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STRONGLY NONLINEAR DEGENERAFE BLEERTIC
EQUATIONS WITH DISCONTFINUOUS:COEFEICIENTS. I
CTPOI'© HEJHHIAHI BUPOZKEHL BIEIITICHE PIBH STHH S
3 PO3PUBHIIMU KOE®IITIEHTAMMU. I

This paper is concerned with the existence and uniqueness-of variational solutlons of the strongly
nonlinear equation

_21 > (Z a; ;(x, u(\)) )-}-g(x u(x)y =f(x)

i
when the coefficients «, j(x, s) satisfy an ellipticity degenerate condition and:-hypetheses weaker than
the continuity with respect to the variable s. Furthermore, we establish under whiehieondition o f the
n

solution is bounded in £, a bounded open subset on IR

HocrmimRyerses iIcHyBaHHA Ta EXHHICTD Y3araJbHSHHX PO3B 3K 1B NS HEPero HeniHiinere iR st

_Er o (2 a,j(,x ll(\)) )4—3(\ w(x)) =f{x)

X
3 xoedpiuienTamu 4, (\ $), AKi3a0BOJILHSICTL YMOBY BHPOIK eHol enilgaEecTi Fa YMOBY. SiomsI
cnabKy, MK Henepepmnm BimuocHo syinmol s, Bimbur Toro. mpu:menwilt yMoBi-pimHecHo f moBo-
m

AUTHCS OOMEXK EHICTh posB }131\)’ Ha 06!\'16/!\6!{1}[ suoxul Q € IR

1. Introduction. Let Q be a bounded open subset of the Buclidean m-spase R,
m= 2. We shall be concerned with the existence of variational seolutions: of e
equation

Aux)+ glx ulx) = flx), xe Q, ¢h)

with Dirichlet boundary condition. Here A is a quasilinear elliptic pantial. dififerential
operator in divergence form

n n
Au(x) = —El‘” %(2 a;, (. u(x)) agi]\)j
The-fupctions a; j(x, s) satisfy the ellipticity and boundedness condition
m m .
2,-,1- a; (%, HEE; 2 v(x) z,@%
1 1 @

a; ;(x, s
) 5 (% 5) <Ay Gi=12,.,m),
v(x) ’

m

for almost all (x,s)e QxR andall Ee R, with vx), V—l(x) satisfying the
integrability hypotheses of Murty — Stampaccia’s kind (see, e. g.. {1]). The term g (x,
5) is strongly nonlinear and no such growth restriction is imposed on the size of g(x,
s) as a function of s, but we (essentially) impose the weak “‘sign condition”
g(x, s)s20.

Existence results for problem (1) are well-known in the literature when the
coefficients a; j(x, s) are functions of Carathéodory type (i.e. measurable in x and
continuous in s) and v(x) does not depend on x (see for instance, [2—4]). However,
equations of the form (1) with.discontinuous (with respect to s) coefficients a; ; G, 5)
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868 ) S. BONAFEDE

occur in many problems of physics. The purpose of this note is to extend the results of
[3] to the degenerate case. By working on the coefficients of principal part, the
hypotheses can be made weaker than the continuity with respect to the variable s; in
this way we will be able to take, for instance, a i j(x, )= ;. j(x)B;’ j(s), where o ;
and B are-supposed-only to be measurable and satisfying (2). Finally, other
mtelestmv resuls concerning with.equation (1), in degenerate case, are established in
[5] by assuming the coefﬁcmnts a; (\ S5) to be Calatheodory S funcuons and the

functions g(x, s), f, havmc polynomlal growth in s.
2. Function spaces. Let R” be the Euchdean m-space with crenenc point x=
= (X1, X2, .-. » X,), & abounded open subset of R”. We denote by meas the m-

dimensional Lebesque S measure.
Hypothesis 1, Let v (x) be a positive function defined on & there exist two
real numbers o € ]O 1[ and x >m/2 such that: ‘
vee L0Q), —— e 1¥Q).
. v(x)

(For instance, if Q={xe R™: |x] <1} we can choose

TV = 4509017, ——— < p < = )
B : 1+0 m

The symbol H 1(\/ Q) stands for the space of all u € e (Q), whose derivatives
(in the dlstnbutlonal sense on - Q) au /dx; are functions such that ~'v(x) du/dx;

belongs to L (Q), i=1,2,...,m. ot (v, Q) is a Hilbert space with respect to the
norm:

1/2
ully = ["f’(lulz + v<x>1Vu|2)ch] .

