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FULL CASCADES OF SIMPLE PERIODIC ORBITS
ON THE INTERVAL!

IIOBHUM KACKA I HEPIOIWI‘IHI/IX OPBIE
HA BILOPI3KY

Any continuous interval map of type greater than 2°° is shown to have what we call a full cascade of simple
periodic orbits. This is used to prove that, for maps of any types, the existence of such a full cascade is
equivalent to the existence of an infinite w-limit set. For maps of type 2°°, this is equivalent to the existence
of a (period doubling) solenoid. Hence, any map of type 2 2% which is either piecewise monotone (with
finite number of pieces) or commuously differentiable has both a full cascade of simple periodic orbits and
a solenoid. 2

[Moxasano, mo Ko¥kHe HemepepBHe BimobparkenHsa Bi,upia:ca. npamol, TUN AKOTO GimbInMi
mix 2°°, Mas moBHuMil kKackan nepiommunmx op6it. Ile BuKOpHMcTOBYS TBCA INA TOrO,
mo6 MOKa3aTH, IO AJA Bino6pareHs OOBINIBHOCO TUILY icHYBaHHA TAKUX HOBHMX KacKaJlB
eKBiBaJleHTHE ICHYBARHHIO HeCKIHUEHHUX W-TPaHMuHMX MHOMuH. [ BifoBpaskens THILY
2% 1e exsipasenTHo icHysamuio (mBomepiommumnoro) conenoiga. Takum umnOM, JoBiNbHE
BimoGpasKeHHA THIY 2%°, ake & 260 KyCKOBO-MOHOTOHHMM, a60 HemepepBHO nudepenniiion-
HMM, Ma6 MOBHEMI Kackaj npocTux opBiT Ta comenoin.

1. Imtroduction and main results. The notion of a simple periodic orbit of period
9", n € {0} UN, of a continuous map of the interval belongs to Block [1] and can be
defined by induction on n. Any periodic orbit of f of period 1 is simple and if P is a
periodic orbit of f of period 2", where n > 0, then P is called simple if the left and
right halves of P each form simple orbits of f* with period 2"~1. Suppose that f has
a periodic orbit of period 2* for some n € N, say n = 3. In combinatorial dynamics
it is well known (see, e.g., [2], Corollary 2.11.2) that then f also has a simple periodic
~orbit {dy,ds,...,ds} of period 2® and, further, simple periodic orbits {c1, 2, cs, ca},
{b1,b}, and {a} of periods 22, 2!, and 2°, respectively, whose points “interwind” as
_ follows: '

dy<ei<dya<by<dg<eca<dy<a<ds<ezg<dg<by<dr<ecs<ds.

Moreover, f({d1,ds}) = {ds,ds} or {d7,ds} depending on whether f(c1) = cs or c4
and similarly for f-images of {ds,ds}, {ds,ds}, and {d7,ds}. In the present paper,
we will refer to this situation as a cascade of simple periodic orbits of f of depth 3 (cf.
also Fig. 1). Itis also natural to define cascades of infinite depth (we will call them
full cascades of simple periodic orbits) and to ask a question which maps have them.
In the present paper, we show that a map of type greater than 2°° necessarily has
a full cascade of simple periodic orbits and then we use this fact to prove that, for
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FULL CASCADES OF SIMPLE PERIODIC ORBITS ON THE INTERVAL 1629

maps of any types, the existence of such'a cascade is equivalent to the existence of
an infinite w-limit set. For maps of type 2°°, this is equivalent to the existence of a
solenoid. As a consequence, we get that any map of type 2°° which is either piecewise
monotone or continuously differentiable has a solenoid (in other words, the map is
infinitely renormalizable). It seems that this fact, though str'\iﬂrhrforwa'rdly implicd by a
combination of some known results, has not been stated explicitly yet (cf. [3] or Remark
after Corollary C). -

We start with notation and some precise definitions. Let I be a real compact interval
and let C(I) be the set of continuous maps from [ into itself. Let N be the set of positive
integers. A point p € I'is a periodic point of a map f € C(I) if f*(p) = p for some
n € N. The period of p is the least such integer n, and the ‘orbit of p under f is the set
orbs(p) = {f¥(p):k = 0,1,...,n — 1}. We refer to such an orbit as a periodic orbit
of f of period n. Let P(f) denote. the set of periodic pomts of f and let Per(f) be the
set of their periods.

