S. Bonafede (Catania Univ., Italy)

## STRONGLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS. I

## СТРОГО НЕЛІНІЙНІ ВИРОДЖЕНІ ЕЛІПТИЧНІ РІВНЯННЯ З РОЗРИВНИМИ КОЕФІЦІЄНТАМИ. І

This paper is concerned with the existence and uniqueness of variational solutions of the strongly nonlinear equation

$$-\sum_{1=i}^{m} \frac{\partial}{\partial x_{i}} \left( \sum_{1=j}^{m} a_{i,j}(x, u(x)) \frac{\partial u(x)}{\partial x_{j}} \right) + g(x, u(x)) = f(x)$$

when the coefficients  $a_{i,j}(x,s)$  satisfy an ellipticity degenerate condition and hypotheses weaker than the continuity with respect to the variable s. Furthermore, we establish under which condition on f the solution is bounded in  $\Omega$ , a bounded open subset on  $\mathbb{R}^m$ .

Досліджується існування та єдиність узагальнених розв'язків дляжирого непівійного рівняння

$$-\sum_{1}^{m} \frac{\partial}{\partial x_{i}} \left( \sum_{1}^{m} \int_{i} a_{i,j}(x, u(x)) \frac{\partial u(x)}{\partial x_{j}} \right) + g(x, u(x)) = f(x)$$

з коефіцієнтами  $a_{i,j}(x,s)$ , які задовольняють умову виродженої еліпвичності та умову більш слабку, ніж неперервність відносно змінної s. Більш того, при певній умові відносно f доводиться обмеженість розв'язку на обмеженій множині  $\Omega \in \mathbb{R}^m$ .

1. Introduction. Let  $\Omega$  be a bounded open subset of the Euclidean m-space  $\mathbb{R}^m$ ,  $m \geq 2$ . We shall be concerned with the existence of variational solutions of the equation

$$Au(x) + g(x, u(x)) = f(x), \quad x \in \Omega, \tag{1}$$

with Dirichlet boundary condition. Here A is a quasilinear elliptic partial differential operator in divergence form

$$A u(x) = -\sum_{1}^{m} \frac{\partial}{\partial x_{i}} \left( \sum_{1}^{m} a_{i,j}(x, u(x)) \frac{\partial u(x)}{\partial x_{j}} \right).$$

The functions  $a_{i,j}(x, s)$  satisfy the ellipticity and boundedness condition

$$\begin{cases}
\sum_{1}^{m} a_{i,j} a_{i,j}(x,s) \xi_{i} \xi_{j} \geq v(x) \sum_{1}^{m} \xi_{i}^{2}, \\
\left| \frac{a_{i,j}(x,s)}{v(x)} \right| \leq \Lambda_{i,j} \quad (i,j=1,2,\ldots,m),
\end{cases} \tag{2}$$

for almost all  $(x, s) \in \Omega \times \mathbb{R}$  and all  $\xi \in \mathbb{R}^m$ , with v(x),  $v^{-1}(x)$  satisfying the integrability hypotheses of Murty – Stampaccia's kind (see, e. g., [1]). The term g(x, s) is strongly nonlinear and no such growth restriction is imposed on the size of g(x, s) as a function of s, but we (essentially) impose the weak "sign condition"  $g(x, s) s \ge 0$ .

Existence results for problem (1) are well-known in the literature when the coefficients  $a_{i,j}(x,s)$  are functions of Carathéodory type (i.e. measurable in x and continuous in s) and v(x) does not depend on x (see for instance, [2-4]). However, equations of the form (1) with discontinuous (with respect to s) coefficients  $a_{i,j}(x,s)$ 

occur in many problems of physics. The purpose of this note is to extend the results of [3] to the degenerate case. By working on the coefficients of principal part, the hypotheses can be made weaker than the continuity with respect to the variable s; in this way we will be able to take, for instance,  $a_{i,j}(x,s) = \alpha_{i,j}(x)\beta_{i,j}(s)$ , where  $\alpha_{i,j}$  and  $\beta_{i,j}$  are supposed only to be measurable and satisfying (2). Finally, other interesting results concerning with equation (1), in degenerate case, are established in [5] by assuming the coefficients  $a_{i,j}(x,s)$  to be Carathéodory's functions and the functions g(x,s), f, having polynomial growth in s.

