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AI€K0 Y BAHAXOBOMY IPOCTOPI*

Rank conditions for control of linear pulse systems are established. An example of control synthesis in a
problem for linear pulse systems is given.

Beranonieno panrosi o3nakin Kepysanus juid Ainifnnx imoyascHinX cierem.  Hanenexo nipuknan
CHHTCAY KCPYBAHA B 3a/1a%0 113 JHHITHHX IMIYIBCHHX CHCTCM.

In finite-dimensional spaces, periodic, almost periodic, and bounded solutions of dif-
ferential equations with pulse influence were thoroughly investigated (see, e.g., [1-8]).
Much less attention has been paid up to now to the equations in infinite-dimensional
spaces [9-12].

The theory of discontinuous dynamical systems is quickly developing now and its
applications [13—17] demonstrate the necessity of the study of differential equations
with pulse influence in the infinite-dimensional spaces as well.

This paper deals with the study of one of the simplest problems, namely, with the
problem of periodic solutions which is quite important for applications. By using the
methods of functional analysis, we establish conditions under which nonlinear differ-
ential equations in a Banach space subjected to the pulse influence (both at fixed and
nonfixed moments of time) possess periodic solutions.

1. The Object of Investigation. Assume that E is an arbitrary Banach space with

norm |||z L(E, E) isan algebra of all linear continuous operators A: E —L, R

is a set of all real numbers. and Z is a set of all integers.
Consider a system of equations
dx

? = A()x + f(1,x), {#7T; +ET;(x),
(i

"1”! =T, +ET;(x) = (Bi x+ J:’ (\}) |-' =1;+e1;(x)=0, i€ 2.

(n

I PEr

where Ax|,_; = v(1+0)~x(1-0), A(¢t) is an -periodic L(E, E )-valued function
continuous on IR: £(r, x) is an E-valued function continuous on IR x E and o-
periodic in ¢ forall ve E: Bje L(E,E) Vie Z, J,(x) is an E-valued function
continuous in v on £ and having values in R forevery ie Z: €20, and

Biiup=B, VieZ, J,pkx)=J(kx) VieZ. x€E,

T+ VieZ, xek

i

Tup =T, +0 VieZ, T:4,F)
for some positive integer p.

In this paper, we investigate the problem of ®-periodic solutions of the system of
equations (1) under some additional restrictions on (7, x). T,(x). and J,(x) presented
below. Note that this problem was studied in the papers [1. 7] for the case where
E=R", and the functions f(z, x). Ji(x). and T,(x) satisfy the Lipschitz conditions.
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2. Periodic Solutions of System (1) for € = 0. Let 7={7,: ie Z}. Denote by

P a Banach space of all continuous ®-periodic E-valued functions x = x(r), de-
fined on R\T, for which there exist x(7;+0) and x(1;,-0) (forall ie Z) having

the norm [[.x ) = sup [x()lg. By PM) we denote the Banach space of all func-
teR\T ®

tions x=x(r)e PP, for which dx(1)/dt e PO with a norm
dx(t)
Tdr
Let 9" be a Banach space of bilateral p -periodic sequences g =g;€ E (i€ Z) with

x|l =lx + :
" ,Plll ] u,I.(O:I ﬂ -_(Jm]

h e : .
the norm ||g||‘_, Ifl‘lc:’lz?i” gille

We define operators IL: PV 5 PP x 9 and N: 29 5 2P 9 by Uy =
= (a,B). Nx = —(v,8), where
a(r) = % -~ ANx(N e PO, B = Ax()] oy - Bx(r;-0) € I,

Y1) = f(t, x(1)) € PO, and 8, = J,(x(1,—0)) € 97 These operators enable us to

reduce the problem of ®-periodic solutions of the system of equations (1) with €=0
to the problem of existence of solutions of the equation

(L+N)x=0 (2)
in the space PV,

LetR(U)={Ux: xe PV}, Kerll={xe PV: lx = 0} and J(a.b)lpo ., =
= lallpo + b,y

Theorem 1. Assume that

() R(W) is closed:,

(if) Ker U possesses a closed complementary space;

i)y R(M) e R(W);

(iv) [N —ﬂ)’ﬂi.m:_y < Mix—ylyo forall x;ye PO and some M > 0.
Then, for all sufficiently small M, a set of solutions of equation (2) is nonempty.

