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' SYMMETRY AND EXACT SOLUTION OF HEAT-MASS
TRANSFER EQUATIONS IN THERMONUCLEAR PLASMA

CHMETPIA I TOYHI PO3B’SI3KH PIBHSHb
TEIIJIOMACOIIEPEHOCY B TEPMOﬂJIEPH]ﬁ ILJTA3SMI

For the nonlinear system of partial differential equation, which describe the evolution of temperature and
density in TOKAMAK plasmas, multiparameter families of exact solutions are constructed, The
solutions are constructed by the Lie-method reduction of initial systems of equations to system of
ordinary differential equations. Examples of non-Lie ansitze and exact solutions are also presented.

ITo6ypoBano GaraTonapaMeTpHyHi ciM’l TOUHHX posB’ASKIB [ HesiHIHHHX cHCTeM PiBHAHB 3 yac-
THHHHMHE TOXiTHHMH, SKUMH ONHACYETHCH eBOJIONiA TeMIIEPATYPH Ta IYCTHHH NJasMH ¥ TepMosep-
mitt niasmi. Posp’asku noGygopani miisaxom JiiBebkol pefyKull posrsiagyBaHux He TiHIRHUX cHCTEM .
fo cucTeM spuyatianx gudbepenniansuux piHAHb. HaBe[eHo TAKOX NPHKJIALH HEJIIBCEKHX aHzaliB
Ta TOYHHX PO3B’A3KiB.

1. Introduction. In the papers [1, 2], a system of nonlinear equatlon is introduced to
describe temperature and density evolution in thermonuclear plasma. This system of
" equations has the form :

| U, = x""(x"A (DU, + ¥ (=B (U, VIV, + C (U, V),

g -

@

I

Vv,

[;

T4, (U)V), + T BL (U, VUL, + Cy (UL V),

where U= U(t, x), V=V(tx), x? = x? + x2 4 ...+ x2, lower indices designate
differentiation with respect to ¢ and x. Nonlinearities Ay, By, Cy, k= 1, 2, in real
situations can be given by functions _ .

Ny

A(U) = a U, B (U, V) = b UMV, (U V) = 3 ey vou s,
: i=1
@)

o : ' n
AU = a,U%,  By(U,V) = bU™'V,  CuU, V) = 3, ey U V™,
. | . - .

where ay, by, O, Cpp Cajy O1i 82j, Kiis Koy € R, nynye N, k=1,2.
.In the case of one space variable (n= 1) taking into account (2), system of
quauons (1) has the form ;
' ni -
U, = al(Ua Upe + b1 (U VIV + Y, e UPH VS,
f=1

<)

= a,(U™MV), + bz(U“f' VU,), + 2 coy UPH VI,
: Jj=1
There is no complcte symmetry analysis of the nonlinear systems (1) and (3), and
classes of exact solutions for these systems have not been constructed. Letus note that

some classes of nonlinear systems of two parabolic-type equations that are-invariant
under the Galilei algebra and its extensions are constructed in [3-5].
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In the current paper, we carry out symmetry analysis for system of equations (3),
reduce it to systems of ordinary differential equations, and construct classes of exact
solutions. Due to fact that obtained exact solutions of system of equations (3) contain
several arbitrary constants, we can satisfy boundary conditions [1], which are
characteristic for thermonuclear plasma, by choosing appropriate constants..

Below, we assume that system of equations (3) is a second-order system, and
arby#0 or azb, #0 and, thus, the nondlagonal elements do not vanish, and there

are nonvanishing elements among ¢y; ¢y.
: 2. Symmetry Properties of system of equations (3). It is evxdent that system of
equations (3) admits operators of shift by coordinates ¢ and x, namely,
d d E
P P di =P e 9;. . 4)

To construct other symmetry operators for systcm of eguations (3), we take into
account that dilation operators .

D = kxd, + Itd, + mUdy + mQVBV ‘ - .(5).

are characteristic for power nonlinearities, where
d d
o av= T
oU av
Depending on relations between the coefficients k, [, m, my, Wwhere nonlinearities
(2) are taken into account, we obtain three types of D (5).

- Note that the case k=[=0 is not considered below because it has the
corresponding operator D, and the reduction by such an operator D = m,;Udy +
+ m,Vdy transforms system of equations (3) to an overdeterrmned system of partial
differential equations.