Consider the Sharkovskii ordering of the set NU {2°°}:

3-b5-T%...22:352.5>2.7T>...4:3%4.5%4.7T...%...

»2“-3‘>~2”-5v>—2"\-7>~.._‘>~m>-2°°>~‘..>2“>...>4>2>-1.

We will also use the symbol $- in the natural way. For n € N U {2}, we denote
by S(n) the set {k € N:n = k} (S(2*) stands for the set {1,2,4,...,2%,...}). The
Sharkovskii theorem [4] says that for every f € C(I), there exists n € NU {2} such’
that Per(f) = S(n); conversely, for every n € NU {2%)}, there exists f € C(I) with
Per(f) = S(n) (see [4, 5]). If Per(f) = S(n), then f is said to be of type n. Thus, any
map f € C(I) is of some type and, for every n € NU {2}, there is a map of type n.
When speaking of types, we consider them to be ordered by the Sharkovskii ordering.
Thus, if 2 map f is of type 2%, then Per(f) = {1,2,...,2%,...}, and if f is of type
greater than 2°°, then it has a periodic point with period that is not a power of 2.

Whenever we say that P = {p1,pa,...,pa} is a periodic orbit of f, we suppose
that p; < p2 < ... < pn,'i‘e., we always use the spatial labelling of periodic orbits.
Further, for any k& € N dividing n, define P(k,%) = {P(i—1)k+1,P(i-1)k+21+ - - Pik }»
i=1,2,...,n/k. So the set P(k,7) is the.ith k-tuple of points from P. Note that
P(1,%) = {p:}, i = 1,2,...,n. So, a periodic orbit P = {p1,pa,...,Pn} of f of
period a power of two, n = 2™, m € {0} UN, is a simple periodic orbit (SPO , for
short) if for any k € {0,1,...,m}, P(2*,1) is a periodic orbit of £2™™* of period 2,
§=1,2,...,2mF )

A map f € C(I) is called piecewise monotone if there are points minl = ap <
a; < ...< ap = max] such that for every ¢ € {1,,..,n}, the restriction of f to the
interval [a;_1, ;] is (not necessarily strictly) monotone. :

When speaking of continuously differentiable maps from C(I), at the endpoints of
I, we have one-sided derivatives in mind.

The convex hull of a set A C I will be denoted by convA and the usual distance of
points or sets on the real line by dist(.,.). The set of all limit points of the trajectory
{/™(z)}5%L, of a point z is called the w-limit set of @ under [ and denoted by wf(.'u).

. Given f € C'(I) a closed subinterval J of I is periodic with period n if f*(J) =
and f’“(J) NfI(J)=0 forany 0 < k < | < n. Further, S C I is called a (peuod
doubling or simple) solenoid of f if S = (;_, U2 St FE(I™), where for any n, I™ is
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Fig. 1. A CSPO of f of depth n = 3.

a periodic interval of period 2" such that I D I”*+!, (See [6] for more information on
solenoids.) '

Definition. A cascade of simple periodic orbits (CSPO , for short) of a map
f € C(I) of depth n € N is a finite sequence (PG‘PI,PZ, ooy Pn) satisfying the
following three conditions:

(i) for k=0,1,...,n, Py is an SPO of f of penod ok

(ii) for k = 0.1, veon—landi=1,2,...,2% (convPps1(2,9))N(PoU...UP) =
Pk(li i)’ ;

(iii) for k = 0,1,...,n—L if f (P:(1,9)) = Pp(1, ) for some i,j € {1,2,...,2%},
then f (Pr41(2,%)) = Pr41(2,7). The orbit Py, k= 0,1,...,n, will be called the k-th
term of the cascade, Py will be also called its initial term, and (Po, Py, ..., P:), k < n,
its initial k-block.