Proof. We write P asadirectsum P! = Kerll ® P, where P is a closed
space complementary to Ker L. Denote by 11, the restriction of the operator 1 to
the subspace P. We represent each element x € PV in the form x = u+v. where
e Kerll and ve P. Then equation (2) is equivalent to the equation

U+ Nu+v) =0. 3)
By virtue of the Banach theorem on an inverse operator [18, p. 225], the operator 1.1I 5
P — R(1l) possesses the inverse operator 17!, since (Kerll;) N ? = {0} and
R(U,) = R(WL) = R(Wl). Therefore, equation (3) is equivalent to the equation

v+ U7 N(u+v) = 0. (4)

If MNHTIH < 1, then we can apply to equation (1) the principle of contracting
mappings [18, p. 73]. This guarantees the existence of a unique solution ve P for

cach fixed ue Kerll,. Thus, equation (2) possesses at least one solution x e P,
Theorem 1 is proved.
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372 N. A. PERESTYUK, V. E. SLYUSARCHUK

Remarks. 1. In Theorem 1. condition (iv) can be replaced by the following one:
max |L£C0) = f(y) g + max 17,00 =Tl < Ml x=ylle (5)
i=1lp

ielm)
Vy,ye E (M>0).

2. 1f the second condition in Theorem 1 is replaced by the condition Kerll ={0},
then equation (2) possesses a unique solution for sufficiently small M.

Consider now the case where (1, v) and J;(x) (ie 2) are not Lipschitz func-
tions M.

Theorem 2. Assume that

() R(W) is closed,

(if) Ker WL possesses a closed complementary subspace:

(i) R(N) c R(W ):

(iv) M PO 8 is a completely continuous operator:

_ I x o
{(v) lim i . S
bl =240 I """'I""”

Then, for all sufficiently small M, equation (2) has at least one solution x e PV,

Proof. We proceed just as in the proof of the previous thecorem and employ its
proof up and including deriving equation (4). Further, by virtue of the boundedness of
the operator IIT] and the complete continuity of M. the operator C: PP e P1 de-
fined by the equality Cx = 7' N (4 +x) is completely continuous. If M|| U7 <
< 1, then one can find a closed ball S, = {xe P:lxlym =r} for which CS, C S,.
By the Schauder thcorem on a fixed point [19], there exists ze §, such that -+

+ U7"M (u+:z) = 0. ic.. cquation (2) possesses at least one solution xe P for
cach Me [0,|| U7'|I”"). Theorem 2 is proved.

Remarks. 3. In Theorem 2. condition (iv) can be replaced by the following
condition: The sets

M (r) = {ftx)e Bzt efOmw).|x], <r}
and

My(r) = {J;()eE:i=Lp|x|,sr}

arc compact for every r > 0. Condition (v) can be replaced by the condition

- L) e e J; (x) :
M = lim  max [RAGE) + Tim m:’_l_)_(u)—“ < oo, (6)
R P - CA I Y )% bxlg = i=lp Ixlp

4. When dim £ <o, the operator 1L is a Fredholm operator [20]. In this case.
dim Ker 1l = defR(1l) < dim £. Therefore. conditions (i) and (ii) in Theorems 1 and
2 are satisfied. Taking this into account. we obtain the following statements:

Corollary 1. Assume that dimE < e, relation (S) holds, and R(N) < R(1L).
Then, for sufficiently small M . the system of equations (1) with € =0 possesses
at least one solution.

Corollary 2. Let dimE <o and R (M) c R(W). Assume that the sets
M () an d M 2 (r) are compact for every r >0, and relation (6) holds. Then,
for sufficiently small M, the system of equations (1) with € =0 possesses at
least one solution.