Proposition 1. system of equations (3) is invariant with respect to the operator

D= xax + 2!’8: + manU + .mgvav, ¥ - (6)

k, 14 mi, melR, 9y=

iff it has the form

! s L]
Ur = alU_u + bl(Uerx)x + Z CII'UEHVK”,
i=1
_ - (7
V, = a,V,, + by(UT' V), + z ¢a USZJV“ZI
- j=1
where the powers 8y;, K\;. Szj, ‘Czj Sfor all i,j satisfy the system of algebraic
equations ,
ml(1~815) = mZK” + 2,-
®)
mlﬁzj = mz(l —sz) —2;

or the form

U

- 1

=a (UMU), + b (U tlylyy, +V“sz.cl Ui,
i=1
| , ©)
: : s i
Vr = az(Uaz Vx)x [ bz('UuZMIVUx)x + V1+Kl 2 C?J Usz-v‘; ;
| =
when m; =0, m,=-2/%x,, x; #0. -
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The proof of the above statement can be carried out by using transformations
generated by operator (6) ' '

x'=ex, ¥ =¢et, U =e™U V'=ew, (10a)

where e is the group parameter.
Indeed, it follows from (10a) that

U, = Ue™r? UL = U™, UL, =U_e™?,
; (10b)
Vie= V™2 Vo= Vel Vi o=V em 2
Therefore, by substituting (10) for functions U and V and their derivatives in system
of equations (3) written with primes, we get

m—2 my=240c,m o my—2+a,m o, +1 1
™y, = ™ Mg (UMU), + "2 Mp (UM VYY) 4

" z c em151i+ moXy; USHVK“,
i
(3]

ma—2 Maoy—2 40, m o ; may—2+d,m ,—1
es Vy=e'? 2 a, (U72V), + 272 Wpy (U™ VU), +

Ba it maks 5 :
N ByE A A U2y,
J

It is obvious that system of equations (3°) coincides with system of equations (3) iff
powers of the group parameter e are the same in each equation, namely,

0 =oymy=mdy;+myky —my +2,
; 0:a2m1=m152j+.’?.?.21(2j—m2+2‘
It is easy to notice that the above system of algebraic equations with oy =0y,=0 can -

be reduced to (8) and, thus, system of equations (3) takes the form (7). In the other
case, we get m; =0 and
.2
Mmy =——, ¥;=%Xy;, (=12, ...,n;
2 K i i : i
sz =1+ LB j= 1, 2, L ,nj.
Thus, we get system of equations (9), which was to be proved.
For the case considered separately in [1], namely, :
52j = K?-}'.= D, 611 = 0.5, 812 — 0, Kll = 0, Kiz =:1
we get a system of equations o .
U; = a1 Uy + b1((UIVIV), + ey U2 + ¢ p W, o
: . (11)
. ~1 »
 VizaaV, + b, (U VU,), + ¢
which is invariant under the action of the operator
D = xax + 21‘8, + 4U8U + 2’Vav.' .
Proposition 2. system of equations (3) is invariant under the action of the
operator - .
D= xax__+ F.?‘.IIU.aU + m.zvay, (12)
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1268 R. M. CHERNIHA, H. WILHELMSSON

iff it has the form

ny
U, = a,(U%U,), + by (U™ V)V + Y ey UBH VR,
i=1
(13)
B nj 5
Vf = ai’.(Uan)x + bZ(Ua"lVUx)x + z Csz 'UV‘CU’
J=1 :
where a.=2[my, m#0, and the powers 8;, Ky;, Oyj, Ky; satisfy the system
of algebraic equations '
(1-8;)m; —xymy =0, =83my + (1-Ky;)my = 0.
The proof of this statement is similar to that of Proposition 1.
For the case 8,;=%,;=0, we get the system of equations

-

U, = a;(U* U) +bl((U"+UV)V) +Uz.c] V¥,
i=]1

(14)
V, = ay(U%V,), + by (U VU,), + c3,
which is invariant under the action of )
D = xd, + mUxdy, my=2/0, o#0. (15)

Proposition 3. System of equations (3)is invariant under the action of the
operator -

= kxd, + td, + mUdy + myVay,, k#1/2,
iff it has the form (13), where o.=(2k—1)/m,, o.m,#0, and the powers 8y;,
K1i» 825, Kyj satisfy the system of algebraic equations
(1—51;)??11 — Kyimo = 1, —52jm1 + (l—sz)mz =1,