2. Function spaces. Let  $\mathbb{R}^m$  be the Euclidean *m*-space with generic point  $x = (x_1, x_2, \dots, x_m)$ ,  $\Omega$  a bounded open subset of  $\mathbb{R}^m$ . We denote by meas the *m*-dimensional Lebesque's measure.

Hypothesis 1. Let v(x) be a positive function defined on  $\Omega$ ; there exist two real numbers  $\sigma \in ]0,1[$  and  $\chi > m/2$  such that:

$$V(x) \in L^{1+\sigma}(\Omega), \quad \frac{1}{V(x)} \in L^{\chi}(\Omega).$$

For instance, if  $\Omega = \{x \in \mathbb{R}^m : |x| < 1\}$  we can choose

$$v(x) = \left[d(x, \partial\Omega)\right]^{\rho}, \quad -\frac{1}{1+\sigma} < \rho < \frac{2}{m}.$$

The symbol  $H^1(v,\Omega)$  stands for the space of all  $u \in L^2(\Omega)$ , whose derivatives (in the distributional sense on  $\Omega$ )  $\partial u/\partial x_i$  are functions such that  $\sqrt{v(x)} \partial u/\partial x_i$  belongs to  $L^2(\Omega)$ ,  $i=1,2,\ldots,m$ .  $H^1(v,\Omega)$  is a Hilbert space with respect to the norm:

$$||u||_1 = \left(\int_{\Omega} (|u|^2 + v(x)|\nabla u|^2) dx\right)^{1/2}.$$

 $H_0^1(\nu,\Omega)$  is the closure of  $C_0^{\infty}(\Omega)$  in  $H^1(\nu,\Omega)$ ; in this space we will take the following equivalent norm:

$$||u||_{1,0} = \left(\int_{\Omega} v(x)|\nabla u|^2 dx\right)^{1/2}.$$

**Remark 1.** By standard Sobolev's imbedding, there is a constant  $C = C(m, v(x), \chi)$  such that

$$\left(\int\limits_{\Omega} |u|^{2^{\#}} dx\right)^{1/2^{\#}} \leq C \left(\int\limits_{\Omega} v(x) |\nabla u|^2 dx\right)^{1/2} \quad \text{for} \quad u \in H_0^1(\nu, \Omega);$$

here  $2^{\#} = 2m\chi/(m\chi + m - 2\chi) > 2$ .

For more details on these spaces we refer the reader to [6, 7].

Finally, we denote by  $H^{-1}(v^{-1}, \Omega)$  the dual space of  $H_0^1(v, \Omega)$ .

Hypotheses 2. The coefficients  $a_{i,j}(x,s)$ ,  $i,j=1,2,\ldots,m$ , are functions defined and measurable in  $\Omega \in \mathbb{R}$ , fulfilling

$$\frac{a_{i,j}(x,s)}{\mathsf{V}(x)} \in L^{\infty}(\Omega \in \mathbb{R}), \quad i,j = 1, 2, \dots, m.$$

Hypotheses 3. For almost every (x, s) in  $\Omega \in \mathbb{R}$ , it results

$$\sum_{1}^{m} i, j \, a_{i,j}(x,s) \xi_i \xi_j \geq V(x) \sum_{1}^{m} i \, \xi_i^2 \quad \text{for any} \quad \xi \in \mathbb{R}^m.$$

Let us denote by  $a_{i,j,s}(x) = a_{i,j}(x,s)$  for  $i,j=1,2,\ldots,m$  and  $(x,s) \in \Omega \in \mathbb{R}$ .

Hypotheses 4. For every  $\varepsilon > 0$  there exists a compact subset  $K_{\varepsilon} \subset \Omega$  with meas  $(\Omega \setminus K_{\varepsilon}) < \varepsilon$ , such that for every r > 0 the functions of the family  $\{a_{i,j,s}(x), s \in [-r,r], i,j=1,2,\ldots,m\}$  are equicontinuous on  $K_{\varepsilon}$ .

Hypothesis 5. The function g(x,s) is measurable in x on  $\Omega$  for fixed s in  $\mathbb{R}$ , continuous in s for fixed x. We, also, suppose:

(i) for any x in  $\Omega$ , g(x,0) = 0, while for all s in  $\mathbb{R}$ , x in  $\Omega$ , g(x,s),  $s \ge 0$ :

(ii) the function g(x, s) is non-decreasing in s on  $\mathbb{R}$  and, for any fixed s, g(x, s) belongs to  $L^1(\Omega)$ .