ISSN 0041-6053. Yip. sam. xvpn., 1995, m. 47, N° 3



PERIODIC SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS. .. 373

Remark 5. In the previous statement, the condition R(M)=R(1l) is rather re-
strictive, and it is sometimes difficult to check it. For example, this conditions holds if

R(Il) = PO x ¥, and, in particular, when the operator 1l has a continuous inverse
operator (this takes place if, e.g., dim E <o and Kerll ={0}; see also Theorem 4).

3. Periodic Solutions of System (1) for Sufficiently Small € # (. Assume that the
following conditions hold for system (1):

0<T <1, <..<T, <O, (7)
for some C e (0, +e),
sp_ l500llg € € < o ®)
xeE i=1p
max 7)) -tWle £ llx=ylle VyyeE, 9
i=lp
T,(x) 2 T (x+B;x+J,(x)) . VxeE, i= Lp, (10)

J.: ESE (i= 1.p) is a completely continuous mapping. uniformly continuous on
every bounded closed set, and for some M e [0, %), we have

W x)-f(ty)lle = Mllx-yllp Vx.ye E, te [0.0), (11
1iwle _ ,,

lim  max (12)
lxllp=s+eo i=1p Hl";
Note that by (7) and (8). there exists a number €, > 0 such that
0 <t +eT(x) < T + ET(¥) <...< T, +ET,(v,) < ®
forall ee |0, 5;;] and v, x,. ... ¥, € E. In addition, according to [7, p. 22-27] and

the restrictions imposed on (7, x). B and J.(v), relations (9) and (11), for every
ee [0.g,] (g € [0.g,]), guarantee the absence of pulsation of solutions of system
(1) on the hypersurface 1 = T, +€T,(x) (i= Lp).

Under the restrictions presented above, the following theorem holds:

Theorem 3. Assume that the operator W has a continuous inverse operator.
Then, for all sufficiemly small M and €, system (1) has at least one ©-periodic
solution x.

Remark 6. In this thecorem, unlike the analogous theorem in [7, p. 149}, we do not
assume that the Lipschitz condition holds for J;(v) and that the space £ is finite-

dimensional.
The statement of Theorem 3 follows from the results of the next two sections.

4, Conditions of Invertibility of the Operator 1l and Stability of the Inverti-
bility of This Operator under Small Perturbations of the Set 7. Consider system
(1) for £=0 in the case where f(r,x) = f(1)e PO and J(x)=a; e 9. The system
ol equations takes the form

dx
— = A(Dx + f(1), L#T;.
dt ) ro (13)
Axlj=y, = Bix(1; - 0)+q;, i€l
The corresponding uniform system of equations has the form
dx
— = A()x, 1 #T,,
dt @ (14)

Ax|jer, = Bix(7;—0), i€Z,
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It follows from the restrictions imposed on A(7) and B; that, for arbitrary se€ R\T
and z € E, system (14) possesses a unique solution y(1) (12 s) satisfying the condi-
tion y(s)=z. We define the operator X (7, s): E—E by the equality X(1,s)z =
¥(1). This operator is called an evolutionary (solving) operator of system (14).
Assume that U(+, t) is an evolutionary opcmlor of the differential equation
dx(0)/dt = A(D)x(1) [21].
Consider arbitrary s20 (se¢ T) and 125 (1 e T). Let

[(s4]1N0T = {1t p0oee o T} (B<Tyy <o <T)

Denote C; = (/+B))U(1, 1, ) (I2k+ 1), where [ is a unique operator. Analyz-
ing system (14), we find that

X(t.s) = U(l. ‘I:m)CmC,,,_I C;H,I(I'PB;,) U('[*..S).

If [s.t] N T consists of a single element T;€ 7, then X (1, s) = U(s, T,)(/+
+B;)U(1.s). Butif [s,2] NT =@, then X(1,5) = U(1,5).