The proof of this statement is similar to that of Proposition 1.
For the particular case

82- = K'.).j = 0, 1(11 = 812 = 0, K].Z = 1, 811 = 0‘5,
we get l:he system of equations
_ﬂl(U U) +bl((Ua+1fV)V) +C'“U1IZ+C12V,
: an
V, = a,(U*V,), + bp(U*'VU), + ¢,

which is a generalization of system of equations (11), invariant under the action of the
operator ' ' '

= (a+0.5)xd, + 13, + 2Udy + V. (18)
The following system is also worth attention:

U, = al(UaUx)x + by ((UDH'I "}V)Vx)x +c; UV,
' (19)

-1
V, = ay(U%V,), + b,(U*'VU,), + ¢y,
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since it is invariant under the action of two dilation operators

= 13, = %US'U + Vo,
' (20)
= xd, += 2 U3y, %0

* (it satisfies the conditions of Propositions 2 and 3).
It is known that, among nonlinear heat equations of the form

U,=(A(U)U,), A=#const,

‘there is only one equation that is invariant under the action of the operator of
conformal transformation [6]

K = x%9, - BxU’a_U. @1

The nonlinearity generating this operator has the form A =a e ge R,
Consider a natural generalization of the operator (21) for the case of two functions
K = xzax + mxUdy + myxVo,. (22)

Proposition 4. system of equations (3) is invariant under the action of operator
(22) iff it has the form

n
U, =a,(U?0,), - (U VIV, + U cy(UIV)S,
i=1
(23)
JIJ-'
=V 3, e (U/ V)
j=1
and mj;=mq,=-2.
This statement can be provcd by application of transformations generated by
operator (22)

e x}’(l—ex) U =U(l—ex)™, V'.= V(l—ex)_’"2 (24a)

to system of cquatlons (3), where e is group pa:amcter
Indeed, since

Up = EMU, Uy = B(U,+20) E=1-ex

Uiy = E4_ml(Un+2(mlE_ LI RRLL “om =Dy

E?
_ (24b)
Vi = BV, Vi =B mz(v +e V) |
Vi = EA;mz[Vxx +2(sz Dey, , me J(En;g Dy )

by substituting expressions (24b) for functions U and V and their derivatives in
system of equatlons (3) written with primes, for the first equanon of the system, we
obtain the expression

— 2 —
_U:: aIU“1E47m1°‘1[UH+2(m% 1)Ux+m13 (my 1)€U} i

EZ
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2e(my =1) , +"”282(”2Q—1)V] T
E

2 b1U1+alv—lE4—m lotl—ml+m2(vxx +' = .

2
+ a a!Eilun:lal Uctl--l [U)% +2;m1 UUx eEr;l UZ]

B 5154—n1|a1Uq,+1V~2[ ZemQW +5Emzvz)
Vs

+ by(o + DETMNUSIV [Ux +Emym Y +522vU, +“’m1UV]

. N . i

+ Z cy; ylu V“ng”‘. m 8 —myxKy; (25)
i

Expression (25) can be reduced to the first equation of system of equations (3) only

if the sums of coefficients with U*1*! and U*! V, are both equal to zero. Then we
obtain the conditions :
ay +b; =0, m = my, 0!.1=-i—1—1.
The rest of expression (25) can be reduced to the first equation of system (3) only if
4-moe; =0, m8; + myky; = myq.
Thus, :
' oy =-2, m=myg=-2 Oy+xy=1" (26a)
Similarly, having applied transfonnatlons (24a) to the second equation in system of
equations (3), we get
a, = b, =0, d,;+ Kyj = 1. (26b)

Thus, system of equations (3) with conditions (26) takes for form of syste.m of
- equations (23), which was to be proved.
Unlike the finite transformations generated by the dilation opcrator D (5),

transformations (24a) generate a nontrivial formula for the multiplication of solutions:
Indeed, if Uy(t, x) and Vj(t, x) is a solution, then

U = Uy(t,x/(1-ex))(1-ex)?,

V = Vo(t,x/(1—ex))(1—ex)?
is a new solution of system of equations (23).
Note 1. The above statement can be generalized to the case of evolution systems
of equations of the form :

U (AI(U)tfx)x+ (By(U, V), + C (U, V),

t

N
\%4

t

Il

(A(W)V,), + (Bo(U, VIU), + Co(U, V).

