Yu. M. Arlinskii, cand. phys.-math. sci. (East-Ukr. State Univ., Lugansk)

ON PROPER ACCRETIVE EXTENSIONS OF POSITIVE LINEAR RELATIONS

ПРО ВЛАСНІ АКРЕТИВНІ РОЗШИРЕННЯ ДОДАТНИХ ЛІНІЙНИХ ВІДНОШЕНЬ

A linear relation \tilde{S} is called a proper extension of a symmetric linear relation S if $S \subset \tilde{S} \subset S^*$. As is well known, an arbitrary dissipative extension of a symmetric linear relation is proper.

In the paper criterions for accretive extension of a given positive symmetric linear relation to be proper are established.

Лінійне відношення \tilde{S} називається властивим розширенням симетричного лінійного відношення S, якщо $S \subseteq \tilde{S} \subseteq S^*$. Як відомо, довільне дисипативне розширення симетричного лінійного відношення є властивим.

Одержані критерії того, що акретивне розширення даного додатного відношення ϵ власти-

1. Introduction. Let H be a complex Hilbert space and let $H^2 = H \oplus H$ be the set of all pairs $\langle u, u' \rangle$, $u, u' \in H$, with the inner product

$$(\langle u, u' \rangle, \langle v, v' \rangle) = (u, v) + (u', v'), \quad \langle u, u' \rangle, \langle v, v' \rangle \in H^2.$$

As is well known [1], a closed subspace $S \subseteq H^2$ is a linear relation (l.r.) or a multivalued linear operator. If T is a closed linear operator in H, then its graph $Gr(T) = \{\langle u, Tu \rangle, u \in \mathfrak{D}(T)\}$ is a l.r.

Basic concepts connected with l.r. can be found in [1]. In particular, $\mathfrak{D}(S) = \{u \in H : \langle u, u' \rangle \in S \text{ for some } u' \in H\}$ is the domain of S, $S(u) = \{u' \in H : \langle u, u' \rangle \in S\}$, the subspace $S^* = H^2 \ominus JS$, where $J\langle x, x' \rangle = \langle -x', x \rangle$ for all $\langle x, x' \rangle \in H^2$, is called the adjoint of S.

A l.r. S will be called

- a) symmetric if $S \subseteq S^*$:
- b) selfadjoint if $S = S^*$;
- c) positive if $(S(u), u) \ge 0$ for all $u \in \mathcal{D}(S)$;
- d) dissipative if $\operatorname{Im}(\mathbf{S}(u), u) \ge 0$ for all $u \in \mathcal{D}(\mathbf{S})$;
- e) accretive if Re $(S(u), u) \ge 0$ for all $u \in \mathcal{D}(S)$;
- f) α -sectorial if S is accretive and $|\operatorname{Im}(S(u), u)| \le \operatorname{tg} \alpha \operatorname{Re}(S(u), u)$ for all $u \in \mathfrak{D}(S)$, where $\alpha \in [0, \pi/2)$;
 - g) m-accretive if both S and S^* are accretive;
 - h) $m \alpha$ -sectorial if S is m-accretive and α -sectorial.

A l.r. \tilde{S} will be called a proper extension of a symmetric l.r. S if $S \subset \tilde{S} \subset S^*$.

It is well known [2] that an arbitrary dissipative extension of a symmetric 1.r. is proper.

In this paper, criteria for an accretive or α -sectorial extension of a positive l.r. to be proper are established.

Assume that S is a positive l.r., the sesquilinear form (S(u), v), $u, v \in \mathfrak{D}(S)$, has the closure [1, 3] defined on a certain lineal $\mathfrak{D}[S] \supseteq \mathfrak{D}(S)$, its values are denoted by S[u, v], $u, v \in \mathfrak{D}[S]$, and S[u] = S[u, u].

Let S_F and S_N be the Friedrichs and von Neumann positive selfadjoint extensions of S [1]. For an arbitrary positive selfadjoint extension \tilde{S} of S, we have $\mathfrak{D}[S] = S$

 $= \mathfrak{D}[S_F] \subseteq \mathfrak{D}[\tilde{S}] \subseteq \mathfrak{D}[S_N], \ \tilde{S}[u] = S_F[u] = S[u] \text{ for all } u \in \mathfrak{D}[S], \ S_N[u] \le \le \tilde{S}[u] \text{ for all } u \in \mathfrak{D}[\tilde{S}]$ [4].

