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REMARKS ON SUMMABILITY OF SERIES FORMED FROM
DEVIATION PROBABILITIES OF SUMS OF INDEPENDENT
IDENTICALLY DISTRIBUTED RANDOM VARIABLES -

S3AYBAZKEHHA 1O CYMOBHOCTI PAIIB, YTBOPEHHX
3A UMOBIPHOCTSsIMU BIIXUJIEHHA CYM HE3AJTEKHHAX
OJHAKOBO PO3IOMIJIEHMAX BUIIATKOBHX BEJIMYIHH

We make some remarks leaclmg to a refinement of the recent work of O, I. Klesov (1993) on the

connection between the convergence of E T,P(|S,|2en*) for every £>0 and that of

n=1
z:=1 nt P(|X, |2 en™) again for every &> 0.
Opep>KaHO pesyJIETaTH, IO YTOYHIOITE HeAasio poSoty O. L. Knsocopa (1993) npo 8’130k Mix
abixmicTio Z:-l 1,P(|S,|=en™) mnancix g> 0 iabixuicrio z:_1 nt,P(|X; |2 en™) Takox
oA Beix e 0.

Let Xy, X5, ... beasequence of independent identically distributed random variables.
Put S,=X;+...+X, and fix o >1/2. Starting with Hsu — Robbins {1] and Erd6s
[2], a number of people considered the connection between the convergence of

oo

Y, TP(|S,|2en®) - (1
n=]
for every positive € and that of
Y. nt,P( X 2en®) 2
n=1 4

again for every positive €, for various choices of 7,20 and o >1/2. Recently,
Klesov [3] determined several auxiliary conditions under which the convergence of (2)
for.all >0 implied the convergence of (1) for all € >0, and showed that, under the

auxiliary condition that lim nP(|X;|2= en“) 0 for every e£>0, we have the
T o= e

converse implication. _ )
-Our first remark is that we may obtain a partial converse result even in the absence
of Klesov’s auxiliary condition, and that the auxiliary condition, itself may be

weakened to the assumption that sup nP (| Xy | = en®) < e for every > 0.
n

Theorem 1. Let T, be any sequence of non-negative numbers and let a, be
any sequence of real numbers tending to infinity. Suppose that for every € >0 we
have

oo

> PS8, =ea,) 3)

n=1
converging. Then for every €>0 thereisan M, CN={1,2,...} such that
>, mtP(X|2eq,) < o @)
ngM,
while
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3 1, < o, : )

neM,

Moreover, we may take M ¢={ne N: nP(X;|2ea,) >0}, where A is any

finite positive number.
Remark. The conclusion of Theorem. 1 is equwalent to asserting that for every
-£>0 we have

S t,min (1, nP(1X;| 2 €a,)) < oo
=1

CoroHary.I. Under the same conditions as in the Theorem, if we additionally
have

sup nP (| X;| 2 &a,) < e, . . 6)

for every positive €, it follows that we must in fact have

Y, (X 2¢a,) < o, )
n=1 ! '
for every positive e.
Proof of Corollary 1. In Theorem 1, take M,={ne N: nP(X;|>¢ea,)>L},

where A= sup nP (| X;| > €a,). Then clearly M, =@ and the Corollary follows.

“n
The following easy proof of our Theorem 1 is largely due to the anonymous referee
of a previous version of the present paper and represents a significant simplification of
the author’s original proof which had employed a more complicated argument due to

. Brdds [2] in place of the rather simple inequality (10), below.
Proof of Theorem 1. First note that once we find some M, satisfying (4) and
(5)then N={ne N: nP(X;|>ea,)>A} will also work in its place. For, in light
of (4) and (5) it would suffice to verify that

>, nuP(1X|2eq,) < o ®
neN°\ M¢
and . .
Y 1, < . 9)
HEN\MIE : g

But (8) follows from (5) together with the inequality nP (|X;|>¢ea,) <A, valid for
ne N°% Also, nP(|X;|2ea,)>A for n € N so that (4) implies that
EnE N\ AT,< e, which in turn implies (9) since A >0. This completes the proof

of the “moreover” part of the Theorem. .