System of equations (27) is invariant under the action of operator (22) iff it has the
form ;

U, = a(U*0), + 5, (V*3V), + UF(U/IV),

t

(28)
V, = a(U*v)_ + b, (U0, + Ug(U/V);
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or _
' U

t

a0 [U™2U, = V,/(UN)], + UF(U/V),
5 | (29)

V, = ay[V2V, - U/ (UV)], + Ug (U] V),

where f and g are arbitrary differentiable functions. For system of equations (28), we
have m; —mza—3 in operator (22) and, for system of equations (29) we have *
m)y=mqy= —2.

3. Anziitze and Reduction of system of equahons_(3) to ‘Ordinary Differential
Equations. Since system of equations (3) is invariant under the action of the
translation operators (4), eVIdently, we obtain an ansatz for Solutmns of the travelmg
wavc—type

I

U=Y®), V=2Z0), o=x-v ve R, (30)
Substitution of (30) into (3) gives a nonlinear-system of ordinary differential
equations

-y, = al(Y SATEE WS Ll o Ay T z ¢ YoHZ"Y,

w
=l .
(31)

~Z, = a(Y*2Z ) ® Mo s AN 2 ca Yazfz“w
(the index @ designates differentiation with fespect to this variable). The invariance
of system of equations of the form (3) under the action of the dilation operators (5)
allows us to construct anzitze for self-similar solutions. Let us illustrate this statement
by a special system of equations of the form (3), namely, - .

L |
U, = a)(U*U,), + by (U'VTIV), + U Y, V™,
i=1
- o (32)
' -
V, = ay(U%V), + b (U VU, + ¢y

According to Proposition 1, system of equations (32) admits operator (6) .for
my =2 and an arbitrary constant m; only if it has the form

U =aU,+b((U/V)V),+c UV, .
- | (33)
VI = az‘Vxx + bz((V}"U) Ux)x + Co.

Operator . D (6) for system of equations (33) generates an ansatz, which, if we take
into account operators (4) can easily be generalized to .

U= (t—tg)™"2Y(0), V= ('r_-_to)z(m)_, O = _(x—-xc,)(tu.to) 12, (34

Substituting ansatz (34) into system of equations (33), we obtain a nonlinear system
of ordinary differential equations

’zly_%my = @Yy + 51 (YZ'2) + Y27,
J 34y
Z - 202, = ayZg0 + bo(ZV ' Vo)p + 62 |
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4. Certain Classes of Exact Solutions of System of Equations (3). Exact
solutions of the traveling wave-type are obtained by means of solutions of the -
nonlinear system (31). For some particular cases, it was done in [7, 8]. We succeeded
to obtain families of exact solutions with several arbitrary constants for the reduced
systems of ordinary differential equations (35), (38), and (41).

‘Assume that the condition by=-a;#0, by=—a,#0 Iis satisfied for the
coefficients. of the original system of equations (3). Then we transform system of
equations (35), (38) with x;=0, and (41) by changmg Y, Z to new variables W, Z
according to the following formula:

Y = Wz, szwmz+wzm.. o (42)

After transformation (42), the system of ordinary differential equations (35) is reduced
to ¢

1
'-ECD(W)O) = GI(WZ)OJ =+ Clw,
(43)
Z - 2025 = ~ar(WoZ W )y + 02

If we assume now that W= eoo)Y,_ eg, Y€ R, then (43) is reduced to an
overdetermined system

(a17+%m)zm + (%+aﬂ(y—1)m’l)z = —c,m,

(azy—%mzjzm_+ (0-ayyo™)Z = 50,

which is compatible and has the solution

2 602 — ¢, + 8¢y a
Z=03R(00), R(o) = 2L 4 2 192
2 - —q®° +a,®—8aja,
if y=-2, and
¢ e
1 2 = of
4 9

"Thus, taking (42) into account, we obtain the function Y =eoR(®), ¢g € R. Thus,
we obtain the three-parameter set of solutlons for system of equations (33) (see (34) for
my= O)

U= R, V= %(x—-xo)zR(r,x), 44)

where

ey (x = x0)* = c3 (x = %)t — g + 8y, (£ 1)

