put x = Rx’, then we have

] ¥

Qf hj=1

(I=D)ax" +

+ ag [ VRN (¥ dx <
o
< ROH/G-D | 2 fi(Rx’)%(v(x') 0% (|x'))dx’ +
' api=1 *i
+ RPN [ f (R ()] 6% (12N’ ; (12)
Qf

here v(x") = R¥P Dy (Rx"), Qf = Q' B, where Q’ is the image of Q by the
above change of variable.
Define for (x,s)e Qi xE

&f‘j(x’, .S') = ﬂ:',j [Rx!’}ﬂ:’?—p—l)—]’ "\T"(JC}) = V(Rx’), };(x’) =fl-(RJC’).
From (12) it then follows, bearing in mind (1), that

[ 9@ WP (12 ])dx + ap | v(x)ivlf’“ezctx ex' <
Qf o

< 2Mg j V() Z IvIIB(I ‘DI —~(|x1)

r;l

dxi

= 1/2 4 o o 1/2
[J rée/o-0 L GO dx] 2 5 [chp+1)f<p~1)lﬁ(x)!2dx,J

L2 V() V)

3(1)92([:6 0|’

1/2
+ Y (x) [ve? (|22 dx’} )

{Jvc JE

Hence, analogously to case R =1, we have

ISSN 0041-6053. Yip. mam. xypit., 1997, m. 49, N® 12
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[ v@) WP (I¥)dy + [ 9 |PH e (1x)dx <
Qf ; Qf

/s 12
= CIT(MR){J- \—f(X')’dr’J + [I R4p/ (- l)ifn(x )I? ] 9

2
- g NIJ2
& i [RZ(p-H)f(p—l) |fi(x)| dxz]
i=1

V(x")

. x
Now, taking into account that x" = =, v (—

RJ = R¥PDy (%), and definition of

0(s), we have

R¥MPHVIGD L[y |Vul?dx + [ v lu@)|P* dxp <
Qrra Qgrra

|f|2
+ Gy RAr/(p-1) E j
1= OQR

S CoMR)R™ + Cu IVl g

and therefore the required result follows.
Let R>0 and N>2R, by Lemma 5.1 it follows
[ v | Vuy[?dx + [ v(x)|uy|?* dx <

< A(zR)MHZ(P"’l)J"(P—U + B(ZR)—Z(P“'IM(P—D ”V(x)“‘r:(.ﬂ

+ C2R* If e g = C(2R)

W (@)
By standard results we have that {uy} is boundedin H.(Qz) N LP* (v, Qp) and by
diagonal extraction it is possible to find a subsequence {uy} and a function u such
that wuy — u in Hfoc‘v (Q) weakly, in "’ozl(v, Q) weakly and a.e.in £. Obviously
ulaana, =0 forany R>0.

Let @& W, (Q)N L. () be, ¢ with compact support. Then there exists N €

e N suchthat g e Hp(v,Qy)NL"(Qy) forany N> N ; moreover, the compact
support, C, is asubsetof Q. Since uy(x) is a solution of (Py), we have

duy 9P
CIE %O aNa ke

+ J a(®) v(x) |uy|? luy @dx = (f,¢) forany N2 N. (13)
Cw

Choose, now, a bounded open set A satisfying cone-property and such that
C,p cAcQf

then, we can write (13) replacing Cq, by A. As uy— u weakly in g (v,A), from
Remark 3.4 and Lemma 4.3, we get
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; m 3 aq} -
lim ) duy _ 2
o »{ f.féla”(x ey 3y ,{;2_1 iR - B4

As uy— u ae.in A, from JQ a(x) v(x) |uy|"* dx < C(N) forany N> N, we
N

have

Nhf [ a@)ve) luy P uy odx = [ atx)v(x) luy P updsx. (15)
A A

We conclude from (14), (15) that function u(x) is a weak solution of problem ().
Ly s
‘Remark 5.2. If a; ; does not depend of r and -‘—‘T(—(J)c—) e L”(Q) the same proof
v(x

of Theorem 1 of [7, p. 790], gives us the uniqueness of weak solution of problem ().
6. Example. In this section we give the example of weighted function v(x) of
such that the preceeding assumptions are valid.
In order to construct example we will take

Q={xeR™: [x]|>1}

and

V), = (Ix] = 1P, {zg—_m] aps 2y
mg m

here g > % . In this case it is easy to see that Hypothesys 2.1 is satisfied.
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