Ho (v, Q) is the closule of Cy(Q) in i (v, Q) in this space we will take the
following equivalent sorm: -

B _ : 12
lullyo = ( J VO | Vi chJ .
. \a

Remark 1. By standard Sobolev’s imbeddiné, there is a constant C = C(m, v{(x),
%) such that

2

, 12f iy}
(J [uf? dx] < C(J' V(x)]Vul2 dxj for ue H(l) (v, Q);
'Q" : ' Q . o .

here 2# =_~2mx./(‘mx +m +.2x) >2.
For more details on these spaces we refer the reader to [6,7].
Finally, we denote by H 1(\/_1 Q) the dual space of Hé (v, Q).

Hypotheses 2. The coefficients a; J(x s) i,j=1.2,...,m, are functions
defined andmeaszu able in Qe ]R fulﬁllmo
X, §
"’—J(—>e L7 QeR), ij=12,..,m

v(x)
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Hypotheses 3. For almost every (x,s) in Qe R, itresults

e Tl m -

2 @ ;(x, s)§ ﬁj > v(x)z i, for any E;E IR
1

Let us denote by a,-j‘s(x)::a“,-)'-(x, s) for z’,j: L,2,...,m and (x,s)e Qe R.
Hypotheses 4. For every &> 0 there exists a compact subset K. C Q with
meas (Q\K,) <&, such that for every 7 >0 the functzons of z‘he family {al s &),

se [-r,r),. i.j=1,2,.¢,m} areequicontinuous on K, .

Hypothesis 5. The function g(x,s) is measurable in x on Q. for fzwd s in
R, continuousin s for ﬁxed x. We, also, suppose:

(i) for any x in Q, g(\ ‘0)=0, while for-all s in IR, x in Q, g(x, ),
§20;

(ii) the ﬁmczzon 0(,\ s) is non- decwasmo ins on R alzd fo; any fixed s,
o(x,s) belongsto L'(QY. "+ '

Note that hypotheses 4 is fulfilled for instance in the following cases:

@ a j(x §) is measurable in x and continuousin s, 7,7=1,2,...,m;

(b) a; j(t sy=o ](x)B, ](S) with &; i [3,-, j meas.prab.le funct1ons. Let fe

e H™ (v ., Q), hypotheses 1,2, 5 hold. We will consider the strongly nonlinear
elliptic problem with Dirichiet boundary condition:

J iq IJ(,x u) ou avd\ + j g(x‘ u)vdx = (f v}

forall v & Ho(v Q) n L (Q) and for v = 4,

i € H(l)(v, Q), glx,u) e I Q) and g(x,_ wu € r ).

In Sect. 3 we will show the following statement 1-5.

Theorem 1. Under hypotheses 15 there exists.a .solution of (3). Moreover, the
solution is unique if s is monotone and g is increasing in s or if S is strictly
monotone (see the next section for the definition of ).

Next, sect. 4 will be arranged. into two parts.:

The first will be related to the study of regularity of solutions of problem (3), more
precisely we shall cl,ye a proof of the following statement.

Theorem 2.° Under the sane hypotheses of Thedrem 1, if x>m and

. nof
{ . = _ N i
| s ; 9%;.

with fi(x) € L’l/\,(Q)*, i>my—1)/(x—m), théliwe obtain ue L™ (Q) and
I esstuplul Yfl!fH;;—"(v'?* oy o
(ty denotes a constant depended on ¥, t, V(x), meas Q).

The second will be devoted to ‘extend the 1ésu1ts of the prevmus seotxons to
variational inequalities. .