Assume that $\omega[u]$ is a positive functional on the lineal \mathfrak{D} and $\mathfrak{D}_0 \subset \mathfrak{D}$. For $u \in \mathfrak{D}$, we set

$$\langle \omega[u] \rangle_{\mathfrak{D}_0} = \inf \{ \omega[u - u_0], u_0 \in \mathfrak{D}_0 \}.$$

If Θ is an α -sectorial l.r., then the quadratic forms

Re
$$(\Theta(u), u)$$
, Re $[(1 \pm i \operatorname{ctg} \alpha)(\Theta(u), u)] = \operatorname{Rc}(\Theta(u), u) \mp \operatorname{ctg} \alpha \operatorname{Im}(\Theta(u), u)$ are positive on $\mathfrak{D}(\Theta)$.

We will prove the following theorems:

Theorem 1. Let S be a positive l.r. and let \tilde{S} be an accretive extension of S. The following statements are equivalent: 1) $\tilde{S} \subseteq S^*$; 2) $\mathfrak{D} [\tilde{S}] \subseteq \mathfrak{D} [S_N]$ and $\operatorname{Re} (\tilde{S}(v), v) \geq S_N[v]$ for all $v \in \mathfrak{D} (\tilde{S})$; 3) $|(S(u), v)|^2 \leq (S(u), u) \operatorname{Re} (\tilde{S}(v), v)$ for all $u \in \mathfrak{D}(S)$, $v \in \mathfrak{D}(\tilde{S})$.

Theorem 2. Let S be a positive l.r. and let $\Theta \subseteq S^*$ be m-accretive. The following statements are equivalent: 1) $\Theta \supseteq S$; 2) $\mathfrak{D}(\Theta) \subseteq \mathfrak{D}[S_N]$ and $\operatorname{Re}(\Theta(v), v) \ge S_N[v]$ for all $v \in \mathfrak{D}(\Theta)$; 3) $|(S(u), v)|^2 \le (S(u), u) \operatorname{Re}(\Theta(v), v)$ for all $u \in \mathfrak{D}(S)$, $v \in \mathfrak{D}(\Theta)$.

Theorem 3. Suppose that S is a positive l.r. and Θ is an α -sectorial extension of S. The following statements are equivalent:

- 1) $\Theta \subseteq S^*$;
- 2) $\langle \operatorname{Rc} \left[(1 i \operatorname{ctg} \alpha)(\Theta(v), v) \right] \rangle_{\mathfrak{D}(S)} + \langle \operatorname{Rc} \left[(1 + i \operatorname{ctg} \alpha)(\Theta(v), v) \right] \rangle_{\mathfrak{D}(S)} = 2 \langle \operatorname{Rc} \left[(1 + i \operatorname{ctg} \alpha)(\Theta(v), v) \right] \rangle_{\mathfrak{D}(S)}$
- $= 2 \left\langle \operatorname{Re} \left(\Theta(v), v \right) \right\rangle_{\mathfrak{D}(S)} \text{ for all } v \in \mathfrak{D}(\Theta);$
 - 3) the sesquilinear form

$$\omega[u,v] = (\Theta(u),v) - \mathbf{S}_N[u,v]$$

is α -sectorial on $\mathfrak{D}(\Theta)$.

2. Preliminaries. A) Let S be a l.r. and let

$$\mu(S) = \{ \langle u + u', u - u' \rangle, \langle u, u' \rangle \in S \}$$

be a fractional-linear transformation (f.-l.t.).

It possesses the properties $\mu(\mu(S)) = S$, $\mu(S^*) = (\mu(S))^*$, $\mu(S_1) \subseteq \mu(S_2)$ if $S_1 \subseteq S_2$.

One can easily check that **S** is accretive (positive) if and only if $\mu(S) = Gr(T)$, where T is a contraction (Hermitian contraction) and **S** is m-accretive (positive self-adjoint) if and only if T is defined on H (selfadjoint contraction).