Note that hypotheses 4 is fulfilled for instance in the following cases:

- (a)  $a_{i,j}(x,s)$  is measurable in x and continuous in s,  $i,j=1,2,\ldots,m$ ;
- (b)  $a_{i,j}(x,s) = \alpha_{i,j}(x)\beta_{i,j}(s)$  with  $\alpha_{i,j}$ ,  $\beta_{i,j}$  measurable functions. Let  $f \in H^{-1}(v^{-1},\Omega)$ , hypotheses 1, 2, 5 hold. We will consider the strongly nonlinear elliptic problem with Dirichlet boundary condition:

$$\begin{cases}
\int_{\Omega} \sum_{1}^{m} i_{i,j} a_{i,j}(x, u) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} dx + \int_{\Omega} g(x, u)v dx = \langle f, v \rangle, \\
\text{for all } v \in H_{0}^{1}(v, \Omega) \cap L^{\infty}(\Omega) \text{ and for } v = u, \\
u \in H_{0}^{1}(v, \Omega), g(x, u) \in L^{1}(\Omega) \text{ and } g(x, u)u \in L^{1}(\Omega).
\end{cases} \tag{3}$$

In Sect. 3 we will show the following statement 1–5.

**Theorem 1.** Under hypotheses 1-5 there exists a solution of (3). Moreover, the solution is unique if  $\mathcal{A}$  is monotone and g is increasing in s or if  $\mathcal{A}$  is strictly monotone (see the next section for the definition of  $\mathcal{A}$ ).

Next, sect. 4 will be arranged into two parts.

The first will be related to the study of regularity of solutions of problem (3), more precisely we shall give a proof of the following statement.

**Theorem 2.** Under the same hypotheses of Theorem 1, if  $\chi > m$  and

$$f = -\sum_{i=1}^{m} i \frac{\partial f_i}{\partial x_i}$$

with  $f_i(x) \in L^t_{1/\nu}(\Omega)^*$ ,  $i > m(\chi - 1)/(\chi - m)$ , then we obtain  $u \in L^\infty(\Omega)$  and

$$\operatorname{ess'\sup}_{\Omega} |u| \leq \gamma ||f||_{H^{-1}(v^{-1},\Omega)};$$

(γ denotes a constant depended on χ, t, ν(x), meas Ω).

The second will be devoted to extend the results of the previous sections to variational inequalities.

$$||u||_{t,1/v} = \left(\int_{\Omega} v(x)^{-1} |u(x)|^t dx\right)^{1/t} < +\infty.$$

<sup>\*</sup>See [1] for the representation of linear continuous functionals on  $H_0^1(v,\Omega)$ .  $L_{1/v}^t(\Omega)$  denotes the Banach space of all measurable functions, u(x), defined on  $\Omega$  for which

## 3. Preliminary Lemmas.

**Lemma 1.** Assume that hypotheses 1–4-hold. Then the operator  $A: H_0^1(V, \Omega) \rightarrow H^{-1}(V^{-1}, \Omega)$  such that

$$\langle \mathcal{A}u,v\rangle = \int\limits_{\Omega} \sum_{1,j}^{m} a_{i,j}(x,u(x)) \frac{\partial u(x)}{\partial x_{j}} \frac{\partial v(x)}{\partial x_{i}} dx$$

is bounded, coercive and pseudomonotone.

Proof. We refer the reader to Theorem 2.1 of [8, p. 57].

**Lemma 2.** Let u be a function belonging to  $H_0^1(\nu, \Omega)$ . Then there exists a sequence  $(u_n)$  fulfilling the following properties:

$$\begin{aligned} u_n &\in \ H^1_0(\mathbb{V},\Omega) \cap L^\infty(\Omega) \quad \text{for every} \quad n \in \mathbb{N}; \\ |u_n(x)| &\leq |u(x)| \quad \text{and} \quad u_n(x)u(x) \geq 0 \quad \text{a.e. in} \quad \Omega \quad \text{for every} \quad n \in \mathbb{N}, \\ u_n(x) &\to u(x) \quad \text{in} \quad H^1_0(\mathbb{V},\Omega) \quad \text{as} \quad n \to +\infty. \end{aligned}$$

**Proof.** For every  $n \in \mathbb{N}$ , it will be sufficient to define

$$u_n(x) = \operatorname{sgn} u \min(|u|, n) = \begin{cases} n, & \text{if } u \ge n, \\ u, & \text{if } |u| < n, \\ -n, & \text{if } u \le -n \end{cases}$$

(see [1, p. 10] prop. 2.7).