See [1] for the representation of linear contmuous funotlonals on Hp oV, Q.) L1 ;v(§2) denotes the
Banach space of all measurable funcuons u (,\) defined on ' Q. for which

Tl = (JQV(X)— lu(x) [ (lx) < e,k
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3. Preliminary Lemmas.
- emamya L. Assume thar hypetheses —4hold. Then the operater .2 H.O(v Q)—>
- H_l(v"l,.Q) such that
nt a aD
(st = [ 305000 22 S0 O
j Af

is ‘bounded, coercive and p'sse»u.d@m@n@zfmz’a
- Proof. ‘We refer-thercader to- FTheerem:-2.1-0f {8; p. 57].
Lemuma. 2. Let u be a function belonging to H(l)i(v, Q). Then there exists a
sequence (u,) fulfilling the following properties:

U, € HE@Q)NL™(Q) forevery ne N;
l’u”(x)| < lux)] and uy(x)u(x) =0 ae.in @ forevery ne N,
u,(x) > ufx) in Hé&(“v, Q) a8 n-—> # oo,
Proof. Forevery ne N; it will be sufficient to define
n, if w=n,
u,(x) = sgmwmin ful, n) = <w, - - lup<n,
. —n, i ug-n

(see [1, p. 10] prop. 2.7).
4. Existence and uniqueness Theorem.
Proof of Theorem 1. We observe that-the term g (x, 1) does not define a map

from Hé (v,Q) to H _l(v_l, Q) because it doesn’t satisfy any growth condition.
" Therefore, for every n € N, we put

g(x, s), if |glx, 8)| < n,
. gl 8) = 7, 8(x, 8) otherwise.
lgCx, 5)]
Then
(Tyuv) = [ gu(xn u())v(x)dx
Q
is defined for all u,v e HO (v, Q) and v —» (T,,u v) defines an element T,u of
v
v o).

We claim that, for every ne N, T, is abounded, pseudomonotone operator.
Indeed, by recalling the definition of fruncation we obtain

lgx,8)| £ n forall (x,s)e xR, ne N. 4)

Also, the imbedding of H(l) (v, Q) into 1* () is compact (see Lemina 4.3 of [9]).
Accordingly to Lemma 1, for every ne N, the operator s+ T, -is'bounded and

pseudomonotone.
Next, by hypotheses 2, 3 and inequality (4), it results

A+ Ty, u—w) 2 Julfo—Mllullyollwllyo—

172 .
—-n (mias .Q) {Mullyo+ fwll Lot

forevery u,we Hé (v, Q); here
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. a; :(x, s)
M = max ess sup l—”—]
hLi=l..m QxR v(x)

Therefore, from Theorem 32C of {10, p. 875], for each integer n and for the given

element f of H~ 1(V"l,Q), there exists an element u, of H(l, (v, &) such that
(A, —f, w)+ J g% u)wdx = 0 forevery we Hi(v, Q). - 3)
Q
Setting w=u, in (5), forevery ne N, we get
2 .
H i, ”1,0 < <‘9g‘”‘n> un> + J g;1<x’ u‘n) undx < ”f”H"1 (V—I,Q) H u‘n” 1,0
Q

according to hypotheses 3 and evident inequality g,(x,s)s20 in Q x R. Thus, for
every ne N,

tualli0 < 1Al 01 0 O]
As s is bounded, by passing to subsequences, we may suppose that u,~ u in
H(-l) (V,Q) anda.e.in Q, and u,—y in H“I(V_I,Q).
Also (6) and || sdu, || 11 o)< Cy imply that

J gn(x’ un) lln(L\f < (”f“H_l (V_I‘Q) + Cl) ”fHH—1 (V"I,Q) =
Q

forevery ne N. We now proceed to show that the sequence { g,(x, u,,)} in L ()
is equi-uniformly integrable.
We get

alg(nu)l £ g,(x u)u,+af{glx a)+] gl —a) |}

foe each positive integer -0 and all .
Hence, for any subset £ of Q, we conclude that

f | g, (x, u,) | dx < 2oy f glx, oc)(Lv+] | g(x,—a)]dx
E @B E

and finally that for meas (E) sufficiently small, JE | g.(x, uy)| dx may be made
X

small uniformly in ».