B) Assume that A is an Hermitian contraction defined on the subspace $\mathfrak{D}(A) \subseteq H$. M. G. Krein in [5] described the set of all selfadjoint contractive (sc) extensions of A as the operator segment $[A_{\mu}, A_{M}]$, where A_{μ} and A_{M} are the so-called hard and soft sc-extensions of A, i.e., unique sc-extensions possessing the properties: for all $f \in H$

$$\inf\left\{\left((I+A_{\mathfrak{u}})(f-\varphi),f-\varphi\right),\ \varphi\in\mathfrak{D}(A)\right\}=0,\tag{1}$$

$$\inf \left\{ \left((I - A_M)(f - \varphi), f - \varphi \right), \ \varphi \in \mathfrak{D}(A) \right\} = 0. \tag{2}$$

A linear operator T defined on H is called a quasiselfadjoint contractive (qsc) extension of a Hermitian contraction A if

$$T \supset A$$
, $T^* \supset A$, $||T|| \leq 1$.

In [6, 7], it was obtained that the formula

$$T = (A_M + A_u)/2 + (A_M - A_u)^{1/2} X (A_M - A_u)^{1/2}/2$$
 (3)

establishes a bijective correspondence between the set of all qsc-extensions of A and the set of all contractions X in the space $\mathfrak{N}_0 = \overline{(A_M - A_\mu)H}$ and, if $A_\mu = A_M$, then A has a unique qsc-extension (the symbol $B^{1/2}$ denotes the positive square root of the positive selfadjoint operator B).

Let

 $\mathfrak{N} = H \ominus \mathfrak{D}(A), \quad H_0 = \overline{(I + A_M)H}, \quad \mathfrak{M} = \{ \varphi \in H_0 : (I + A_M)^{1/2} \varphi \in \mathfrak{N} \}$ and let $(I + A_M)_{\mathfrak{N}}$ be the "shorted operator" [5, 8]. Then, for all $f \in H$,

$$((I + A_M)_{\mathfrak{N}} f, f) = \inf \{ ((I + A_M)(f - \varphi), f - \varphi), \varphi \in \mathfrak{D}(A) \} =$$

$$= ((I + A_M)^{1/2} P_{\mathfrak{M}} (I + A_M)^{1/2} f, f),$$

where $P_{\mathfrak{M}}$ is the orthogonal projection onto \mathfrak{M} . From (1), $(I + A_M)_{\mathfrak{N}} = A_M - A_{\mathfrak{U}}$.

Consequently, $(A_M - A_{\mu})^{1/2} = UP_{\mathfrak{M}} (I + A_M)^{1/2}$, where U is the unitary operator from \mathfrak{M} onto \mathfrak{N}_0 .

Hence, (3) implies the following descriptions of qsc-extensions:

$$T = A_M + (I + A_M)^{1/2} (Y - I) P_{\mathfrak{M}} (I + A_M)^{1/2} / 2, \tag{4}$$

where Y is an arbitrary contraction in \mathfrak{M} .

C) Let **S** be a positive 1.r. Then $\mu(S) = Gr(A)$, where A is an Hermitian contraction, $\mathfrak{D}(A) = (S + I)\mathfrak{D}(S)$. In [5, 1], it was established that the following equalities hold:

$$\mu(\mathbf{S}_F) = \operatorname{Gr}(A_{\mu}), \quad \mu(\mathbf{S}_N) = \operatorname{Gr}(A_M).$$

Put $A_{M}^{0} = A_{M} [H_{0}, (I + A_{M}^{0})^{-1/2}]$ to be the inverse of $(I + A_{M})^{1/2}$ in H_{0} . Since $S_{N} = \{ \langle (I + A_{M})f, (I - A_{M})f \rangle, f \in H \}$, we get, for $v = (I + A_{M})f$,

$$(S_N(v), v) = ((I - A_M)f), (I + A_M)f) = -\|(I + A_M)f\|^2 + 2\|(I + A_M)^{1/2}f\|^2 =$$

$$= -\|v\|^2 + 2\|(I + A_M^0)^{-1/2}v\|^2.$$

Therefore, $\mathfrak{D}[S_N] = (I + A_M)^{1/2} H = (I + A_M^0)^{1/2} H_0$ and

$$S_N[v] = -\|v\|^2 + 2\|(I + A_M^0)^{-1/2}v\|^2$$
(5)

for all $v \in \mathfrak{D}[S_N]$.