## 4. Existence and uniqueness Theorem.

**Proof** of Theorem 1. We observe that the term g(x, u) does not define a map from  $H_0^1(v, \Omega)$  to  $H^{-1}(v^{-1}, \Omega)$  because it doesn't satisfy any growth condition. Therefore, for every  $n \in \mathbb{N}$ , we put

$$g_n(x, s) = \begin{cases} g(x, s), & \text{if } |g(x, s)| < n, \\ n \frac{g(x, s)}{|g(x, s)|}, & \text{otherwise.} \end{cases}$$

Then

$$\langle T_n u, v \rangle = \int_{\Omega} g_n(x, u(x)) v(x) dx$$

is defined for all  $u, v \in H_0^1(v, \Omega)$  and  $v \to \langle T_n u, v \rangle$  defines an element  $T_n u$  of  $H^{-1}(v^{-1}, \Omega)$ .

We claim that, for every  $n \in \mathbb{N}$ ,  $T_n$  is a bounded, pseudomonotone operator. Indeed, by recalling the definition of truncation we obtain

$$|g_n(x,s)| \le n \text{ for all } (x,s) \in \Omega \times \mathbb{R}, n \in \mathbb{N}.$$
 (4)

Also, the imbedding of  $H_0^1(v,\Omega)$  into  $L^2(\Omega)$  is compact (see Lemma 4.3 of [9]). Accordingly to Lemma 1, for every  $n \in \mathbb{N}$ , the operator  $\mathcal{A} + T_n$  is bounded and pseudomonotone.

Next, by hypotheses 2, 3 and inequality (4), it results

$$\begin{split} \big\langle (\mathcal{A} + T_n) u, u - w \big\rangle &\geq \| u \|_{1,0}^2 - M \| u \|_{1,0} \| w \|_{1,0} - \\ &- n \bigg( \max_{x} \Omega \bigg)^{1/2} \, \big\{ \| u \|_{1,0} + \| w \|_{1,0} \big\}, \end{split}$$

for every  $u, w \in H_0^1(v, \Omega)$ ; here

$$M = \max_{i,j=1,\dots,m} \operatorname{ess sup}_{\Omega \times \mathbb{R}} \frac{|a_{i,j}(x,s)|}{v(x)}.$$

Therefore, from Theorem 32C of [10, p. 875], for each integer n and for the given element f of  $H^{-1}(v^{-1}, \Omega)$ , there exists an element  $u_n$  of  $H^1(v, \Omega)$  such that

$$\langle \mathcal{A}u_n - f, w \rangle + \int_{\Omega} g_n(x, u_n) w \, dx = 0 \text{ for every } w \in H_0^1(V, \Omega).$$
 (5)

Setting  $w = u_n$  in (5), for every  $n \in \mathbb{N}$ , we get

$$||u_n||_{1,0}^2 \le \langle \mathcal{A}u_n, u_n \rangle + \int_{\Omega} g_n(x, u_n) u_n dx \le ||f||_{H^{-1}(V^{-1}, \Omega)} ||u_n||_{1,0},$$

according to hypotheses 3 and evident inequality  $g_n(x, s)s \ge 0$  in  $\Omega \times \mathbb{R}$ . Thus, for every  $n \in \mathbb{N}$ ,

$$||u_n||_{1,0} \le ||f||_{H^{-1}(\gamma^{-1},\Omega)}.$$
 (6)

As  $\mathcal{A}$  is bounded, by passing to subsequences, we may suppose that  $u_n - u$  in  $H_0^1(v,\Omega)$  and a.e. in  $\Omega$ , and  $\mathcal{A}u_n - y$  in  $H^{-1}(v^{-1},\Omega)$ .