The operator X (¢, s) enables us to represent each solution x(¢) of system (13) in
the form

!
x(1) = X(1.0)x(0) + j X(1,5)f(s)ds + Z X(r,71,4#40)a;, teT, (15)
0 Ot <t
provided that x(0) is known (see also [7, 11]). Here and below, we regard X(1, s),
s € T, in the integrand as a unilateral limit

X(t,s+0) = lim X(1,5),

5 =5+0

which exists forall se T and ¢ € T by the continuity of U (s, s) on R x R. The
properties of solutions to the system of equations (13) depend on the spectrum of the

operator X(m, 0).

Theorem 4. The operator I has a continuous inverse operator if and only if
1eo(X(w0)).

Proof, Let 1 ¢ o(X(w,0)). Then the operator /- X(®,0) has a continuous
inverse operator (7-X(®,0))". Consider a function

y(1) = X(f,O)(!—X(m,O))" [J'x(m.t)f(r)dt ﬁ X(o.1; + O)G,J

i=m]
+ jxu 1) f(V)dt + UZ X (1.7 +0)a;, (16)

where f(r) and a; are arbitrary elements of the spaces P© and 9, respectively.
According to (15), this function satisfies system (13) for r 2 0; furthermore,

¥(0) = y(®) = (/-X(0,0))" (I X(0,1) f(t)dT + Z X(w,1; +0)a; J
i=1
Consequently, for arbitrary f(1)e P© and a; € 9 system (13) has a solution
y(t)e PV, This solution is unique. Indeed, according to (15), an w-periodic solution

x(1) of system (13) should satisfy the relation
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w
(I-X(0,0))x0) = I X(o,s5)f(s)ds + i X(o. 1, +0)a;. (17)
0 i=1
If the solution of system (13) is not unique, then Ker (/- X(®,0)) = {0}, but
this contradicts the assumption that 1 ¢ (X (®, 0)).
Thus, Ker U = {0} and R(U) = P2 x 9. Thercfore, by the Banach theorem
on inverse operator, the operator U has a continuous inverse operator,
Hence, the relation 1 ¢ o(X(w, 0)) guarantees the invertibility of the operator U.
Assume now that the operator 1L has a continuous inverse operator. Then, for ar-
bitrary f(1)e P and a; € 9 relation (17). regarded as an cquation with respect to
x(0), possesses a unique solution, i.c.,

Ker(/-X(w.0)) = {0}. (18)
Let us show that R (/ - X(®,0)) = E.
Let a,-EO and let f(t) be an element of the space 2@ such that

U"(m,r)—;,i(f)—b‘ if re[tp.mj.
f() = L ©(s)ds

P

0, if 1€[0.1,),

for re [0, m]. where f(r) is a function continuous on ['cp. m]. for which ¢(1,) =
= @(m)=0 and ¢()>0 if re (Tp‘ ). b is an arbitrary element of the space E.

Then relation (17) takes the form (/- X(.0))x(©0) = b.

Since b is an arbitrary element of the space E, we have R (/-X(m.0)) = E.

This and (18) imply that the operator /—X(®,0) has a continuous inverse oper-
ator.i.c., 1 ¢ o(X(®.0)). Theorem 4 is proved.

Remarks. 7. When studying o-periodic solution of system (13), we did not de-
mand that the operators 7+ B; (i=1.p) should satisfy the condition of invertibility
which was used in [7]. In this paper, this condition is not necessary.

8. It follows from the proof of Theorem 4 and formula (16) that  -periodic solu-
tions of system (13) can be represented in the form

@ P
() = [Ga)f@)ds + Y Gt +0)a; (1€ T), (19)
0 i=1
where
i X(1.0)(1 - X(0.0))" X(0.1) + X(1.1). i 0<T<1L,
' X(1,0)(1 - X(0.0))” X(w.7). if 1<T<®

(see also [7. p. 144]). The function G (1, T) is called Green’s function.
We take arbitrary sufficiently small numbers ¥;. Y2, ... . ¥, such that the relation