D) Assume that \tilde{S} is an accretive l.r. Then $\mu(\tilde{S}) = Gr(\tilde{T})$, where \tilde{T} is a contraction, $\mathfrak{D}(\tilde{T}) = (\tilde{S} + I) \mathfrak{D}(\tilde{S})$, and

$$\tilde{\mathbf{S}} = \{ \langle (I + \tilde{T}) f, (I - \tilde{T}) f \rangle, f \in \mathcal{D}(\tilde{T}) \}.$$

Hence, for $v = (I + \tilde{T}) f$, $f \in \mathfrak{D}(\tilde{T})$, we have

$$(\tilde{S}(v), v) = -\|v\|^2 + 2(f, (I + \tilde{T})f).$$
(6)

E) Let Θ be a densely defined α -sectorial operator.

In accordance with [3], the Friedrichs $m - \alpha$ -sectorial extension of Θ_F is the operator associated with the closure of the sesquilinear form $(\Theta u, v)$, $u, v \in \mathcal{D}(\Theta)$, $\mathcal{D}[\Theta] = \mathcal{D}[\Theta_F]$.

If Θ is an α -sectorial l.r., then

$$\Theta = Gr(\Theta) \oplus \langle 0, \Theta(0) \rangle$$

where Θ is an α -sectorial closed operator (the operator part of Θ). Put $\mathfrak{H}_0 = \overline{\mathfrak{D}(\Theta)}$, π_0 to be the orthogonal projection onto \mathfrak{H}_0 , $\Theta_0 = \pi_0 \Theta$. Let Θ_{0F} be the Friedrichs extension of Θ_0 in \mathfrak{H}_0 . Put

$$\Theta_F = \operatorname{Gr}(\Theta_{0F}) \oplus \langle 0, \mathfrak{H}_{\mathbf{0}}^{\perp} \rangle.$$

where $\mathfrak{H}_0^{\perp} = H \Theta \mathfrak{H}_0$.

Clearly, $\Theta(0) \subseteq \mathfrak{H}_{0}^{\perp}$ and Θ_{F} is an $m - \alpha$ -sectorial extension of Θ . We will call Θ_{F} the Friedrichs extension of Θ . It readily follows from the definition that

$$\mathfrak{D}\left[\Theta\right] \,=\, \mathfrak{D}\left[\Theta_F\right], \quad \Theta\left[u,v\right] \,=\, \Theta_F\left[u,v\right] \,=\, \Theta_{0F}\left[u,v\right], \quad u,v \in \,\mathfrak{D}\left[\Theta\right].$$

F) Let \tilde{S} be an $m-\alpha$ -sectorial l.r. Then

$$\tilde{\mathbf{S}} = \operatorname{Gr}(\tilde{S}) \oplus \langle 0, \tilde{\mathbf{S}}(0) \rangle,$$

where \tilde{S} is an $m - \alpha$ -sectorial operator in the subspace $\mathfrak{H} = \overline{\mathfrak{D}(\tilde{S})}$.

In accordance with [3], the operator \tilde{S} has the representation

$$\tilde{S} = \tilde{S}_R^{1/2} (I + i\tilde{G}) \, \tilde{S}_R^{1/2},$$

where \tilde{S}_R is the positive selfadjoint operator associated with the positive form $b[u, v] = \left(\tilde{S}[u, v] + \overline{\tilde{S}[v, u]}\right)/2$, $G = G^*$, $||G|| \le \operatorname{tg} \alpha$ is an operator in the subspace $\overline{\mathcal{R}(\tilde{S}_P^{1/2})}$, and

$$\mathfrak{D}[\tilde{\mathbf{S}}] = \mathfrak{D}[\tilde{\mathbf{S}}] = \mathfrak{D}(\tilde{\mathbf{S}}_R^{1/2}).$$

G) Let S_N be the von Neumann extension of the positive l.r. S. Passing to the operator part S_N and using the relation established in [4], one can prove that, for all $v \in \mathcal{D}[S_N]$.

$$\sup \{ |(\mathbf{S}(u), v)|^2 / (\mathbf{S}(u), u), u \in \mathcal{D}(\mathbf{S}) \} = ||S_N^{1/2} v||^2,$$
 (8)

and $\mathfrak{D}[S_N] = \mathfrak{D}[S_N^{1/2}]$ consists of all vectors v, for which the left-hand side of (8) is finite.