Also (6) and  $\| \mathcal{A} u_n \|_{H^{-1}(\mathbf{v}^{-1},\Omega)} \le C_1$  imply that

$$\int_{\Omega} g_n(x, u_n) u_n dx \le (\|f\|_{H^{-1}(v^{-1}, \Omega)} + C_1) \|f\|_{H^{-1}(v^{-1}, \Omega)} = \mathcal{P}$$

for every  $n \in \mathbb{N}$ . We now proceed to show that the sequence  $\{g_n(x, u_n)\}$  in  $L^1(\Omega)$  is equi-uniformly integrable.

We get

$$\alpha |g_n(x, u_n)| \leq g_n(x, u_n) u_n + \alpha \{g(x, \alpha) + |g(x, -\alpha)|\}$$

foe each positive integer  $\alpha$  and all n.

Hence, for any subset E of  $\Omega$ , we conclude that

$$\int_{E} |g_{n}(x, u_{n})| dx \leq \frac{2}{\alpha} \mathcal{P} + \int_{E} |g(x, \alpha)| dx + \int_{E} |g(x, -\alpha)| dx$$

and finally that for  $\max_{x} (E)$  sufficiently small,  $\int_{E} |g_{n}(x, u_{n})| dx$  may be made small uniformly in n.

In addition, by continuity of g(x, s) in s and definition of truncation, it follows that  $g_n(x, u_n(x))$  converges a.e. to g(x, u(x)).

Consequently, by Vitali's theorem we have

$$g(x, u) \in L^{1}(\Omega), \quad g_{n}(x, u_{n}(x)) \to g(x, u) \text{ in } L^{1}(\Omega).$$

Moreover, by Fatou's lemma

$$\int\limits_{\Omega} g(x, u)u \, dx \leq \lim \inf\limits_{n \to \infty} \int\limits_{\Omega} g_n(x, u_n) u_n dx \leq \mathcal{P}.$$

Thus

$$0 \le \int\limits_{\Omega} g(x,u)u\,dx < +\infty.$$

From (5), for any  $w \in H_0^1(v, \Omega) \cap L^{\infty}(\Omega)$ , passing to the limit as  $n \to +\infty$  we obtain

$$\langle y-f,w\rangle + \int_{\Omega} g(x,u)w \, dx = 0.$$
 (7)

We shall show that  $y = \mathcal{A}u$ . Now,  $\langle \mathcal{A}u_n, u_n - u \rangle = \langle \mathcal{A}u_n, u_n \rangle - \langle \mathcal{A}u_n, u \rangle$  so

$$\lim_{n \to \infty} \sup \left\langle \mathcal{A} u_n, u_n - u \right\rangle = \lim_{n \to \infty} \sup \left\{ \langle f, u_n \rangle - \int_{\Omega} g(x, u_n) u_n \, dx \right\} - \langle y, u \rangle \le$$

$$\leq \langle f - y, u \rangle - \lim_{n \to \infty} \inf_{\Omega} \int_{\Omega} g(x, u_n) u_n \, dx \le \langle f - y, u \rangle - \int_{\Omega} g(x, u) u \, dx.$$

Hence, for any  $w \in H_0^1(V,\Omega) \cap L^{\infty}(\Omega)$ , by virtue of (7),

$$\lim_{n\to\infty}\sup\left\langle \mathcal{A}u_n,u_n-u\right\rangle = \left\langle f-y,u-w\right\rangle + \int\limits_{\Omega}g(x,u)(w-u)\,dx.$$

By Lemma 2, there exists a sequence  $w_k \in H_0^1(V,\Omega) \cap L^{\infty}(\Omega)$  such that  $w_k$  converges to u in  $H_0^1(V,\Omega)$  and  $|w_k(x)| \le |u(x)|$ , a.e. in  $\Omega$ . Consequently,

$$\langle f-y, u-w_k \rangle \to 0, \quad \int_{\Omega} g(x, u)w_k dx \to \int_{\Omega} g(x, u)u dx$$

by dominated convergence, since  $g(x, u)u \in L^1(\Omega)$ . It follows that

$$\limsup_{n\to\infty} \left\langle \mathcal{A}u_n, u_n - u \right\rangle \leq 0.$$

By using the pseudomonotone property of A we get

$$\lim_{n\to\infty}\inf\left\langle \mathcal{A}u_n,u_n-w\right\rangle \geq \left\langle \mathcal{A}u,u-w\right\rangle \ \text{ for all } \ w\in\ H^1_0(\vee,\Omega).$$

