UDC 515.12

T. Banakh, T. Radyl (Lviv. Univ.)

ON UNIVERSALITY OF COUNTABLE POWERS OF ABSOLUTE RETRACTS*

ПРО УНІВЕРСАЛЬНІСТЬ ЗЛІЧЕННИХ СТЕПЕНІВ АБСОЛЮТНИХ РЕТРАКТІВ

We construct an absolute retract X of arbitrary high Borel complexity, such that the countable power X^{ω} is not universal for the Borelian class \mathcal{A}_1 of sigma-compact spaces, and the product $X^{\omega} \times \Sigma$, where Σ is the radial interior of the Hilbert cube, is not universal for the Borelian class \mathcal{A}_2 of absolute $G_{\delta\sigma}$ -spaces.

Побудовано абсолютний ретракт X як завгодно високої борелівської складності, зліченна степінь якого X^{ω} не універсальна для борелівського класу \mathcal{A}_1 , що складається з сігма-компактних просторів. Доведено, що добуток $X^{\omega} \times \Sigma$ не є універсальним для борелівського класу \mathcal{A}_2 абсолютних $G_{\delta, \tau}$ -просторів (тут Σ — радіальна внутрішність гільбертового куба).

By \mathcal{A}_1 , \mathcal{M}_1 , \mathcal{M}_2 , and \mathcal{A}_2 we denote respectively the class of all sigma-compact spaces, the class of all Polish spaces, the class of all absolute $F_{\delta\sigma}$ -spaces, and the collection of all absolute $G_{\delta\sigma}$ -spaces; $Q = [-1,1]^{\omega}$ is the Hilbert cube, and $\Sigma = \{(t_i)_{i=1}^{\infty} \in Q : \sup_{i \in \mathbb{N}} |t_i| < 1\}$ is its radial interior. A closed set $A \subset X$ in an absolute retract X is called a Z-set, provided every map $f \colon Q \to X$ can be uniformly approximated by maps into $X \setminus A$ [1]. An absolute retract X is called a Z_{σ} -space,

All spaces considered are metrizable and separable, all maps are continuous.

Let C be a collection of spaces. We say that a space X is C-universal, provided for every space $C \in C$ there is a closed embedding $f: C \to X$.

In [2] (Corollary 2.5) T. Dobrowolski and J. Mogilski proved that, if an absolute retract X is a Z_{σ} -space, then the countable power X^{ω} is \mathcal{M}_2 -universal. In this note we show that in the above result, the condition on X to be a Z_{σ} -space can not be replaced by the conditions on Borelian complexity of X (for example, $X \notin \mathcal{M}_1$).

By $\overline{D}=\{z\in\mathbb{C}:|z|\leq 1\}$ and $D=\{z\in\mathbb{C}:|z|<1\}$ we denote respectively the closed and the open disks in the complex plane \mathbb{C} , and by $P=\{z\in\mathbb{C}:|z|=1, \arg(z)/\pi \text{ is irrational}\}$ the set of irrationals in the circle $S^1=\overline{D}\setminus D$. It is obvious

provided X is a countable union of its Z-sets.

^{*} The work is supported by the State Committee of Ukraine for Science and Technologies.

[©] T. BANAKH, T. RADYL, 1996

that, for every dense $A \subseteq P$, both A and $S^1 \setminus D$ are zero-dimensional. Moreover, the set $D \cup A$ is convex, and consequently, is an absolute retract (see Theorem 3.1 [1] (Π , § 3)).

Theorem 1. For every dense set $A \subseteq P$ the space $(D \cup A)^{\omega}$ is not \mathcal{A}_1 -universal.