H) Let $\tilde{\mathbf{S}}$ be an $m - \alpha$ -sectorial extension of the positive l.r. \mathbf{S} and let \tilde{S} be the operator part of $\tilde{\mathbf{S}}$. Using (7) for $v \in \mathfrak{D}(\tilde{S}_R^{1/2})$, $u \in \mathfrak{D}(\mathbf{S})$, we get

$$(S(u), v) = (\tilde{S}(u), v) = (\tilde{S}_R^{1/2}(I + i\tilde{G})\tilde{S}_R^{1/2}u, v) = (\tilde{S}_R^{1/2}u, (I - i\tilde{G})\tilde{S}_R^{1/2}v).$$

Denote by $\tilde{\pi}$ the orthogonal projection onto the subspace $(\tilde{S}_R^{1/2})\mathfrak{D}(S)$. Taking into account the above relation, we obtain, for all $v \in \mathfrak{D}[\tilde{S}]$,

$$\sup \{ |(\mathbf{S}(u), v)|^2 / (\mathbf{S}(u), u), u \in \mathcal{D}(\mathbf{S}) \} = ||\tilde{\pi}(I - i\tilde{G}) \tilde{S}_R^{1/2} v||^2.$$
 (9)

Therefore, $\mathfrak{D}[\tilde{\mathbf{S}}] \subseteq \mathfrak{D}[\mathbf{S}_N]$ and, from (8), (9),

$$\|S_N^{1/2}v\|^2 = \|\tilde{\pi}(I - i\tilde{G})\tilde{S}_R^{1/2}v\|^2 \quad \text{for all } v \in \mathcal{D}[\tilde{S}]. \tag{10}$$

I) The following lemma will be used in the proof of the Theorem 3:

Lemma. Suppose that F is a selfadjoint contraction in H, \mathfrak{L} is a subspace in H, and $P_{\mathfrak{L}}$ is the orthogonal projection onto \mathfrak{L} . The following statements are equivalent:

- 1) \mathfrak{C} reduces F;
- 2) $(I-F)_{\mathbb{C}} + (I+F)_{\mathbb{C}} = 2P_{\mathbb{C}}$, where $(I \pm F)_{\mathbb{C}}$ are "shorted operators".

Proof. Put $\mathfrak{L}^{\perp} = H \ominus \mathfrak{L}$, $\mathfrak{H}_{\pm} = H \ominus (I \pm F)^{1/2} \mathfrak{L}^{\perp}$, P_{\pm} to be orthogonal projections onto \mathfrak{H}_{\pm} . By the definition [5, 8], $((I \pm F)_{\mathfrak{L}} f, f) = \inf \{ ((I \pm F)(f - \varphi), f - \varphi), \varphi \in \mathfrak{L}^{\perp} \} = \|P_{\pm}(I \pm F)^{1/2} f\|$ for all $f \in H_{\pm}$.

1) \Rightarrow 2). If $F \mathcal{R} \subseteq \mathcal{R}$, then $F \mathcal{R}^{\perp} \subseteq \mathcal{R}^{\perp}$. Therefore,

$$||P_{\pm}(I \pm F)^{1/2}f||^2 = ||(I \pm F)^{1/2}P_{\mathcal{Q}}f||^2,$$

$$((I + F)_{\mathcal{Q}}f, f) + ((I - F)_{\mathcal{Q}}f, f) =$$

$$= ||(I + F)^{1/2}P_{\mathcal{Q}}f||^2 + ||(I - F)^{1/2}P_{\mathcal{Q}}f||^2 = 2||P_{\mathcal{Q}}f||^2, f \in H.$$

 $(2) \Rightarrow 1)$. For all $f \in H$, we have

$$||P_{+}(I+F)^{1/2}f||^{2} + ||P_{-}(I-F)^{1/2}f||^{2} = 2||P_{\mathfrak{C}}f||^{2}.$$
 (11)

Substituting $f \in \mathbb{C}$ in (11), we obtain

$$\begin{split} 2\|f\|^2 &= \|P_+(I+F)^{1/2}f\|^2 + \|P_-(I-F)^{1/2}f\|^2 \le \\ &\le \|(I+F)^{1/2}f\|^2 + \|(I-F)^{1/2}f\|^2 = 2\|f\|^2. \end{split}$$

Consequently, $P_{\pm}(I \pm F)^{1/2} f = (I \pm F)^{1/2} f$ for all $f \in \mathfrak{C}$. Hence, $F\mathfrak{C} \subseteq \mathfrak{C}$ Q.E.D.