Now, we observe that for all  $w \in H_0^1(\nu, \Omega)$  one has

$$\begin{split} \left\langle \mathcal{A}u,u-w\right\rangle &\leq \liminf_{n\to\infty} \left\langle \mathcal{A}u_n,u_n-w\right\rangle = \liminf_{n\to\infty} \left\langle \mathcal{A}u_n,u_n\right\rangle - \\ &-\lim_{n\to\infty} \left\langle \mathcal{A}u_n,w\right\rangle \leq \limsup_{n\to\infty} \left\langle \mathcal{A}u_n,u_n\right\rangle - \left\langle y,w\right\rangle = \\ &= \limsup_{n\to\infty} \left\langle \mathcal{A}u_n,u_n-u\right\rangle + \lim_{n\to\infty} \left\langle \mathcal{A}u_n,u\right\rangle - \left\langle y,w\right\rangle \leq \left\langle y,u-w\right\rangle. \end{split}$$

Therefore

$$y = \mathcal{A}u, \quad \lim_{n \to \infty} \langle \mathcal{A}u_n, u_n \rangle \le \langle \mathcal{A}u, u \rangle.$$

From (7), in correspondence with  $w = w_k$ , via another passage to the limit we obtain

$$\langle \mathcal{A}u - f, u \rangle + \int_{\Omega} g(x, u)u \, dx = 0.$$

Finally, by standard method (see for instance [3]) we get the uniqueness result under strong monotonicity assumptions.

**Remarks.** 2. If  $a(x) \in L^1(\Omega)$ ,  $a(x) \ge 0$  a.e. in  $\Omega$ , putting  $g(x, s) = a(x)|s|^{p-1}s$ , p > 1, we obtain a function satisfying hypotheses 5.

3. If we assume that  $a_{i,j}(x,s)$  does not depend on s,  $i,j=1,2,\ldots m$ , then it is an immediate consequence of hypotheses 3 that the operator  $\mathcal A$  is strictly monotone. Moreover, the operator  $\mathcal A$  is monotone if

$$N = \left(\sum_{1,j}^{m} \operatorname{ess sup}_{\Omega \times \mathbb{R}} \left( \frac{|a_{i,j}(x,s)|}{v(x)} \right)^{2} \right)^{1/2} \leq 1,$$

because

$$\langle \mathcal{A}u - \mathcal{A}v, u - v \rangle \ge (\|u\|_{1,0} - \|v\|_{1,0})^2$$

for each u and v belonging to  $H_0^1(v, \Omega)$ .

5. Solution properties and variational inequalities.

**Proof** of Theorem 2. Let u be a solution of problem (3). For each  $k \ge 0$ , setting  $w_k = \operatorname{sgn} u \min(|u|, k)$ , we obtain a sequence of functions  $\{w_k\} \in H_0^1(v, k)$ 

$$\Omega$$
)  $\cap L^{\infty}(\Omega)$  (see, Lemma 2) such that

$$|w_k(x)| \le |u(x)|, \quad w_k(x)u(x) \ge 0$$
 a.e. in  $\Omega$  for every  $k \ge 0$ .

Therefore, denoting by  $u_k = u - w_k$  in  $\Omega$   $(k \ge 0)$ , we get  $u_k(x)u(x) \ge 0$  in  $\Omega$ ,  $k \ge 0$ , and so

$$g(x, u(x))u_k(x) \ge 0$$
 in  $\Omega, k \ge 0$ . (8)

From (7), choosing  $w = w_k$ , we have

$$\langle \mathcal{A}u, w_k \rangle + \int_{\Omega} g(x, u)w_k dx = \langle f, w_k \rangle, \quad k \ge 0.$$

Ву

$$\langle \mathcal{A}u, u \rangle + \int_{\Omega} g(x, u)u \, dx = \langle f, u \rangle,$$

this implies

$$\langle \mathcal{A}u, u_k \rangle + \int_{\Omega} g(x, u)u_k dx = \langle f, u_k \rangle, \quad k \ge 0,$$

and finally that

$$\langle \mathcal{A}u, u_k \rangle \leq \langle f, u_k \rangle, \quad k \geq 0, \quad \text{because of (8)}.$$

Hence, by using the Hölder's inequality, we have

$$||u_k||_{1,0} = \sum_{1}^{m} \left( \int_{\Omega(u)>k} v(x)^{-1} |f_i|^2 dx \right)^{1/2}$$
 for all  $k \ge 0$  (9)