0<T+Y < T2+ Y2 << T+Yp <O

(similar to (7)) holds and consider a system of equations

dx

— = A()x(1), [£T, + Y.,

= (1) x(r) P+ Y s
Ax|, =T+ B:x(t; +v;-0), ieZ,
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similar to (14). Denote the evolutionary operator of this system by X, (1,5); the
e

corresponding Green's function and the operator establishing the correspondence bet-

ween cach function y(1) € Q’.‘f:’“ x 9. where

3, ENCIICPAR Sl P 1S i gy 2N
a@) = AU AWy@)ye 22 and B; = Ay| - B;y(t;+v;-0) e 7.
o dt Y Yien¥p E T ) 1=T+Y; i i i -
are denoted by Gy (r.5) and Wy . respectively, where the spaces 5!’.:1‘{:_',_,{!,

(k=T.p) have the meaning of respective spaces P& (k= 0.1), where the set 7' is
considered instead of {T,+Y,+kw: i = Lp, ke 2}.

The definition of an evolutionary operator and the restrictions on A( f) imply that
one can find numbers ¥, >0 and Q >0 such that

I X (1. 590) =Xy ;(32-32)” <l -nl+lsi=sal+nl+..+ 17, D QD

P
forall 1, t.51.50€ [0,0 N\ [a.b;] (1,25 n2s).
i=1

and v; € [ Y0 Yo, i= Lp, where a; = min {1;,7;+Y,}. b; = max{71,.7,+7,}.
This and the property of semicontinuity of the spectrum of a bounded operator [22]
imply that if ¥, is a sufficiently small number, then

1eo(Xy . 4 (0.0). (22)

when |Y;|<yy Vi = I.p. Therefore, the following theorem holds:

Theorem 5. Assume that the operator W has a continuous inverse operator and
that Yo is a sufficiently small number. Then the operator llv1 y, Possesses a

continuous inverse operator provided that |Y;| < ¥y Vi = 1p.
This theorem shows that the property of invertibility of the operator 1l is stable
under small perturbations of the set T.
The invertibility of the operator 1.1.|r1 ...,y, 1s equivalent to the invertibility of the
-

operator [/ _X'n.----‘r, (w, 0) and, consequently, to the existence of Green’s function

T 1’(!. s). Therefore, by virtue of the definition of an evolutionary operator, the

restrictions imposed on A(r), and relations (21) and (22). we conclude that, for some
positive number Q; and sufficiently small number y, € (0, a), where

) T Tr—1T T, - T,y O—T,
a<m1n{—’, el ./ S o 5} ! },
2 2 2 2
the relation
u Gyt (551 = Gy ys (124 ~92)H s
(23)

)

= P . ’ " R Pa—
holds forall ,.1,,5,.5, € U;=1 [t,+m, t,+M,;] and y!. ¥/ € [-Yo.Yo). where

< Q](!f]_rzl * |3[_53| +* lﬁ_?ﬂ + ..+ T;_Y;

m, = min{y}, v/} and M, = max {y/, y/}.
This property of Green’s function will be used below.
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‘

5. An Auxiliary Mapping Acting in E’. Assumc that the conditions given in
Section 3 are satisfied. Consider an arbitrary element

(¥p -oe s Yp) € E’ = Ex..xE
‘_-v-—’

plimes
and the system of equations
dx - '
= A()x+ f(r.x t# T + €T (),
= = AOx + f(1.0), P +ETON g

Ax|, - THeT(Y) T B x(1; +€T;(y;) —0) + Ji (i), ‘.G_ 2,

where €€ | 0, min {g,.v,/C}] (here, 7y, isa number satisfying relation (22)).
Then the problem of existence of a solution of system (24) in the space

1’;2,{“) et (v.) isequivalent to the problem of existence of the solution of
LA f

# = | G ety (5,) (1 5)F (5, X(5)) ds +
0 ;

P
+ Z Grt,(,v, PR, )(f- T, +ET(y,) + 0)-’.'()’;) . i PH(25)

in the same space. By the results given in Section 4 and the rc';tncllons 1mp()f;cd on &g,
the equation (25) has a unique solution x(r)e€ gtt:(n) €T,() for l;ufftclcnlly small
M: this follows from the principle of contracting mappings. Thls solution dcpende on
Vi Sy We (fcnolc it hy x(t, v, 3P)