- **3. Proof of Theorem 1.** Suppose that A and \tilde{T} are f.-l.t. of S and \tilde{S} respectively. Then \tilde{T} is a contractive extension of the Hermitian contraction A. Denote by \tilde{H} the domain of \tilde{T} an let \tilde{P} be the orthogonal projection onto \tilde{H} .
- 1) \Rightarrow 2). For all $f \in \tilde{H}$ and $\varphi \in \mathfrak{D}(A)$, we have the equality $(\tilde{T}f, \varphi) = (f, A\varphi)$. Therefore [9], there exists a contractive extension T of \tilde{T} on H such that $T^* \supset A$. This means that T is a qsc-extension of A. Put $\Theta = \mu(Gr(T))$. Then Θ is an m-accretive proper extension of S, $\mathfrak{D}(\Theta) = (I + T)H$, $\Theta \supseteq \tilde{S}$. From (4),

$$I + T = (I + A_M)^{1/2} (I + 1/2(Y - I)P_{\mathfrak{M}}) (I + A_M)^{1/2},$$

where Y is the contraction in \mathfrak{M} .

From (5) and (6), for $v = (I + \tilde{T}) f = (I + T) f$, $f \in \tilde{H}$, we get

$$\operatorname{Re}\left(\tilde{\mathbf{S}}(v), v\right) - \mathbf{S}_{N}[v] = 2\operatorname{Re}\left((I+T)f, f\right) - 2\|(I+A_{M}^{0})^{-1/2}(I+T)f\|^{2} =$$

$$= 2\operatorname{Re}\left((I+1/2(Y-I)P_{\mathfrak{M}})(I+A_{M})^{1/2}, (I+A_{M})^{1/2}f\right) -$$

$$-2\|(I+1/2(Y-I)P_{\mathfrak{M}})(I+A_{M})^{1/2}f\|^{2} =$$

$$= 1/2(\|P_{\mathfrak{M}}(I+A_{M})^{1/2}f\|^{2} - \|YP_{\mathfrak{M}}(I+A_{M})^{1/2}f\|^{2}) > 0.$$

2) \Rightarrow 1). Relations (5) and (6) imply $(I + \tilde{T})\tilde{H} \subseteq (I + A_M)^{1/2}H$,

$$\operatorname{Re}(f, (I + \tilde{T})f) \ge \|(I + A_M^0)^{-1/2}(I + \tilde{T})f\|^2, f \in \tilde{H}.$$
 (12)

Put $Q = \tilde{P} \tilde{T}$. Then Q is a contraction in \tilde{H} , $Q_R = (Q + Q^*)/2$ is a selfadjoint contraction in \tilde{H} .

Inequality (12) can be rewritten as

$$\|\left(I+Q_{R}\right)^{1/2}f\|^{2}\geq\|\left(I+A_{M}^{0}\right)^{-1/2}(I+\tilde{T})f\|^{2},\ \ f\in\ \tilde{H}.$$

Hence, $(I + A_M^0)^{-1/2}(I + \tilde{T})f = W(I + Q_R)^{1/2}f$, $f \in \tilde{H}$, where W is a contraction. Furthermore, we have, for all $f \in \tilde{H}$,

$$\|(I+Q_R)^{1/2}f\|^2 = \operatorname{Re}(f,(I+\tilde{T})f) = \operatorname{Re}(f,(I+A_M^0)^{1/2}W(I+Q_R)^{1/2}f) \le$$

$$\le \|(I+A_M)^{1/2}f\| \|(I+Q_R)^{1/2}f\|.$$

This implies $\|(I+Q_R)^{1/2}f\|^2 \le \|(I+A_M)^{1/2}f\|^2$, $f \in \tilde{H}$, or $Q_R \le \tilde{P}A_M |\tilde{H}$. For $\phi \in \mathcal{D}(A)$, $(Q_R \phi, \phi) = \text{Re}(\tilde{T}\phi, \phi) = (A\phi, \phi) = (\tilde{P}A_M \phi, \phi)$. Hence, $Q_R |\mathcal{D}(A) = \tilde{P}A$. Consequently, $Q^* |\mathcal{D}(A) = Q |\mathcal{D}(A) = \tilde{P}A$, i.e., Q is a qsc-extension in \tilde{H} of the Hermitian contraction $\tilde{P}A$. This yields $\text{Gr}(\tilde{T}) \subseteq (\text{Gr}(A))^*$ and $\tilde{S} \subseteq S^*$. $2) \Leftrightarrow 3$ is an immediate consequence of (8). Q.E.D.