For an example of a-CSPO of depth n = 3, see Flg 1. Clearly, if (P, Pl, s )
is a CSPO of f of depth n and k < n, then the initial k-block (Pg, Py,...,P) isa

" CSPO of f of depth k. :

Definition. An infinite sequence (Po, Py, Pa, . ..) is a full cascade of simple periodic
orbits (FCSPO , for short) of amap | € C(I) if, forany n € N, (Po, Py,..., P isa
CSPO of f of depth n.

Similarly as in the case of a CSPO , we will use the notions of terms and initial
blocks of an FCSPO .

We prove the following statement:

Theorem A. If f € C(I) is of type greater than 2% then it has an FCSPO

Then this result will be used in the proof of the following theorem:

Theorem B. For f € C(I), the following conditions are eqmvalent

(a) f has an FCSPO ,

(b) f has a Cantor-like w-limit set,

(¢) [ has an infinite w-limit set.

Moreover, these conditions are implied by the condition

'(d) I has a solenoid, and if f is of type 2°°, then so (d) is equivalent to (a)—(c).

Remark 1. Here, “a Cantor-like set” means, of course, “a set homeomorphic to the
Cantor set”. But we can claim more. Suppose that f has an FCSPO , denote it by
{-PO,Pl,Pz, } P "{P(n):Pgn)s- ,Pgn)} '1'1-—0, tre and putP Uﬂ:UP g
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It will be seen from the proof of (a) = (D) that as the Cantor-like w-limit set from
condition (b), we can take the set C = P\ P and that, for every n = 1,2, ... the set C

can be decomposed into 2" sets C{™,C{™, ..., Ci®) with disjoint convex hplls such
that conVC,-(ﬂ) = pgﬂ), 1=1,2,...,2" and f'(C}nJ) = C‘}“) whenever f(pgn)) = pgﬂ).,
i,j=1,2,...,2% 4 # j. Thus, f is “solenoidal” on that w-limit set and “agrees” there

with that FCSPO . Of course, this does not mean that f must have a solenoid if f is
not of type 2°°. :

Remark 2. For some other conditions equivalent to (c), see, e.g., [7] or [8], Proposi-
tion VI.10. One of them is that the set P(f) is not closed, which was originally proved
by Sharkovskii [5].

Let us discuss Theorem B from the point of view of the type of a map.

First, that if a map f € C(I) has an SPO of period 2", then f obviously has a CSPO
of depth n. By [1], all maps of types at most 2°° have only penodxc orbits which are
simple. So if a map is of type 2" for some n € {0} UN, then it has a CSPO of depth
n (but no deeper CSPO ) and if a map is of type 2°°, then for any n, it has a CSPO of
depth n. Some of the maps of type 2°° have even an FCSPO , e.g., the logistic map
from C([0,1]), namely, Fy, (z) = Aa(l —2), Ax & 3.569... . This follows from the
well-known fact that this map has an infinite w-limit set, which is also a solenoid of
By, (z) (see, e.g., [9]; cf. also Corollary C). But some of maps of type 2°° have no
FCSPO . An example of such a map F € C([0,1]) can be found in [10). The map F

can be constructed in such a way that F'(1) = 1 and for every n = 0,1,2,..., F' maps
the interval [n_}_l : %J into itself, and F restricted to this interval is of type 2“ (With

a little care, one -can modify the construction of F' to get a map which is differentiable
on [0,1] and has the derivative F/(1) = 1 but F will not be continuous at the point 1;
cf. Corollary C.)

It is well known (see [11], cf. [5]) that if a map f is of type less than 2%, i.e., of
type 2" for some n € {0} UN, then the w-limit set of any point under f is a periodic
orbit of f and is thus finite. Therefore, in this case, none of conditions (a)—(d) from
Theorem B is fulfilled.

If f € C(I) is of type greater than 2°°, then, by Theorems A and B, it satisfies
conditions (a)-(c). (The fact that a map of type greater than 2°° always has an infinite
w-limit set was, of course, well known before [see [5] or use the fact that such a map
‘has a horseshoe [2])]. Condition (d) may or may not be fulfilled. For example, it is
known that piecewise linear maps have no solenoids (see [12]; cf. [13]).