(we denote by  $\Omega(|u| \ge h) = \{x \in \Omega : |u(x)| \ge h\}, h \ge 0$ ) according to hypotheses 3. On the other hand, it results

$$\left(\int_{\Omega(|u| \ge k)} \mathsf{V}(x)^{-1} |f_i|^2 dx\right)^{1/2} \le \|f_i\|_{t, 1/\nu} \|\mathsf{V}^{-1}\|_{\chi}^{(t-2)/2t} \left[\max_{x} \Omega(|u| \ge k)\right]^{(1-1/\chi)(1/2-1/t)}$$

$$||u_k||_{2^{\#}} \le \beta ||u_k||_{1,0}, k \ge 0$$

(see Remark 1), so, for each  $h > k \ge 0$ , taking into account that

$$||u_k||_{2^{\#}} \ge (h-k) \left[\max_{u \in \Omega} \Omega(|u| \ge h)\right]^{1/2^{\#}},$$

from (9) we obtain

$$\left[\max_{x} \Omega(|u| \ge h)\right]^{1/2^{\#}} \le$$

$$\le \frac{\beta}{(h-k)} \sum_{1}^{m} \|f_{i}\|_{t,1/\nu} \|v^{-1}\|_{\chi^{2t}}^{\frac{t-2}{2t}} \left[\max_{x} \Omega(|u| \ge k)\right]^{\left(1-\frac{1}{\chi}\right)\left(\frac{1}{2}-\frac{1}{t}\right)} =$$

$$= \frac{\beta}{(h-k)} \|f\|_{H^{-1}(v^{-1},\Omega)} \|v^{-1}\|_{\chi}^{(t-2)/2t} \left[\max_{x} \Omega(|u| \ge k)\right]^{(1-1/\chi)(1/2-1/t)}$$

Consequently, setting, for all  $k \ge 0$ ,  $\varphi(k) = \left[ \max_{x} \Omega(|u| \ge k) \right]^{1/2^{\#}}$ , we have

$$\varphi(h) \le \frac{\gamma}{(h-k)} ||f||_{H^{-1}(v^{-1},\Omega)} \varphi(k)^{\theta}, \quad h > k \ge 0,$$

where  $\theta = 2^{\#}(1 - 1/\chi)(1/2 - 1/t)$  is greater than 1.

The application of Stampacchia's Lemma [11, p. 212] yields to  $\varphi(d) = 0$ , where

$$d = \beta \|f\|_{H^{-1}(\nu^{-1},\Omega)} \|\nu^{-1}\|_{\gamma}^{(t-2)/2t} [\varphi(0)]^{\theta-1} 2^{\theta/(\theta-1)}.$$

Thus, the proof of Theorem 2 is complete.

Now, let V be any closed subspace of  $H_0^1(V, \Omega)$ , K a closed convex subset of V  $(0 \in K)$ , f a given element of  $V^*$ ; we can show, using the same method as in Theorem 1, a result of existence of solutions of the following variational inequalities:

$$\begin{cases} \langle \mathcal{A}_{V}u, v - u \rangle + \int_{\Omega} g(x, u)(v - u) dx \geq \langle f, v - u \rangle \\ & \text{for every } v \in K \cap L^{\infty}(\Omega); \\ \int_{\Omega} G(x, v) dx - \int_{\Omega} G(x, u) dx + \langle \mathcal{A}_{V}u, v - u \rangle \geq \langle f, v - u \rangle \\ & \text{for every } v \in K \text{ such that } \int_{\Omega} G(x, v) dx < +\infty, \end{cases}$$

$$(10)$$

where

$$G(x,s) = \int_{0}^{s} g(x,\tau) d\tau;$$

here  $\mathcal{A}_V$  denotes the operator defined on V with value in  $V^*$  by the rule  $\langle \mathcal{A}_V u, v \rangle = \langle \mathcal{A}u, v \rangle$ ,  $u, v \in V$ . (It is important to observe that the operator  $\mathcal{A}_V$  is bounded coercive and pseudomonotone.)

The relation between the two classes of problems considered above is clarified by the following result:

In the case  $K = V = H_0^1(v, \Omega)$ , a solution of problem (3) is a solution of (10).