R(t, x) =
) —ay(x = xp)* + a3 (x— xp)t 1o *30162(5—*‘0)
c C.
: . = C', €0 X toe R.
a4 &5 : :

Substitution (42) reduces system of equations (38) with «,;=0, by=—a,, k=1,
2, to anonlinear system of ordinary differential equations

2
(o) Wz - po(W2) = ay (W21 W,),,
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1274 ; R. M. CHERNIHA, H. WILHELMSSON

T00Zo = aa (W' 2% W,,), — ez,

which, in turn, for y5(1+2/0) —c; = 0, by integration of the first equatlon over o,
is reduced to the form

e —YoWZ = alWaZuHWm, ee R,
. ' ' (45)
Yﬂmzm = asza—lza"'lwm)m P

The nonlinear systems of ordinary differential equations (45) with e =0 can be
completely integrated, and we can obtain the solutions: -

, apt+a; - aycy
1 Z=eoco7+ cp Y=-— , € B ——————,
. oa Yol(a +a,)
' (46)
' 1/a
_ Yo ¥ -0
W= |¢g- (e’ +¢ dw
[ ! a I ( 0 0) ]
in the case a; —a,,
T ; ]
(ii) Z=¢eyg+ —Ino,
Yo
47

B —a /o
W= [el ~2¥0 Cﬁ(ﬁo +——2—1n0)J dcn:]
4 Yo
in the case a;=-a,
In formulas (46), (47) and below, the coefficients e, and e; are arbitrary

constants, o # 0.
Thus, for the nonlinear system

U, = a,(U%U,), - a,((U*** IV)V), + ¢, U,
. (48)
V, = ay(U*V), — (U 'VU,)  + c;, a0,

-t
taking correlations (37) and (42) into account, we obtain the following four-parameter
sets of solutions (e, e, xg, tg€ R):
X — Xp

. 2 oM :
@ U = exp %(:—ro)[M—)-—+co}W(m), W = m,(49

exp Yo Y — 1)

eg (x — x)" . oey
= —-——"——+¢cq Yo=
exp Yo Yt —1t3) o+2
(%, co, and W are defined in (46)) in the case @, # a,, | : ,
(if) U = exp ﬁ(r_r)[eﬁ—?ln—m]wm),
Yo expYo(t—1tp)

- (50)

V= E) +__1nx;xb_
Yo expYolt—1to)

(W is defined in (47)) in the case a; #—a,.
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Finally, éubstimtion (42) reduces system of equations (41) to
Ao (WZ) — A0 (WZ), = al(W“z““W )o + 1 W,

Z - A0Z, = —ay(W*™ z““W o *+ €2

which, for A= (o + 27!, a#-2, and cl =0, after the integration of the: flISt
equation over ®, takes the form

e - AOWZ = a, W*Z**'W,, ece R,

_ _ . el

Z - AZ, = —ay(W* 2% W), + co
It is easy to see that the system of ordinary differential equations (51) for e=0

coincides in structure with system (45); whence we get its solution, namely, -
@+a—a ' _aco +2)
ETEATR = AR

Z#em7+c, = , )
0 _ 2 _T a; +a, a; —a(o.+2)

(52)
: - /o :
W = — | o(eyo + do| , +a, # 0, # + 2).
; [81 (a+2)a1 I €o co) } ap +as a # ay(o+2)
In the case a;+a,=0, we obtain Z=const, which is not interesting from the
physical point of view. In the case a,—a;(ot+1)=0, solution (51) for =0 has
the form '
' ; o+2
Z =¢eq—coln®w, cp= ——, Oo#-3,
0_ 0 0" o+3
: (53)
o ) . 1ja
W= |gg———--|0(ey—¢olnw) *do| .
[el (@ +2)q _[ (3_0 0 ) ji
Note that, ot#~3, we again obtain Z = const. Thus, for the nonlinear system of
equations o ; .
U, = a (UU), - al((U““;V}V) :
(54)
Vf = a,(U*V,), - a(U*" Iv::;) + 6gs

.takmg relations (40), (42), (52), and (53) into account we obtain the following four-
~ parameter families of solutions:

N6Y)

- = e B - X=X
U= (t—1tp) _1""':“+2) [eu(x—xo)T (t—ty) 7/ (0:t2) +CO]W(L0), 0

= (:__ro)l.‘{(d.+2)’
V = (t~to)eo(x — x0) (2= 1)1/ 4 o]