In addition, by continuity of g{x,s) in s and definition of truncation, it follows
that g, (x, u,(x)) convergesa.e.to g(x,u(x)).

Consequently, by Vitali’s theorem we have

grwe L'(Q). g(nux) - glxnw) in L'(Q).
Moreover, by Fatou’s lemma

J gx, u)udx < lim inf j &n(x, uu,de < 9.
Q n—3o0 O
Thus
0 < .1' gl wude < +oo,
Q

From (5), forany w e H} (v, Q)N L™(Q), passing to the limit as 7 — + o0 we
obtain )
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{(y=fw)+ J g(x, w)wdx = 0. )
Q

We shall show that y = sfu. Now, (&ﬂun; Up— 1) = Au,, u,) —{Au,, u) so

lim sup {Au,, u,~u) = lim sup {(f, u,) — j g(x, un)u,ldx}—@, u) <

n—>oo n—yoe )

< {f-y, u)— lim inf J glx u)u,de < {f-y,u)y—- J g (x, wudx.
Q

n—yoe 9}

Hence, for any w € Hé v, QNL” tQ), by virtue of n,
lim sup (Au,, u,—u) = {(f=y, u—w)+ _[ g(x, w)(w — 1) dx.
n—yoo : Q
By Lemma 2, there exists a sequence w;e H(l) (v, Q)NL7(Q) such that wy
converges to u in Hg (v, Q) and |wi(x)] <] u(x)], ae. in Q. Consequently,

{(f~y, u—wk> — 0, J_g(x, wywpdx — f glx, wyudx
Q Q

by dominated convergence, since g(x, u)u € Lt ().
1t follows that

Tim sup {u,, u,—u) < 0.

n—yeo

By using the pseudomonotone property of & we get

lim inf (du,, u,~w) = (du,u—w) forall we HL(v,Q).

n-yo0
Now, we observe that forall w e Hé (v, ) one has

(Au,u~w) < lim inf (L, u,—w) = lim inf {du,, u,) —

=30 n—yec

— lim {(u,, w) < limsup {Au,, u,) —{y, w) =

n—yeo =3 oo
= lim sup (sbu,, u,—u)+ lim {(Au,, u)—{(y, w) < (3, u—w).
n—yoo n—yeo

Therefore

y = u, Lm (Lu,, u,) < (du,u).

n—yeo
From (7), in correspondence with w=w,, via another passage to the limit we
obtain
(Au—fuy+ J glx, wyudx = 0.
Q

Finally, by standard method (see for instance [3]) we get the uniqueness result
under strong monotonicity assumptions.

~ Remarks. 2. If a(x)e LI(Q), a(x)=0 ae. in £, putting g(x,s)=
= a(x)|s|f -1 s, p>1, we obtain a function satisfying hypotheses 5.
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3. If we assume that a,.j(x, s) doesnotdependon s, 7,j=1,2,...m, thenitis an

immediate consequence of hypotheses 3 that the operator s is strictly monotone.
Moreover, the operator &4 is monotone if

2172
m . (x,
N = [Z, . €S8 Sup (M) j <1,
1 +J QxR \ V(x)

because .
(stu—stv,u—v) = ([uflyo-lvlly0)*

for each u and v belonging to Hé (v, £2).

5. Solution properties and variational inequalities.

Proof of Theorem 2. Let u be a solution of problem (3). For each k=0,
setting w,=sgnumin(|u|, k), we obtain a sequence of functions {w,}e Hi(V,

QYNLT(Q) (see, Lemma 2) such that
[we()] < Julx)], w(x)u(x) 2 0 ae.in Q forevery £k20.
Therefore, denoting by u, =u—w, in Q (k=0), we get u,(x)u(x)=20 in Q, k=0,
and so
elx,u(x)u(x) =20 in Q, k20. 8
From (7), choosing w = w,, we have

(Au, w) + J g(x, wwedx = {f,wy), k=0.
Q

By

(Au, u)+ '[ g(x, wudx = (f,. uy,
Q

this implies

(Au, up)+ J gCx, W dx = (fiuy), k=0,
Q

and finally that
C (Au, ) < (fu), k>0, because of (8).

