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REDUCTION OF THE SELF-DUAL YANG - MILLS EQUATIONS.
I. THE POINCARE GROUP

PEJAYKIIISA CAMO/1YAJIbHUX PIBHSAHD SIHT'A - MIUIVICA. L
I'PYIIIIA IIYAHKAPE

We have obtained a complete description of ansatzes for the vector-potential of the Yang—Mills field
invariant under 3-parameter P (1, 3)-inequivalent subgroups of the Poincaré group. Using these, we
carry out a reduction of the self-dual Yang —Mills equations to system of ordinary differential equations.
Jlns sektop-norenuiany noss Slura — Minica noyjiosano nosuud nadip iHBapiaHTHHX BIZIHOCHO
P (1, 3)- neekpisanenrunx nigrpyn rpynd Myaukape anzanis, 3 BAKOPHCTAHHAM AKHX MPOBEEHO pe-
YK caMoyaibHuX piBHaAnb Snra — Minca jio cucrem spHuainux auchepeniia/ibHHX piBHAHD.

’

Classical SU(2) Yang — Mills equations form a system of twelve nonlinear second-
order partial differential equations (PDE) in the Minkowski space R(1,3). But one
can obtain an important subclass of solutions by considering the following first-order
system of PDE:

= i
F],w = y\txﬁrul {1)

where £, =d"A, —d" A, +eA, x A, is a tensor of the Yang — Mills field: 9y, =
=0/ 0xp. €uvap I8 the antisymmetric fourth-order tensor; p. v, o, p = 0,3. Here-
after. the summation over the repeated indices from 0 to 3 is understood, rising and
lowering of the tensor indices is carried out with the help of lhc metric tensor 8uv=
=diag (1,-1.-1,-1) of the Minkowski spacc.

Equations (1) are called self-dual Yang — Mills equations. They are very interest-
ing because of the fact that any solution of equations (1) automatically satisfies Yang —
Mills equations (sce, e.g. [1]). Moreover, symmetry groups of the Yang — Mills and of
the self-dual Yang — Mills equations are the same. Maximal symmetry group admitted
by equations (1) is the conformal group C(1, 3) supplemented by the gauge group
SU2) [2].

In the present paper, we carry out a symmetry reduction of the self-dual Yang —
Mills equations (1) by using ansatzes for the vector-potential of the Yang — Mills
A, (x) invariant under the three-parameter subgroups of the Poincaré group P (1,
3re eC(1:3)

It is known that the problem of classification of inequivalent subgroups of a Lie
transformation group is equivalent to the one of classification of inequivalent sub-
algebras of the Lie algebra (sce, ¢. g. [3. 4]). Complete description of P (1, 3)-in-
equivalent three-dimensional subalgebras of the Poincaré algebra AP (1, 3) had been
obtained in [3].

To establish correspondence between the three-dimensional subalgebra of the sym-
metry algebra of equations (1) having the basis clements

" -
i - ) J—
a = éa]_[(-l"A}dj.l+ bz:lnﬁp(\r"t}# a=13. (2)
- M

where A= {Afl.a= I1.3.u= 0.3}, and the ansatz for A'“ () reducing equations (1) to
a system of ordinary differential equations, one has:
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(1) to construct a complete system of functionally-different invariants of the oper-
ators (2) o={®;(x.A),i=113};
(2) to resolve the relations

F_,'(&J}(,\'.A)« v @3, A =0, =113 (3)

with respect to the functions Af.
As proved in [5], the above procedure can be significantly simplified if coefficients
of operators (2) have the following structure:

3
Eap = EapC Moy = X Ry (AT (4)
c=1
The ansatz for ﬁp(.t) can be searched for in the form
3
AL(x) = Y OR(OBYO()), )
b=1

where Bi’.(m) are arbitrary smooth and the functions ®(x), Qﬂt(l‘) satisfy the
system of PDE

Eap)0,, = 0,
: (6)

3 -
gl (E.musbrap = R;Tu]Qifx = 0.