Consldu a mapping S: Ef > E‘! that associates each vector (yp> -2 ¥p)€ E”
with the vector

CCE+ (1) = 0 s iV divscn G FEL 0.1~ 0. ¥ s ¥ )) & B
Theorem 6. If 0<e<min{eg,, ’YUIC} and M is a suﬁ'"('mmly small number,

then the muppms: S has at least one fixed point in E*. F
Proof. 1t follows from the restrictions imposed on & and T,(x) and relation (23)

that there exists a number G for which

sup {ll Gex,i)....ct, 00,0 (1) 12 1.5 €& R\ (¥, ... 3,)€ B
. (26)
0 <e<min{g.,yy/C}} <
Consider the functions

h(r) sup _ IJ»lle (r>0).

Iylg<sr,i=lp

1l

: ) . | 5
X=Xty .0 yp) = Zi eyt o) (0 GHEGON+0) () 27)

® :
Xy = ".lrl("lr Yiseees yp) = _[ Ge‘rl{yl).,,..t:t’(y‘,)(f- S)f(.i‘,_.'l‘,,_] (S- Yis oo ¥p )) ds +
? 4

+ 250 Vs ¥p) (n2l) (28)
and the sets ' ;

W= {(ty,....y,)e RxE?: t #v,+et(y), i=Lp}
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W, = {(t.y1 o o3p)e Wi llyelle s vy k=Tp}.
It is clear that
sp xo(t,ype e 3l S pGREP),

tr‘yl,_.,.)‘p)eﬂ,

sup  |lx(ayn e yp)=x(t . 3 )le < p OG*Mh(r)+ oGT,
(:.)‘1...A._1',,]Eﬂr,
(29)
where " = fé';‘ﬁ."ml”f("o)"E and
su 2 L Yiscoviny Y b= Xl Yy vy P <
{f.)'l.-..‘yE)EW, | AR ¥p) (t. yy e
< (0GM)" (0G*Mh(r) + ®GT) Va 2 0. (30)
Let
OGM < 1. 31)
Then equation (25) has a unique solution x(7, y;.....y,) € Tt‘:().i ben€ T, ()
which can be represented in the form
i ) =X ® (=) * ol Gp=%) o (32)

due to (29), (30). and (31). This solution is continuous with respect to the collection of
variables (1, y,,....y,) on W. This follows from the fact that series (32) can be
majorized by the convergent geometric progression with the denominator @GM< 1
(see (29) and (30)), because of continuity of the functions x, (1, yy. ... ,yp) (n=20)
on W, (27), (28). the restrictions imposed on f(7, x), T,(x), and J;(x) (i=1Tp).
and relations (23) and (26).

The solution x(t, y;, ... .yp) is also uniformly continuous with respect to the col-
lection of variables on every bounded closed set K < W. Indeced, the functions J;(y)
are continuouson {x € E: |[x||z < r}. and the set {J,(x)e E: i=1p. |lx|lz<r}
is compact for every r > 0. Therefore, the functions J,(y) (i=1,p) are uniformly
continuous in y on {xe€ E: ||x|[|gsr} for every r>0. The functions T;(y)
(i=1.p) are also uniformly continuous on E since they are Lipschitz functions (see
(9)). Therefore, according to (23), the function x, (¢, y, ... . )‘P) defined by the rela-

tion (27) is also uniformly continuous with respect to the collection of its variables on
every bounded closed set K < W. By (28), (11), and (23), this is also true for the

functions x, (¢, y;...., y,) (n21. Then, due to the fact that series (32) can be
majorized by a convergent geometric progression, we can conclude that the function
xCloyie .yp) is uniformly continuous on every bounded closed set K < W.