To this end, we first observe that as

$$0 \le G(x, u(x)) \le g(x, u(x))u(x)$$
 for every x in  $\Omega$ ,

we have  $\int_{\Omega} G(x, u) dx < +\infty$ .

Moreover, for all  $w \in H_0^1(V,\Omega) \cap L^{\infty}(\Omega)$  with  $\int_{\Omega} G(x,w) dx < +\infty$ , we get

$$\int_{\Omega} G(x, w) dx - \int_{\Omega} G(x, u) dx \ge \langle f - \mathcal{A}u, v - u \rangle. \tag{11}$$

Suppose that v is an element of  $H_0^1(v,\Omega)$  with  $\int_{\Omega} G(x,v) dx < +\infty$ . Lemma 2 we amy construct a sequence of testing functions  $\{w_k\}$  converging to v in  $H_0^1(\mathsf{V},\Omega)$  and a.e. in  $\Omega$  such that

$$w_k(x)v(x) \ge 0$$
,  $|w_k(x)| \le |v(x)|$  for every  $x$  in  $\Omega$ ,  $k \in \mathbb{N}$ .

It then follows that

$$0 \leq \int\limits_{\Omega} G(x,w_k) \, dx \leq \int\limits_{\Omega} G(x,v) \, dx < +\infty.$$

Consequently, we obtain from (11) with  $w = w_k$  that

$$\int_{\Omega} G(x, w_k) dx - \int_{\Omega} G(x, u) dx \ge \langle f - \mathcal{A}u, w_k - u \rangle \quad \text{for all} \quad k \in \mathbb{N}.$$
 (12)

Bearing in mind that

$$\int_{\Omega} G(x, w_k) dx \to \int_{\Omega} G(x, v) dx$$

by dominated convergence, since  $0 \le G(x, w_k(x)) \le G(x, v(x))$  in  $\Omega$ , from (12) as  $k \rightarrow + \infty$ 

$$\int_{\Omega} G(x, v) dx - \int_{\Omega} G(x, u) dx \ge \langle f - \mathcal{A}u, v - u \rangle$$

so that the last inequality of (10) holds.

Finally, the first inequality of (10) is obvious.

Remark 4. In a forthcoming note we shall extend the existence result of Section 3 to an unbounded open  $\Omega$  (in this case the imbedding of  $H_0^1(V,\Omega)$  into  $L^2(\Omega)$  is not compact), assuming  $g(x, s) = v(x)|s|^{p-1}s$ , p > 1.

- Murthy M. K. V., Stamppacchia G. Boundary value problems for some degenerate-elliptic operators // Annali di Matematica. - 1968. - 80, Nº 4. - P. 1-122.
- 2. Boccardo L., Giachetti D. Strongly nonlinear unilateral problems // Appl. Math. Optim. - 1983. -9. – P. 291–301.
- Brezis H., Browder F. E. Strongly nonliear elliptic boundary value problems // Ann. Sc. Norm. Sup. Pisa. - 1978. - 5. - P. 587-603.
- Hess P. On strongly nonlinear problems // Funct. Anal. Proc. Braz. Math. Soc. Sympos; Lect. Notes Pure Appl. Math. - 1976. - 18. - P. 91-109.
- Guglielmino F., Nicolosi F. Teoremi di esistenza per i problemi al contorna relativi alle equazioni ellittiche quasilineari // Ricerche di Matematica. – 1988. – 37, Fc. 1. – P. 157–176.
- Nicolosi F. Regolarizzazione delle soluzioni deboli dei problemi al contorna per operatori parabolici degeneri // Le Matematiche. - 1978. - 33. - P. 83-98.
- Nicolosi F. Soluzioni deboli dei problemi al contorna per operatori parabolici che possono degenerate // Ann. di Matem. - 1980. - 125, Nº 4. - P. 135-155.
- Bonafede S. Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients // Comment. Math. Univ. Carolinae. - 1993. - 34. № 1. - P. 55-61.

  Guglielmino F., Nicolosi F. Sulle w-soluzioni dei problemi al contorna per operatori ellittici
- degeneri // Ricerche di Matematica, Supp. 1987. 36. P. 59-72.
- 10. Zeidler E. Nonlinear functional analysis and its applications, vol. II/B: Nonlinear monotone operators. - Springer-Verlag, 1990.
- 11. Stampacchia G. Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus // Ann. Inst. Fourier. – 1965. – 15. – P. 189–257.

Received 27.07.95