Here, 8”¢ is the Kronecker symbol, a,b,d=13, o= 0,3.
On the set of solutions of equations (1), the following representation of the Poin-
car¢ algebra is realized:

3
< J a_ 0 P

Py ¥ JovstuPr=au i z‘.[A:M—“"_A“aA—““)' pov=03. (D
a=

Consequently, relations (4) hold true. Morcover, expression for nﬂp has the form
rli:u = Ra“v(_r}Af,. a,b=13, u=0.3. (8)
That is why formulae (5), (6) can be rewritten in a simpler way. Namely, an ansatz

for the vector-potential of the Yang — Mills field ﬁp () invariant under a subalgebra
of the algebra AP (1, 3) with basis operators (7) should be searched for in the form

AL(x) = Quv(x)BYUO()). ©)

where B{(w) are arbitrary smooth functions and functions @(x), Quv(x) satisfy the
system of PDE

E_.al_“(,l‘)u.)_t!1 =0,
(10)
E.ma(v\‘}aﬂqu—Rauu(-\')qu =0,

where a= 1.3, p,v=0,3.

Thus, to get a complete description of P (1, 3)-inequivalent ansatzes invariant
under three-dimensional subalgebras of the Poincaré algebra, one has to integrate over-
determined system of PDE (10) for cach subalgebra. Let us note that compatibility of
equations (10) is guaranteed by the fact that the operators X |, X,, X3 form a Lie
algebra.

Bellow. we adduce a complete list of C(1. 3)-inequivalent three-dimensional
subalgebras of the Poincaré algebra AP (1, 3) following [4]:
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Ly = (Po, Py, Py),

Ly = (P}, Py, P3),

Ly = (Po+ Py, Py, Py),

Ly = (Jo3+ aJy2, P Py).

Ls = (Jo3, Py+ P35, Py),.

Lg = (Jo3+ Py, Py, P3),

Ly = (Jo3=P,Py+P3, P}),
Lg = (J12+ aJy3, Py, P3).

Lg = (J12+ Py, Py. P3).

Ly = (J12+ P3. P, Py),

Ly = {(Jy2+Py—P3, P\, Py),
Ly ={G.Py+ Py, Py+0P)).
Lz = (G + Py Py+ Py, Py).
Ly = (G +Py—P3,Py+ P3, Py),

Lys = (Gy +Py=P3, Py + 0Py, Py + P3),

L = (J12.Jo3. Py + P3),

Ly = {Gy+ Py, Gy~ P+ 0Py, Py+ P3),

Lig = {(Gy.Jp3, Pa).

Eis= g GiuPye )

Log = (Jo3+ P2, G|, Py + P3),

Ly = (Gy.Jo3+ P+ Py Py+ P3).
Ly = (G, Gy Jp3 + 0T 2),

Ly3 = (G, Py+ P3, Py),

Loy = (J12. Py, Py).

Lys = (Jo3, Po. P3).

Lays = {Jo1-Jo2:J12):

Lag = (J12.423./13)-

Here, (J"=‘=J0;— 5 (I= 1 2), o€ R.
Let us consider, as an example, the procedure of construction of ansatz (9) invariant
under subalgebra L, (o= 0). In this case, system (10) reads

0]

X

=0, =0, x0,+x;0, =0,

Q,\:l = Q¥2 = 0‘
x0Qy, +x30, -S0 =0,

where 0= [ Q|2 , =0,

0 1
0 0
0 of
0 0

- O OO0
oS Cc oOC

(11a)

(11b)
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% : s ? 2 2 3 .
The first integral of system (11a) has the form ® = xj — x3. Next, from first two

equations of system (11b), it follows that Q = Q(x, x3). Since § is a constant
matrix, solutions of the third equation from (11b) can be looked for in the form (see,
e.g. [6])

Q = exp{f(vo.x3)S}.
By substituting this expression into (11b). we get
(Xofep X3Sy, — 1) exp {rS} =0,

where f=1In(xy+ x3).
Consequently, a particular solution of equations (11b) can be chosen in the follow-
ing way:

Q = exp{In(xy+x3)S}.
By using evident identity § = S3, we obtain the equality
Q =1+S8sh(In(xg+x3)) + Sz(ch(!n (xg+x3p—1), (12)

where 7 is aunit (4 x 4)-matrix.
By substituting the obtained expressions into formula (9), we get an ansatz for

ﬁp{_\') which is invariant under the algebra L,

A% = B8(x2 - x3)ch(In(xo+x3)) + B3(xj —x3)sh (In (xq+ x3)),

A? = BZ(x3-1x3), AS = BS(x3 -x3).
Af = B_ﬂ{(.\ﬁ—_\'g)ch(ln(,r% —1?{)) + BE(.\‘;":—.1'_%")5]1(1!1(;%—1’%)). 1= 1.3. (13)

The above ansatz has such an unpleasant feature as an asymmetric dependence on
independent variables x,. To remove this asymmetry, one has 10 use a solution gen-
eration procedure [7]. As a result. we arrive at the following representation of the
Poincaré invariant ansatz for the vector-potential of the Yang — Mills field:

Ay(x) = Quu(0)BY (@) = {(ayay—d,d,)chOg + (dya,—dya,)shOy+
+ 2}:"[(9 1€0s0 3+ 0,8in03)b, +(0,c0803-0sinB3)c, +

+ (ef + 9%)&’\. exp(=04)] + (bucy—bycy)sin®3 — (cycy— H;th)cose 3 —

~2(0,b, +0 50,k exp(-04)] } BY (). (14)
Here, a,, by, ¢, d, are arbitrary constants satisfying the following equalities:
aya* = -b”b“ = —cct = —dyd* =1,
apbu = ayc! = adh = bt = byd" = cpd” =0,

J’cp =a,+ dp‘ Qu‘ o are some functionals of x whose explicit form depends on the

choice of the algebra AP(1,3), p = 0.3. Below ,we adduce a complete list of func-
tions Q. H= 0.3, ® corresponding to three-dimensional subalgebras of the Poincaré
algebra (7).

Li:0,=0 0=d

0, 0= ax;

r-u..
[ %]

T

I

Ly:0, =0 0 =ax+dx:
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Ly: 0y =—In|ax +dx|, 6,

® = (ax)?—(dx)%

0, =0, 8 = aln|ax +dx|.

Ls: 0y =—In|lax +dx|, 8; = 8, = 03 = 0, ® = cx;
Leg:08g=+bx,0,=0,=03=0, 0= cux;
L;:0p=+bx, 0, =0,=03=0, ®=-bx+In|ax +dx|;
Lg: 0, = aarctg[bx(cx)'], 8, = 6, = 0,

05 = —arctg [bx(cx) '], ©® = (bx)* + (cx)*:

L(): 9[] = 91 = 92 = O. 91 = —ax, O = d.\':
L|(|: en = 91 = 92 = 0. 93 = +d.\', W=ax,;

L]]:90=e]=91=0. 63

—% (dx +ax), ® = ax +dx;

1l

Lip:09=0;=0;3

1]
1]

1 :
0, 6, +E(b_r —oex)(ax +dx)" ', ® = ax +dx:

L|3: 90"—" 97 — 93 - 0, 9]

1
+5 cx, O =qax +dx;

L]_;Z 9;,= e':- = 63 =10, 9[

1]

—% (ax +dx), ® = 4bx —(ax +dx)%

Fogs b= B = 83200, —%(a.ud,r).

® = 4(abx —cx)—o(ax +(f.l‘)2:
Lig: 8¢ = —In|ax +dx|, 0, = 6, = 0, 83 = —arctg [bx(cx)'],

® = (bx)* + (cx)%:

Eoie s = 0007 = 1L_l_ cx +(a+ax +dx)bx )
2 1+ (ax+dx) o +ax+dx)
1 X —cx(a. X
6, = -= b ~epax i) .03 =0, = ax +dx;
2 1+(ax+dx)(@+ax+dx)
Lig: 05 =—In|ax +dx|, 8, = +% T! .0, =03=0
ax+dx
o = (ax)?-(bx)? - (dx)%
Lig: 05 =—Inl|ax +dx|, 8, = +% Ti ,0,=03=0, 0 = cx
ax+dx
Loy: 09 = —In|ax +dx|, 8; = . =0, =0

2 ax+dx ’

® = cx+Inlax +dx|;

_ 1 —bx+In|ax—dx]|

L'_:g]: G” = —lnla.t +d.\'|, 9; = 0, = eq =0
2 ax+dx - :
o = cx+aln|ax +dx]|;
1 bx 1 ex
Lor: 8y =—In|lax +dx|, 8, = += , 0, = += 1
2 v | | l 2 ax—-dx . 2ax—-dx
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05 = aln|ax +dx|, © = (ax)* - (bx)? - (cx)? —(a‘x)z.
Here, ax=ayx¥, bx=b,x¥, cx=c 1, dx=dyx*, p=0.3.

Note. Ansatzes invariant under subalgebras L3, Loy, Los, Lag, Lo7  yield so-
called partially-invariant solutions (the term was introduced by L. V. Ovsyannikov [8])
which cannot be represented in the form (13) and are not considered here.

Substitution of ansatzes (13), (14) into system of PDE (1) demands very cumber-
some computations. This is why we omit these and adduce only the final result-system
of ordinary differential equations for B, ().