Proof. Assume, on the contrary, that the space $(D \cup A)^{\omega}$ is \mathcal{A}_1 -universal. Then there exists a closed embedding $f: \Sigma \to (D \cup A)^{\omega}$. We consider the space $(D \cup A)^{\omega}$ to be a subset in the compactum \overline{D}^{ω} . According to Lavrentiev Theorem [3] (Theorem 4.3.21), there exists an embedding $\bar{f}: G \to \bar{D}^{\omega}$ of some G_{σ} -set G_{τ} $\Sigma \subset G \subset Q$, extending the embedding f. Since Σ is dense in G and $f(\Sigma)$ is closed in $(D \cup A)^{\omega}$, $\overline{f}(G \setminus \Sigma) \subset \overline{D}^{\omega} \setminus (D \cup A)^{\omega}$. Now notice that $\overline{D}^{\omega} \setminus (D \cup A)^{\omega} =$ = $\bigcup_{n=1}^{\infty} X_n$, where $X_n = \{ (t_i)_{i=1}^{\infty} \in \overline{D}^{\omega} \mid t_n \in S^1 \setminus A \}$. Since $G \setminus \Sigma$ is a G_c -set in Q, by the Baire Theorem [3] (Theorem 3.9.3), there is an open set $U \subset G \setminus \Sigma$ such that the set $\bar{f}(U) \cap X_n$ is dense in $\bar{f}(U)$ for some $n \in \mathbb{N}$. Let $V = Q \setminus Cl_Q((G \setminus \Sigma) \setminus U)$. Obviously, V is an open set in Q such that $V \cap (G \setminus \Sigma) = U$. Let $V' \subset V$ be an open set of the form $V' = \{ (t_i)_{i=1}^{\infty} \in Q \mid a_i < t_i < b_i, 1 \le i \le m \}$, where $m \in \mathbb{N}$, and $a_i < t_i < b_i$ $\langle b_i, 1 \leq i \leq m$, are reals. Put finally, $W = V' \cap G$. One can verify that $W \cap \Sigma = V' \cap G$ $\bigcap \Sigma$ is a connected (even convex) dense set in W and the set $W \setminus \Sigma$ is dense in W. Since \bar{f} is an embedding, $\bar{f}(W) \cap X_n$ is dense in $\bar{f}(W)$. Denote by $\operatorname{pr}_n : \overline{D}^{\omega} \to X_n$ $\to \overline{D}$ the projection onto the *n*-th factor. Note that $\operatorname{pr}_n^{-1}(S^1 \setminus A) = X_n$. Since the set $\bar{f}(W \setminus \Sigma) \cap X_n$ is dense in $\bar{f}(W \setminus \Sigma)$ (remark that $W \setminus \Sigma$ is an open set in U) and $W \setminus \Sigma$ is dense in W, $\operatorname{pr}_n(\bar{f}(W)) \subset S^1$ and $\operatorname{pr}_n(\bar{f}(W)) \cap (S^1 \setminus A) \neq \emptyset$. Recalling that $\bar{f}(\Sigma) \subset (D \cup A)^{\omega}$ we obtain that $\operatorname{pr}_n(\bar{f}(W \cap \Sigma)) \subset S^1 \cap (D \cup A) = A$. Since the set $W \cap \Sigma$ is connected, and A is zero-dimensional, the image $\operatorname{pr}_n(\bar{f}(W \cap \Sigma))$ consists of only the point $a \in A$. Since $W \cap \Sigma$ is dense in W, we obtain $\operatorname{pr}_n(\bar{f}(W)) = \{a\}$. But this contradicts to $\operatorname{pr}_n(\bar{f}(W)) \cap (S^1 \setminus A) \neq \emptyset$. Theorem is proved.

In connection with [4] (Question 6.3), the following problem seems to be interesting.

Question. Let $A \subseteq P$ be a dense set. Can the space $(D \cup A)^{\omega} \times \Sigma^{\omega}$ be \mathcal{A}_2 -universal?

Theorem 2. For every dense set $A \subseteq P$ the space $(D \cup A)^{\omega} \times \Sigma$ is not \mathcal{A}_2 -universal.

Proof. We will slightly modify the proof of Theorem 1. Let $s = Q \setminus \Sigma$. Assume that the space $(D \cup A)^{\omega} \times \Sigma$ is \mathcal{A}_2 -universal. Then, since $Q^{\omega} \setminus \Sigma^{\omega} \in \mathcal{A}_2$, there is a closed embedding $f \colon Q^{\omega} \setminus \Sigma^{\omega} \to (D \cup A)^{\omega} \times \Sigma$. We consider the space $(D \cup A)^{\omega} \times \Sigma$ to be a subset of the compactum $\overline{D}^{\omega} \times Q$. According to Lavrentiev Theorem, there exists an embedding $\overline{f} \colon G \to \overline{D}^{\omega} \times Q$ of some G_{δ} -set G, $Q^{\omega} \setminus \Sigma^{\omega} \subset G \subset Q^{\omega}$, extending the embedding f. Since $Q^{\omega} \setminus \Sigma^{\omega}$ is dense in G and $f(Q^{\omega} \setminus \Sigma^{\omega})$ is closed in $(D \cup A)^{\omega} \times \Sigma$, we have $\overline{f}(G \setminus (Q^{\omega} \setminus \Sigma^{\omega}) \setminus C \cup (\overline{D}^{\omega} \times Q) \setminus ((D \cup A)^{\omega} \times \Sigma) = (\overline{D}^{\omega} \setminus (D \cup A)^{\omega}) \times Q \cup (\overline{D}^{\omega} \times (Q \setminus \Sigma))$. Notice that