Finally, consider a map f of type 2°°. The examples given above show that f may
" or may not have an infinite w-limit set. In [7], it is proved that if, in addition, f is
continuously differentiable, then it has an infinite w-limit set. Later, this result was
extended. In [8], Proposition IL.28 and Proposition’ VIL.10, it is proved that if f is of

type 2°° and either piecewise monotone or continuously differentiable, then it has an
infinite w-limit set. (Though the definition of piecewise monotonicity used in [8] is
" more restrictive than the one used in the present paper, one can see that the proof also
remains valid for maps that are piecewise monotone in our sense. Another and very
short proof in the piecewise monotone case can be found in [12].) So, a map f of type
2°° may or may not satisfy the equivalent conditions (a)—(d) and, by Theorem B and

the. mentioned results, the following statement is true:
" Corollary -C: If f € C(I) is of type 2°° and either piecewise monotone or contin-

wously differentiable, then it satisfies conditions (c)— (d) of Theorem B [in pa} rzcu!ar I
has a (period doubling) solenoid]. ;
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Remark 3. Hu and Tresser [3] have recently proved that maps of type 2°° belonging
to a special family of piecewise monotone maps of the class C? (including analytic
maps) have (period doubling) solenoids. They follow a completely different approach
to ours.

. The proofs of the results from [8] and [7] we used to get Corollary C (see the
paragraph above it) are not easy to follow in the sense that they involve several auxiliary
results, some of them being not very well known. In Section 3, we give another proof
of the statement that a map of type 2% has an FCSPO if it is piecewise monotone or
continuously differentiable.

2. Proofs of Theorems A and B. Before passing to the proof of Theorems A and B,
we introduce some necessary definitions and notation. If A, B C I, then 4 < B means
that @ < b whenever a € A, b € B. Instead of {a} < B, we also write ¢ < B and,
similarly, A < b. If A < C and C' < B, we say that C lies between A and B or, if
C = {c}, that c lies between A and B. A and intA are the closure and the interior of
A. If f: A— B and C C A, then f|¢ is the restriction of f to C.

For any j € N, j = oo, we define {0, 1}/ as the set of finite sequences of 0’s and
1’s of length j (infinite sequences, respectively). For the convenience of the notation,
we will also write {0,1}° = . The i-th element of a (finite or infinite) sequence o will
be denoted by ;. If o € {0,1}*, 8 = af € {0,1} is defined by B; = oy for any
i=1,2,...,5. Fa €{0,1}, j €N, we define § = a0 € {0, 1}M*! (a1, respectively)
by fi = o; if i = 1,2,...,7 and Bj4+1 = 0 (Bj41 = 1, respectively). We will also
put 00=0,01=117=22( = oo, respectively) we define § = o(a) € {0,121

= o(a) € {0,1}°°, respectively) by f; = a4 for any i. We say that a € {0,1}*
is a periodic sequence if there exists n € N such that oj+, = o; for any 7. The least
integer n with this property will be called the period of «. Finally, let &, 8 € {0, 1},
j € NU {oo}. We say that o < f if a3 < By or there exists & such that a; = f; for
any ¢ = 1,2,...,k and either Eile o is even and apyy < Pr4q OF E§=1 oy is odd
and ap41 > .3:.4-1 ' - _

Proof of Theorem A. .Let | = 27(2p + 1) be the type of f, n = 0, p = 1.
By [14] and Corollary 2.11.2 from [2] (see also [15]), there exists a periodic orbit
P o= {pl,pg, ..., pr} with the following properties:

1. For any 7, s € N such that rs = [ and » = 2* for some ¢t € {0,1,...,n}, P(s,k)
is a periodic orbit of f" with period 5, k =1,2,...,7

2. There exists m € {1,2,...,2"} such that we can write the elements of P(2p +
1,m) as ¢1,93,-.-,92p+1 in such a way that 2 (w) = Git1 for any i =
1,2,...,2p and f (92p+1) = ¢y, and either