The uniform continuity of the function x(z, y;. ... . )’p) guarantees the continuity
of the limits

Blﬁip}ﬂx(tﬁet;(y‘.) + 8,31 o0 ¥p) = X(G+eT(y) - O,y ... ny,) (i=1Lp)

on E”.
Indeed, passing in (25) to the limitas 7 — 7, + €T,(y,) — 0, we obtain the equality

(T + T3 = 0,945 s %) = (T + T (¥) = 0¥y, .. ) +
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w
+ £ Gsr,(y. J e €T (¥,p) (T;;'*' 81&()’,{-) - 0.5)f(s, x(s, DTS ’)'p)) ds, (33)

k=1p. In this equality. the unilateral limits x(T +€T(y,) 0. ¥}, ..., yp) and
xo( T, + €7(3) =0, y1. ..., y,) exist because x(1, y1, ..., ¥p ) Xo (. ¥1».ee . Yp) €

(1)
€ S'D!:‘q(,\'l Joe €T ¥y )"

relation (23), the continuity of the function f(#, x(#, y;, ... .y,)) and its boundedness
on [0,0\{t,+eT(y): k=Lp}. and due to the existence of the limit
Get, ).ty (1 8) forall se [0, 0\{+e(y): k=1p}

The limit transition under the integral sign is possible due to

lim
(=T +ET; (¥ )=0

because analogous limits exist for X, .et, (v, (1 5). The function f(z,s) con-

T ()
tinuous on [0, ®] x E satisfies the Lipschitz condition with respect to the variable x
(see (11)), and the function x(1,yy, ... .yp) is uniformly continuous on every bounded
closed set K < W: therefore, the similar property takes place for the function f(r, x (¢,
Yis «++» ¥p)). This function is also bounded. It follows from (23) that the operator-
function  Ge (y,),....ex, ty,)(":k"' €T, (y,) -0, 5) is also continuous at every point
Oy e E” uniformly in se [0, ®]\ Ule [t +et(y) -0, T, + et (y,) + O]
for any sufficiently small & > 0. Therefore, if we also take into account (26), then the
last term in (33) is continuous in (y, ... .yp)e E”. The function Xo (T + €T, (y) -0,
Vi .yp) is also continuous on E” by (27) and (23). By virtue of (33), this ensures
the continuity of the functions x(T, + €T () -0, y1.....¥,) (k= 1p) on Ef.

Hence, S: EP - E” isa continuous mapping.
Taking into account (27), (28), the fact that series (32) can be majorized by a con-
vergent geometric progression, and the complete continuity of the mappings J;: E — E

(i=T.p), we conclude that the mapping S: Ef — E” is also completely continuous.
Let us show that there exists a number r> 0 such that

SK, c K, (34)

for the set K, = {(y.....¥y,) € E”: |y llz<r k= Lp}. Indeed. it follows from
(25) that

sup lx(typ ) lle S ©GM sup lx(n yys ) lE +

(tyenyp) €W, (30 ¥p ) EW,

+ oG +pG  sup _ [[7;(»)]lg-

Iylgsr,i=lp
Therefore,
G
sup _ Mx(tyi e ypllle € | P sup i) + o |.
(Y1 ¥p )€ W, 1- M Iylgsr.i=Lp

(35)

Assume that the number M is sufficiently small so that not only relation (31) holds
but also the relation (p+ ®)GM < 1 is valid. Then, according to (35) and (12), rela-
tion (34) holds for sufficiently large » > 0.

Thus, the mapping S: E” - E? is completely continuous and satisfies relation
(34) for sufficiently large r>0 (note that K, is a bounded closed convex set).
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Therefore, by the Schauder theorem on a fixed point, the mapping § has at least one
fixed pointin K, © E”. Theorem 6 is proved.
6. Proof of Theorem 3. Let 0 < e < min{g..y,/C} and (p+®)GM < 1,

According to Theorem 6 and its proof, one can find a vector ( ¥ o y;’, ) e E” which
is a fixed point for S, i.e.,

Y = x(g+er () -0, ¥....5;) (k=1Lp). (36)

Then the function x(¢, \f};) is a solution of system (24) if y; = y! (i = Lp).
Clearly, by virtue of (36) and the absence of pulsations of solutions of system (1) on
hypersurfaces ¢ =7, +€T,(x) (i=1.p), the same solution is a solution of system (1).
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