 $\overline{D}^{\omega} \times (Q \setminus \Sigma) = \overline{D}^{\omega} \times s$ is an absolute G_{δ} -set. Consequently, the intersection $\bar{f}(G) \cap (\bar{D}^{\omega} \times s)$ is also an absolute G_{δ} -set. Moreover, since $\bar{f}(Q^{\omega} \setminus \Sigma^{\omega}) \subset$ $\subset \overline{D}^{\omega} \times \Sigma$, we have $\overline{f}(G) \cap (\overline{D}^{\omega} \times s) \subset \overline{f}(G \cap \Sigma^{\omega})$. Let us show that the space $G \cap \Sigma^{\omega}$ is of the first Baire category. Indeed, since the complement $\Sigma^{\omega} \setminus G = Q^{\omega} \setminus G$ is sigma-compact and the space Σ^{ω} is nowhere sigma-compact, the set $\Sigma^{\omega} \cap G =$ $= \Sigma^{\omega} \setminus (Q^{\omega} \setminus G)$ is dense in Σ^{ω} , and consequently, in Q^{ω} . Now, since the space Σ^{ω} is of the first Baire category [5] (§ 10, IV, 2) implies that the intersection $G \cap \Sigma^{\omega}$ is also of the first Baire category. By the Baire Theorem [3] (Theorem 3.9.3) and [5] (§ 10, IV, 3), the absolute G_{δ} -set $\bar{f}(G) \cap (\bar{D}^{\omega} \times s)$ is nowhere dense in $f(G \cap \Sigma^{\omega})$. Then the set $F = \operatorname{cl}(\overline{f}^{-1}(\overline{D} \times s))Q^{\omega}$ is nowhere dense in Q^{ω} . Using known universal properties of the couple $(Q^{\omega}, \Sigma^{\omega})$ (see e.g. [6]), one can find a compactum $K \subset Q^{\omega} \setminus F$ such that the pair $(K, K \cap \Sigma^{\omega})$ is homeomorphic to (Q, s). Then $K \setminus \Sigma^{\omega}$ is homeomorphic to $Q \setminus s = \Sigma$. Let $(X, Y) = (K \cap G, (K \cap G) \setminus \Sigma^{\omega}) = (K \cap G, (K \cap G) \setminus \Sigma^{\omega})$ $K \setminus \Sigma^{\omega}$) (recall that $Q^{\omega} \setminus \Sigma^{\omega} \subset G$). Considering the restriction $g = \bar{f} \mid K \cap G$ we obtain the embedding $g: X \to \overline{D}^{\omega} \times Q$ of absolute G_{δ} -set such that $g(Y) \subset (D \cup \mathbb{C})$ $\bigcup A)^{\omega} \times \Sigma$, $g(X \setminus Y) \subset (\overline{D}^{\omega} \setminus (D \cup A)^{\omega}) \times \Sigma$, and the space $Y = K \setminus \Sigma^{\omega}$ is homeomorphic to Σ . Proceeding by analogy with the proof of Theorem 1 we obtain a contradiction.

- 1. Bessaga C., Pelczyński A. Selected topics in infinite-dimensional topology. Warsawa: PWN,
- 2. Dobrowolski T., Mogilski J. Certain sequence and function spaces homeomorphic to the countable product of l_f^2 // J. London Math. Soc. - 1992. - 45. - P. 566-576.
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986. 752 с.
- Dobrowolski T., Mogilski J. Problems on topological classification of incomplete metric spaces // Open Problems in Topology. - North-Holland, 1990. - P. 410-429.
- Куратовский К. Топология: В 2-х т. М.: Мир, 1966. Т. 1. 594 с.
 Dijkstra J. J, Mill J. van, Mogilski J. The space of infinite-dimensional compact and other topological copies of $(l_{\ell}^2)^{\omega}$ // Pacif. J. Math. - 1992. - 152. - P. 255-273.

Received 30.01.95