Qop41 < Q2p—1 < .. <3< @1 < @2 <o < Qop2 < Q2

or :
Qop < Qop—2< ... <2< q1 <@gz <...<q2p-1 < Q2p41-

Moreover, f|p(zp+1,k) is monotone for every k # m.
An example of such an orbit can be found in Fig. 2.
Note that in the case n"> 0, we can easily construct; using property: (1), a CSPO
(Po, P1,...,Pp_y) such that for the set U?z_ul P; = {ay,as,...,azn_1}, we have
P2p+1,k)<ar<P(2p+1,k+1)forany k=1,2,...,2" — 1.
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P(5,1) P(5,2) P(5,3) P(5,4)

Fig. 2. A periodic orbit P of period 20 for a function f of type 20.

Let 7:{1,...,2"} — {1,...,2"} be a bijection such that f(P(2p + 1,7(k))) =
P@p+1,7(k+1)) forany k =1,2,...,2" — 1 and f(P(2p+1,7(2"))) = P(2p+
1,7(1)). In what follows, we assume that m = 7(2"), ¢1 < ¢2 and (if n > 0)
Flpeep+1,r(2n=1)) © FlP(ap41,7(2n=2)) ©* - - © flP(2p+1,7(1)) IS increasing (the other cases
‘are analogous).

For any ¢ = 1,2 and k = 1,2,...,2", we take ¢f € P(2p + 1,7(k)) such that
2" *#(¢¥) = ¢i. Then there exists a periodic orbit P, = {b1,b2,...,b3n} of f with
period 2" such that by € conv{gf,q5} for any k. Moreover, for every j € {0} UN,
@ € {0,1¥ and & = 1,2,..., 27+l we can define compact intervals I% ‘with the
following properties: ]

@) If U I; ™" C convP(2p + 1,7(k)) and by, lies between intI§ and intZ¥*+2" for
any k=0, 2,00, 2P, )
(i) IE,UIE c Ik forany j € {0}UN, @ € {0,1} and k=1,2,...,2"+1

(iii) Let &, 8,7 € {0,1}, j € {0} UN. Then I% lies between Ig and I* if and only
if 12" lies between I3"" and I3™*, k = 1,2,...,2"+. Moreover, 12" < 17"
- if and only if 8 < a. ' '

(iv) Forany j € {0}UN and & € {0, 1}, f(J%) = ¥+ forany k = 1,2,...,2"+1—
1, and, F(IZ""") = I}, for any j € N and & € {0, 1}4.
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Now define I% = (%, I* ; for any @ € {0,1}* and k = 1,2,...,2"*+1. Since
o =1 "e|d

F(IE) = IE*! for any a € {0,1}® if k < 27+, and f(I2") = Il(aJ if o is a
periodic sequence of period u and «; # 0 for some 4, then there exists a periodic point
Pe € I2™ of f with period 2" +1u,

Let us now return to the logistic map- Fj_ () = A x(l — z) introduced earlier. Let

(Qo,Q1,Q2,...) be an FCSPO for F,_. For any ¢ € Q;, ¢ = 0,1,2,..., define its
kneading sequence 8(c) € {0,1}* by 8(c); = 0 if fi~1(c) < 1/2 and by 8e); =1
Cif f771(e) > 1/2, § = 1,2,... . Note that-8(c) is well defined and ¢ < d if and
only if 8(c) < 6(d). Fix ¢; € Q; for each i and define Pni14: = orbs(ps(e;))s
i=0,1,2,.... Since (Pop1 N2, Paya NIZ™,...) is an FCSPO for f2**" and
f[fkn(u Ppi14;) is monotone for any k= 1,2,...,2"1 — 1; we get [use also (i)] that
(PQ, Pl, Pg, Pn, Pn+1, Pn+g, s ) is an FCSPO for f

To prove Theorem B we need the following statement:

Lemma 1. Let f € C(I), (P, Py, Ps ) be an FCSPO of f, let P = U g
and let nf = Upeo Prer(28,4), rEN, i= 1 2,. . Then

1) every point z € P is isolated in P;

2)ifa € P\ P and e > 0, then there are v € Nand i € {1,2,...,2"} such that
(a —e,a+¢€) D7l

" Proof. Note that, for any r, the sets 7},.¢ = 1,2,..:.,2", are permuted by f (they
form a cycle of sets for f).