General form of the reduced system is the following:

. 1 - ==
wv = EEN\-(ILSI a[!‘ M,v= 0.3, (15)

]

where
Ty = Gu(®)By ~Gy B, —H .\ (©)BY + eB, x B,
and functions (}H(m}. Hm,.f(m) are calculated according to the following formulae:

Gp(m) = Q\'I,.IU).\","

!‘(p\:?(m) = QﬁQay.ruQﬁ\' - Q?Qa'f.rﬁQﬁp'
In the above formulae, overdot means differentiation with respect 1o @.
Thus, the form of the reduced equations for functions éu((ﬂ) depends on the
explicit forms of funcl_ions Gu(m). pr(m). Below, we adduce a list of these func-
tions corresponding to ansatzes (13), (14).

Ly: Gy = —dy Hyyy = 0;

Ly: Gy =ay Hyyy=0

L;Z GH = ku* “'H\"l' = 0

Ly: Gy = elay—d,+ky0), Hyyy = —el(ayd,-dya,)ky+
+ 0L(ky(bycy — c by ) — ky(byey — e b))

e(aydy—dyay)ky

L

Ls: Gy = +cy, Hyyy
Lg: Gy = +cy Hyyy = —(aydy—ad )b, + (aydy—ayd,)by,;
Ly: Gy = -b,+¢eky, Hyyy = —(aydy—a,d,)b, + (aydy—a.d,)b,;

Lg: Gy = +2cyV@, Hyyy = %@{(c}lb\,-—cvb}l)b.ﬁ

+of(dya,- ayd)b, - (d,ay—a,d)b, 1}:
= —dy. Hyyy = —ay(bycy—cyby) + ay(bycy—cyby);
Lyo: Gy = ay, Hyyy = (bycy—cybyd, - (byey—cyby)dy;

5 1
Lyy: Gy =ay—dy, Hyyy = = [(bvcry— cvby)by, - (bycy— (.'p!'JT)bV];
1
Liz: Gy = kyo Hyvy = — {Chuby—kyby)by -

—(I[(k“h.f— kybu)(.'v-—(k\.b.{—kyb\.)cp]}:
Lijz: Gy = ky. Hyvy = (kyby=kyby)ey— (kyey—kyby) ¢y
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1
Lis: Gy = +4b,, H,\\ = "i“’ukv—hvkll)k"f:
1

Lis: Gy = 4(cy—aby). Hyyy = < (byky—byky)ky:
Lig: G, = +2¢ Vo, H ., = e(ayd,—ay,d)k, —L(b cy—cyuby)by:

50 U 1 pvy plv= dvdpliy = 7= (Op i Y

1

L]ji GP = kl.-l‘ ”I"u.? = m {z(b\'(‘p'_hpc\«‘)k‘f"'

+ (kyey—kyc by + (kyb, — kyby)c,+
+ (0 + ) (k, by = kyb )b O(kycy—kycp)ey}s

Lig: Gy = e(ky,®+a,~d,), H . e](kpbv—k\,bp)b.f+

pvy

+(audy—kyby)k,l:
Lig: Gy = + ¢y Hyyy = el(kyby—kyb )b, + (aydy—aydyk,);

Ly: Gy = +cy+eky, Hyyy = £[(aud\.—-avdp}k.f+ {kubv—k\.b}l)bTJ:

Ly : Gy = +cy +eoky, Hyyy = el(aydy—aydyky+
+ (kyby = kyby)by— (kb - kvb”)k.f_]:
Ly: Gy = e(kyw+ay,—dy), Hyyy = e{(kyby—kyby )b, +

+ (kyoy= koo, v al(by eo—ie b, e, ~(bye, =, bk, 1+ (aydy~a,dy k]
Here, ky=a,+dy, €=1 for ax+dx>0 and e=~1 for ax+dx<0.

Thus, using symmetry properties of the self-dual Yang — Mills equations and sub-
algebraic structure of the Poincaré algebra, we reduced system of PDE (1) to the sys-
tem of ordinary differential equations (15). Let us emphasize that system (15) contains
nine equations for twelve functions, which means that it is underdetermined. This fact
simplifies essentially finding its particular solutions.

If one constructs a solution of one of equations (15) (general or particular), then
substitution of the obtained result into the corresponding ansatz from (13). (14) yiclds
an exact solution of the nonlinear self-dual Yang — Mills equations (1). We intend to
study in detail the reduced system of ordinary differential equations (15) and construct
new classes of exact solutions of equations (1) but this will be a topic of our future
publication.
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