- **4. Proof of Theorem 2.** 1) \Rightarrow 2) is a consequence of Theorem 1.
- $2) \Rightarrow 1$). Let T be a f.-l.t. of Θ . Then T is a contraction defined on H and $T^* \supseteq A$.

For $T_R = (T + T^*)/2$, using (5) and (6), we get

$$\|(I+T_R)^{1/2}f\|^2 \ge \|(I+A_M^0)^{-1/2}(I+T)f\|^2, f \in H.$$

As before, this inequality implies $T_R \le A_M$ and, in view of $T^* \supset A$, we have $T \mid \mathfrak{D}(A) = A$. Thus, $\Theta \supset S$.

- 2) \Leftrightarrow 3) is a corollary of (8). Q.E.D.
- 5. Proof of Theorem 3. Consider the Friedrichs extension \tilde{S} of Θ . Then \tilde{S} is $m \alpha$ -sectorial, $\mathfrak{D}[\tilde{S}] = \mathfrak{D}[\Theta] \subseteq \mathfrak{D}[S_N]$, and, for the operator part \tilde{S} ,

$$\tilde{\mathbf{S}} \ = \ \tilde{S}_R^{1/2} \big(I + i \tilde{G} \big) \, \tilde{S}_R^{1/2}, \quad \tilde{G} \ = \ \tilde{G}^*, \quad \left\| \ \tilde{G} \ \right\| \ \leq \ \mathrm{tg} \, \alpha.$$

Put $\mathfrak{C} = \overline{\mathcal{R}(\tilde{S}_R^{1/2})} \ominus \tilde{S}_R^{1/2} \mathfrak{D}(\mathbf{S})$, $\tilde{\pi}$, $P_{\mathfrak{C}}$ to be orthogonal projection onto \mathfrak{C}^{\perp} and \mathfrak{C} respectively.

A direct consequences of the definitions are the following relations for all $v \in \mathcal{D}(\Theta)$:

$$\left\langle \operatorname{Re}\left[(1 \pm i \operatorname{ctg} \alpha)(\Theta(v), v) \right] \right\rangle_{\mathfrak{D}(S)} = \left((I \mp \operatorname{ctg} \alpha \tilde{G})_{\mathfrak{C}} \tilde{S}_{R}^{1/2} v, \tilde{S}_{R}^{1/2} v \right), \quad (13)$$

$$\left\langle \operatorname{Re}\left(\Theta(v), v\right) \right] \right\rangle_{\mathfrak{D}(S)} = \left\| P_{\mathfrak{C}} \tilde{S}_{R}^{1/2} v \right\|^{2}. \tag{14}$$

Besides, for $u \in \mathcal{D}(S)$,

$$\|\tilde{S}_{R}^{1/2}u\|^{2} = \text{Re}(\tilde{S}(u), u) = (\tilde{S}(u), u) = ((I + i\tilde{G})\tilde{S}_{R}^{1/2}u, \tilde{S}_{R}^{1/2}u),$$

Hence,

$$\tilde{\pi}\,\tilde{G}\,\tilde{\pi} = 0. \tag{15}$$

1) \Rightarrow 2). Since Θ is accretive, from Theorem 1,

(16)

$$\operatorname{Re}(\Theta(v), v) \ge \|S_N^{1/2}v\|^2 \text{ for all } v \in \mathfrak{D}(\Theta).$$

Since $\mathfrak{D}(\Theta)$ is the core of the sesquilinear form $\Theta[u,v] = \tilde{S}[u,v]$, (16) implies that

Re
$$\tilde{\mathbf{S}}[v] \ge \|S_N^{1/2}v\|^2$$
 for all $v \in \mathfrak{D}[\Theta]$.