Now, by a stgndard symmetrization argument, it is easy to see that it suffices to
prove the rest of the Theorem for 'symmetric X 1 (it is here that one actually uses the
condition that a, — e which guarantees that | (X;)/a,— 0 whenever u(X;) isa
median of X;.) See [4] (§ 17.1A) or [5] (Lemma VI.14), together with the proof of [1,
Thm. 1], for more information on sy:nmetrxzatlon Thus we may assume that X; is

_ symmetric. ’I‘hen note that we have
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2 PUYil =)
)= 5
1+ Z;‘=1 P(Y;|21)
whenever the Y; are independent random variables. This inequality can be found in

[6] (Proof of Lemma 3.2) or [7] (Lemma 2.6). Now, by an equality of Lévy type. (8]
(Prop. 1.1.2), if the Y are also symmetric then it follows that

n
n . E: f([y [> ﬂ
(g » T
= 1 + 2;=1 P(Y;|21)
Letting Y; :IXJ-, and defining

M, = {neN:nP(X;|2ea,)21},

we see that (4} and (5) both follow from (3) and (10).
Our second remark begins by noting that the presence of the exceptional sets M, is

rather natural when one considers the fact that ZHEM PS5 1=8a)

P[max]l’ | > ¢

1£j<n

(10)

automatically converges for any X; if M, satisfies (5), and hence the fact that it

converges contributes no new information.

Then, two of Klesov’s results [3] (Theorems 2 and 3) have a slight improvement
which brings the necessary and the sufficient conditions closer together. More
precisely, we have the following result.

Theorem 2. Suppose 0. >1/2. Suppose that for every € > 0 there is a set
M, C N such that (4) and (5) hold with a,=n%. Assume that E[]|X| /27 ¢ oo,

If a.<1 then assume further that E [X,1=0. Finally, suppose that at least one
of the following auxiliary conditions holds:

K,) lim n8t,<eo for some 6> 0, and E[1X;]|") <o for some r>1/a;

=¥ oo

K3) there is a slowly varying function L such that E:;l (T,I/L(JI} ) < oo

for some ©>0 and E[|X;|"*(L(|X;|Y*))¥] <o for some Vv >,0.

Then (1) converges for every €>0.

Condition Ky comes from Klesov’s Theorem N for N=2,3. In his Theorem 2
and 3, Klesov [3] had proved the above result under the stronger condition that. (2)
converges in place of our weaker condition that (4) and (5) hold. Klesov’s necessary
and Klesov’s sufficient conditions for (1) to converge for every €>0 are brought
somewhat closer together by our two Theorems, though they still do not meet.

The proof of Theorem 2 is essentially the same as Klesov’s proofs in [3]. For, in
order to show that for some particular £=g,> 0 one has (1) converging, the proofs of
Klesov’s Theorems 2 and 3 can be madé to only use (in addition to the auxiliary
conditions which we are not changing) the convergence of (2) for some single value
of e=g; >0 (g, dependingon g,). Then, we may simply set T, equal to zero for

n € M, and note that, with this change, (2) will converge (for e=¢;) if (4) holds.
Klesov’s proofs would then show that (1) converges for € =g, providing T, is set to
zero for n € M,,. But because of (5) and the fact that P (|S,|=en’)<1, it follows

that (1) would converge for &= g, even if those T, are not set to zero.

Finally, we would like, to remark that Theorem 2 generalizes easily and directly to
the not necessarily identically distributed “regular covering” case considered in [9],
with very much the same proof. It does not appear to be as simple, however, to extend
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Theorem 1 to this more general case, although the methods of [9] (§ 5) might be
relevant to the problem of proving a “regular covering” analogue of Corollary 1. At
present however, the author only knows that if for some €, >0 we have the analogue

of

lim sup nP (| X;|> ¢ a,) <o

n—y oo

thenforany K>0 there is an E2>0 such that lim sup nP (| X;|2 e,a,) <K, andif

n—y oo

the analogue (3) converges for some €=g;>0 then the methods of [9] (§ 5) allow
one to'conclude that the analogue of (7) holds for some value of €>0 ( possibly
different from g;).
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