Hence, by.using the Hélder’s inequality, we have

m 1/2 '
”“k||1,0=2,-( | v(x)_llf;[zdx] forall £>0 ©

1 Q(fuizk) .

(we denote by Q(Ju|2h)={xe Q:|u(x)|2n}, h=0) according to hypotheses 3.
On the other hand, it results

B

1/2 »
> -2 (A-1/0(/2-1/1)
( | v(x)"l!f;]‘dxj < oV [mzas@([u]kk)} §

QGuizk)
Haelly < Blluelly o %20

(see Remark 1), so, for each 4> k=0, taking into account that
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172%
Huellyr 2 (h—k) [meas Q(lulz}z)} ,
from (9) we obtain '

1/2*
[meas_Q (Jul= h):] <

B & g2 (1~x
= (h—k) zlzx' “ﬁ“l,llv“v HXZr [miaSQ(luIZ k)} =

:l (=-1/x01/2-1/9)

= oStV I meas (lul 2 )

/2%
Consequently, setting, forall £20, ¢(k)= [meas Qul= k)} , we have
X

(k) < (hz 5l tayeW® B> k20,

where 6 =2%(1— 1/%)(1/2 —1/t) is greater than 1.
The application of Stampacchia’s Lemma [11, p. 212] yields to ¢(d) =0, where

d = Bl ooV I o] #1220,

Thus, the proof of Theorem 2 is complete.
Now, let V be any closed subspace of H(l) (v, Q), K aclosed convex subset of V

(0e K), f a given element of V', we can show, using the same method as in
Theorem 1, a result of existence of solutions of the following variational inequalities:

(Ayu,v—uy + fQ glx, v —wydx 2 (fiv—u)
for every ve X N L7(Q);
fg G(x, v)dx ~ fﬂ Glx, wydx + (Ayw,v—u) 2 (f,v—u)

for every v e K such that J-Q G(x,v)dx < +oo,

10)

where
$

Gx,5) = f gx, t)dr,;
0 .
here s{y denotes the operator defined on V with value in V" by the rule {sdyu, v)=
={Au,v), u,ve V. (It is important to observe that the operator &y is bounded
coercive and pseudomonotone.)

The relation between the two classes of problems considered above is clarified by
the following result:

Inthe case K=V = H(I) (v, Q), a solution of problem (3) is a solution of (10).
To this end, we first observe that as

02 G(x,ulx)) £ glx, u(x))u(x) forevery x in Q,

we have JQ G{x,u)dx <+ oo,
Moreover, forall w e H(l, (v, QN L”(Q) with J'Q G (x, w)dx <+oo, we get

| Gewydx— .G, uydx = {f—lu,v—u). ()
Q Q
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Suppose that v is an element of H§ (v, Q) with J-Q G{x,v)dx <+e. By
Lemma 2 we amy construct a sequence of testing functions {w,} counverging to v in

Hi(v.Q) anda.e. in Q such that
we(x)v(x) 2 0, [wi(x)| < [v(x)| forevery x in Q, ke N.
It then follows that

0< J' Gxowy)dx < J G(x,v)dx < + oo,
Q Q

- Consequently, we obtain from (11) with w = w, that

| Geowpdx— | Garuydx 2 (f-sdu,wy—u) foral ke N. (12)
Q Q

Bearing in mind that

J G, wpydx — _[ G(x,v)dx
Q Q

by dominated convergence, since 0< G (x, wi(x)) < G{x,v(x)) in Q, from (12) as
k—+o0

J G(x,v)dx-J‘ G(x,u)ydx = (f—sdu,v—u)
Q o

so that the last inequality of (10) holds.
Finally, the first inequality of (10) is obvious.
Remark 4. In a forthcoming note we shall extend the existence result of Section 3

to an unbounded open £ (in this case the imbedding of Hé (v, Q) into Lz(Q) is not

. -1
compact), assuming g(x, s) =v(x)| s’ s p> 1.
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