1) Let Py = {p} Pl = {pu,pl}, and P-: = {pgg,pgl,pw,pu} Slnce Pg is
an SPO , we cannot simultaneously have f(po1) = p11 and f(pio) = poo. Without
loss of generality, we can assume that f(pp1) = p1o. Then f(pi0) = poo and so
f(xd)=nd < Pg and f(73) = w3. In view of the fact that p is a fixed point of f, this
implies that inf 73 > p and, hence, sup 75 < p. He.nce the point p is isolated in P.

Further, note that ({po}, P»(2,1), Ps(2°,1),...) is an FCSPO of f? and, therefore,
the same argument as above shows that the pomtpg is isolated in the set {z € P:z < p}
and, consequently, in the set P. For an analogous reason, p; is isolated in P.

It is now easy to see that, by induction, one can prove that all points from P are
isolated in P.

2) Since a € ?\ P, (a—¢e,at+e)NP contains periodic points g1,z of f with
different periods 2% < 2Y. Then for some i, (¢ —€,a+€) D 'T”+1 Denote v+ 1=r.

Proof of Theorem B. “(d) = (a)” Since a periodic interval of f with period
2™ contains a periodic point of period 2", this can be seen from the definition .of the
solenoid.

“(a) = (b)” The nonempty set P \ P is closed by Lemma 1(1) and dense in itself
by Lemma 1(2). Finally, P\ P is obviously nowhere dense. Thus, P\ P is Cantor-like.

Now take any @ € P \.P. We are going to prove that wy(z) is infinite. First, it
follows from Lemma 1 (2) that ws(z) 3 @ for any ¢ € P\ P (note that for any =,
belongs to some f [cf. Lemma 1(1)] and that the sets w7, ¢ = 1,2,...,2" form a cycle

. of sets for f). Thus wy(z) D P\ P and so wy(z) is infinite. Moreover, ws(z) = P\ P.
In fact, P is closed, f(P) C P, and so ws(z) C P and wy(z), being infinite, cannot
contain any point from P which is, by Lemma [ (1), isolated in P.

“(b) = (e)” is trivial. We prove “(¢) = (a)”. A map f having an infinite w-limit set
is either of type greater than 2% or of type 2°°. In the former case, we use Theorem A.
In the latter case, recall a well-known result implicit in several Sharkovskii’s papers and
proved in [16] stating that every infinite w-limit set of a map of type 2°° is contained
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in a solenoid. Now use the implication (d) = () proved above.

To complete the proof it suffices to prove “(c) = (d)” provided that f is of type
2°°. But this was shown in the proof of (¢) =>(a).

3. "Appendix. Here, we" give another proof of the following result (see the last
paragraph in Section 1):

Proposition D. If f € C(I) is of type 2°° and either piecewise monotone or
continuously differentiable then it has an FCSPO .

The proof will be “constructive” in some sense: We will build the FCSPO of f step
by step.

" We start with definitions.

We say that two periodic orbits of f of the same period n, P = {p1,p2,...,pn} and
Q = {q1,92,-..,qn}, have the same oriented pattern if for each r,s € {1,2,...,n},
f(gr) = ¢ if and only if f(p,) = ps.

A CSPO (Pq, P1,...,P,) of f of depth n is said to be arbitrarily extendable if for
every k > n, there is a CSPO of f of depth k such that (Fp, Py, ..., P,) is its initial
n-block. .

Lemma 2 (left version). Let f € C(I) and let ({™},P™,... . PM), n =
0,1,2,..., be a CSPO of f. Let zg be a point with {&™:n = 0,1,2,...} < =z
and ™) — 2y as n — co. Denote R = {z € Pl{ﬂ) P, UP,E:):Z > 2™},
n=0,1,2,... and suppose that, for infinitely many n’s, R(™ contains a point less
than ©g. Then f is neither piecewise monotone nor continuously differentiable.