(Q'A co, and, W(GJ) are defined in (52)) in the case a, # ay(c +2),

(ii)l = (t— c)*” (““‘2)[ -y 1n(—(f—)%}’i’(m),

. =- (r = fo)[eo —Cp 1n‘(—'-‘-£-‘:)]jf%i|

(cp and W(CD) are deﬁncd in (53)) in thecase az—al(a+2) o#E-2. -
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5. Non-Lie ansiitze and exact solutions of a nonlinear system of the form (3).
Nowadays, the construction of non-Lie ansdtze and exact solutions of nonlinear
evolution equations is a very vital problem. Here, we apply an approach to the
construction of such ansitze and exact solutions that is based on the consideration of a
given nonlinear system together with additional conditions in the form of high-order
ordinary differential equations. This approach was used in [9] for obtaining solutions
of some nonlinear evolution equations, which describe real processes in physics and
chemistry.

Consider a pamcular case of the system of equations (3), namely,

Ut = (UUx)x + CllUV“i‘ cy,
(55)
V,=a(UV),—-a(VU,), + ¢y

where a, ¢y, ¢, and ¢, are arbitrary constants. For c¢jcc,#0, system (55) is
invariant only under the Lie algebra (4), which generates solutions of the form (30).

Taking as additional condition the non-coupled system of ordinary differential
equations

du dzU v
al(t)a + 0‘20‘)? + =8 = 0,
(56)
av . d*v dv
oy (2) o + 0y (2) ?_+ _dx3 =0,

where o) (), 05(t) are arbitrary continuous functions and the variable ¢ is regarded
as a parameter, we can easily find its general solution
U = @o(®) + ¢1(r) exp (y1(8) x)-+ @2(t) exp (v,(£) ),
(57
V = () + ¥1() exp (v1(£)x) + o () exp (v, (£) x),

where
1
"(1,2(33 = 5(1(&%—4051)”2; Oﬁz) # 0

and vy # v,

Consider relations (57) as an ansatz for our system (55) It is important to note that,
this ansatz contains six functions ¢; and '¥;. This enables us to reduce system (55) to
a quasilinear system of ordinary differential equations of the first order for the
unknown functions @; and ‘Ij Thus, we find after cumbersome calculations a family
of non-Lie solution of the form :

U = @o(t) + exp [A(t) + ayz _[cpo(r) 'dr](dl expyx +d, exp (—'\(x)),
(58)

2 .
V=dy+ eyt — ;/— exp [A(r) + ayz _[(pg(t) dr](dl exp'yx +dy exp(—"yx)),

where v, dy, d, d, are arbitrary constants, A(t) = c“t(du+ czrfz) ‘and @(z)
is an arbitrary solution of the equation

do, -
*&;0' — oy(e +do)@y = ¢ — Y*did, exp [?—A(l‘)+2ﬂ72f‘?0(l‘) df]-
Indeed, solution (58) is just a non-Lie solution becaﬁse it is not of the form (30).

Note that in the case y=iy,, i?=-1, Yo € R, any complex solution of the form
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(58) generates two real solutions that contain the periodic functions cos and sin.
Such solutions can describe a process of evolution of the temperature and density in
Tokamak plasmas [1].

In the case c¢;; =0, the system of equations (55) has no solutions of the form (58),
but, in this case, we can use the non-Lie ansatz ;

U= got) + i) + (027,

(59)
_ V= F(t) + H@)x + B(0)x?, :
which is generated by the additional condition (56) if o ;=0,=0. Substituting
ansatz (59) into the system of equations (55) for ¢;; =0, one can find a family of
exact solutions of the form

= Qo) + dy(tg— ) 1x + é(:o -1~ 1x?

V = W) + [6did, +dpty —t[*%]x + dpx?,

where the functions ¢, (¢) and ¥, () are an arbitrary solution of the linear system of
ordinary differential equations

d 1 = =

_;’;0 = 3% -9 loo + Pt -1 + ¢y, -
d'¥, a - = 5
Tto = 5(1‘0 o t) 1__\P0 + 2ad2(p0 + Cq. )

The authors wish to express their thanks to Professor W. Fyshchych for stimulating
discussion and helpful comments.
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