Proof. Let the assumptions be satisfied.  Without loss of generality, we can assume
that a point 7(™) € R(™ less than zg exists for every n. Using the fact that (") — =z,
one can find a sequence of indices (n;)§2; such that '

2 < 70 < g(M1) < 200 < | <) < 0D <

Since we have f(r(™)) < (™) for every n, f cannot be piecewise monotone.

Now suppose that f is differentiable. Then for every ¢, there are points z(ni)
and y(®) such that (") < 2(7) < p(r) < y(r) < i) and f/(2(")) < 0,
F'(")) > 1. Since z(™) — z; and y(*) — 24 as ¢ — oo, the derivative of f is
discontinuous at the point zg.

Obviously, the right version of this lemma also holds. In it, write {&(™):n =
0,1,2,...} > =0 and suppose that, for infinitely many n’s, L(®) = {z € Pl(n) Ul
P,E’:): z < z(™} contains a point greater than zo.

Lemma 3. Let f € C(I) be either piecewise monotone or continuously differen-
tiable and let n € {0} UN. Let (Po, Py,..., P, P30, P8).), i = 0,1,2,..., be a
CSPO of f. Then .

1) dist (Pa, Ui2e B:) > 0;

2) if ad® € PS),, i =0,1,2,..., and a¥) — ag as i — oo, then ag is a periodic
point of f with period 2"+, Moreover, have for sufficiently large i’s, the orbits P.,E?_l
the same oriented pattern as orby(ag), and (Po, Py, ..., Pa,orbs(ag)) is a CSPO of f.

" Proof. 1) This holds trivially if the sequence (P,E?l):?":o contains only finitely many
mutually different orbits. So suppose this is not the case. Then we may assume that all
-orbits P,E?_l, 1=0,1,2,..., are mutually different.

Consider the orbit P, = {p1,ps,...,pan}. To prove 1) it suffices to show that

dist(pr, Uieo P,E?I(Z, k)) > 0 for k = 1,2,...,2". So fix some k and suppose on the
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contrary that the mentioned distance is zero. Note that ({p }, P 112, k), .P,E 5(4, k),
i=0,1,2,... are CSPO of g = f*" of depth 2 To simplify the notation, denote
Ty = Pg, a5 = mmP 1(2 k), and b; = mau;PﬂH(Q k), 1 =.0,1,2,.... We have
dist(zo, {a;:1=10,1,.. }) =0or d1st('c0, {bgzi =0, Lo} )=10: Suppose that the first
equality holds and denote ¢; = min P8, (4,k) and d; = min(PY),(4,k) \ {e:}), i =
0,1,2,.... The map h = g is either piecewise monotone or continuously differentiable
and ({a:}, {ci,di}), 1 =0,1,2,... are CSPO of h of depth 1 with ¢; < a; < d; < zo
for every 7. Finally, note thqt some subsequence of (a;)§2, converges to zp. By
Lemma 2, h is neither piecewise monotone nor continuously differentiable. We arrive
at contradiction. . .

2) Since £2"*(a®) = a®, i = 0,1,2,..., we have f2"* (ag) = ao and so the
period of ag divides 2"+, It follows from 1) and the fact that P, consists of 2 points
that | Ji2, Py PE ) , is a subset of the union of 14 2" closed intervals disjoint with Py,. It
follows from the structure of cascades of SPO that for every 1, P,E?_l intersects each
of the mentioned intervals. It is now easy to see that the orbit of ap contains at least
1 + 2" points. Therefore, the period of ag is 27*1.

Further, since P’ -31 = orby (al?)) converges to orbs(ag) as i — oo, for sufficiently
large i’s, the orbits P,Ef_ have the same oriented pattern’ as orbs(ag). Finally, it is easy
to see that, since for any 4, (Po, ..., Pa, P{};) is a CSPO of f, (Po,- .., Pn,orbs(ao))
is also a CSPO of f.

Lemma 4. Let f € C(I) be of type 2°° and either piecewise monotone or con-
tinuously differentiable. Then there is a fixed point zo of f such that ({zo}) is an
arbitrarily extendable CSPO of f.

Proof. Since f is of type 2%, it has an SPO of period 2" for any n € {0} UN and
so there is a CSPO of f of depth n, ({z(™}, P{™, ..., B{™).

If the set {xiﬂJ’: n=0,1,2,...} is finite, then there is a point 2o such that zq = z(n)
for infinitely many n’s and so ({o}) is an arbitrarily extendable CSPO of f.

Therefore, assume that set to be infinite. Then there is a monotone, say increasing,
sequence of points from that set and so it has a limit, say zg, which is a fixed point of
f. For every n, denote R(™ = {z € P, L“} U...urP™:.z> 2(™)}. Since f is either
piecewise monotone or continuously dlffelentiable, Lemma 2 shows that, for infinitely
many n’s, R(™ > zg. (In fact, this holds for all but finitely many such n’s which
correspond to the points 2(™) belonging to the mentioned monotone sequence.) But
then ({z¢}) is an arbitrarily extendable CSPO of f. . '

Lemma 5. Let f € C(I) be either piecewise monotone or continuously differen-
tiable and let n € {0} UN. Let (Py, Py, ..., Py) be an arbitrarily extendable CSPO of
f. Then there exists an SPO P,y of f of period 2"+ such that (Py, Py, ..., Pa, Ph11)
is an arbitrarily extendable CSPO of f. S

Proof. Since the CSPO (Fg, Py,...,P,) is assumed to be arbitrarily extendable,
for any i € N there is a CSPO of f of the form (Po, Py, - .-, Pai B2, Py, P,

If there is an orbit P,yq with Ppyg = P,&’:gl for infinitely many ¢’s, then (Fg, ..., Py,
Pn41) is an arbitrarily extendable CSPO of f. So assume that such an orbit P41 does
not exist. Then the set {P{},:4 = 1,2,...} is infinite. _

Denote P(') = {p&')‘pgﬂ, N ‘p(;,?ﬂ} and consider a strictly increasing sequence 1,
k=1,2,.., of positive integers such that for each » € {1,2,...,2"*1}, the sequence
(p,(-i"))if’zl is strictly monotone and so convergent to some point p.. By Lémma 3 (2),
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Ppyy = {p1,pa,-..,pan+1} is a periodic orbit of f with period 2** such that it has the

same oriented pattern as P( ") for all k greater than some kg and (Po, ..., Ps, Poy1) -

is a CSPO of f. We are gomg to prove that this CSPO of f is arbitrarily extendable
Take g = f2"*" and any r € {1,2....,2%1}. The points p, and p&), k = 1,2, .

are fixed points of g, and p( tr) monotomcally converge to p, as k — oco. Further, for :

any &, ({p$)}, PS*)(2,7), PER) (22, 7), Pfi;',’h(z*rl,r)) is a CSPO of g of depth

ir — 1. Since g is either piecewise monotone or continuously differentiable, it follows

from Lemma 2 or its right version that there exists k() such that, for every k > k(r),
p, lies between the sets Ly = {z € L”‘} (2,7 )U...U P(:’_“)k(?*“l )iz < p("‘)}
and Ry = {z € P&)(2,r)U...U P(‘;‘fk(zw = r) z > pt)}. So, for any k >

max{ko, max{k(r):r = 1,2,.-..,2“+1}}, (Pg,...,P,;,Pn+1,P§‘+"%,... f?_]n"fk) is a
CSPO of f. Thus, (Pp,...,Pn,Pay1) is arbitrarily extendable, which completes the
proof.
Remark 4. There are examples showing that Lemmas 3, 4, and 5 do not hold without
the assumption of piecewise monotonicity or continuous differentiability of f.
" Proof of Proposition D. Use Lemma 4 and Lemma 5 to construct, by induction,
an infinite sequence ({zo}, P1,..., Pn,...) that is an FCSPO of f.
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