It follows from relation (10) that

$$\|\tilde{S}_{R}^{1/2}v\|^{2} \ge \|\tilde{\pi}(I-i\tilde{G})\tilde{S}_{R}^{1/2}v\|^{2}, v \in \mathfrak{D}[\Theta].$$

Therefore, the bounded selfadjoint operator

$$L = I - \left(I + i\tilde{G}\right)\tilde{\pi}\left(I - i\tilde{G}\right)$$

acting in the subspace $\overline{\mathcal{R}.(\tilde{S}_R^{1/2})}$ is positive. Using (15) for $\varphi = \tilde{S}_R^{1/2}u$, $u \in \mathfrak{D}(\mathbf{S})$, we have $(L\varphi, \varphi) = \|\varphi\|^2 - \|\varphi\|^2 = 0$. Consequently, $L\tilde{\pi} = 0$. This yields $\tilde{G}\tilde{\pi} = 0$. Thus, $\tilde{G}\mathfrak{X} \subseteq \mathfrak{X}$.

Now the lemma implies

$$(I - \operatorname{ctg} \alpha \, \tilde{G})_{\mathfrak{C}} + (I + \operatorname{ctg} \alpha \, \tilde{G})_{\mathfrak{C}} = 2P_{\mathfrak{C}}.$$

Hence, in view of (13) and (14), for $v \in \mathcal{D}(\Theta)$,

$$\langle \operatorname{Re} \left[(1 - i \operatorname{ctg} \alpha)(\Theta(v), v) \right] \rangle_{\mathfrak{D}(S)} + \langle \operatorname{Re} \left[(1 + i \operatorname{ctg} \alpha)(\Theta(v), v) \right] \rangle_{\mathfrak{D}(S)} =$$

$$= 2 \langle \operatorname{Re} \left(\Theta(v), v \right) \rangle_{\mathfrak{D}(S)}.$$

$$(17)$$

2) \Rightarrow 1). Let (17) be true for all $v \in \mathfrak{D}(\Theta)$. Since $\mathfrak{D}(\Theta)$ is the core of $\tilde{S}_R^{1/2}$, we have from (13), (14), and the lemma that $\tilde{G}\mathfrak{K} \subseteq \mathfrak{K}$.

Taking (15) into account, we get $\tilde{G} \tilde{\pi} = \tilde{\pi} \tilde{G} = 0$. Hence, from (10), for $v \in \mathfrak{D}(\Theta)$,

$$\mathbf{S}_{N}[v] = \left\| \left. S_{N}^{1/2} v \right\|^{2} = \left\| \left. \tilde{\pi} \left(I - i \tilde{G} \right) \tilde{S}_{R}^{1/2} v \right\|^{2} = \left\| \left. \tilde{\pi} \, \tilde{S}_{R}^{1/2} v \right\|^{2} \leq \operatorname{Re} \left(\Theta(v), v \right).$$

In accordance with Theorem 1, $\Theta \subseteq S^*$.

3) \Rightarrow 1). If ω is an α -sectorial form, then

$$\operatorname{Re}(\Theta(v), v) \geq S_N[v]$$
 for all $v \in \mathfrak{D}(\Theta)$.

Furthermore, we apply Theorem 1.

1) \Rightarrow 3). Since Θ is a proper accretive extension of S, from Theorem 1, $\mathfrak{D}(\Theta) \subseteq \mathfrak{D}[S_N]$. For all $u \in \mathfrak{D}[S_N]$ and $u_0 \in \mathfrak{D}(S)$, we have

$$\mathbf{S}_N[u,u_0] = (u,\mathbf{S}(u_0)).$$

Hence, it is easy to check that, for all $u \in \mathfrak{D}(\Theta)$ and $u_0 \in \mathfrak{D}(S)$, we have

$$\omega[u - u_0] = \omega[u]. \tag{18}$$

An immediate consequence of (8) is the relation

$$\inf \left\{ \mathbf{S}_{N}[u-u_{0}], u_{0} \in \mathfrak{D}(\mathbf{S}) \right\} = 0 \quad \text{for all} \quad u \in \mathfrak{D}[\mathbf{S}_{N}].$$

Therefore, for given $\varepsilon > 0$ and $u \in \mathcal{D}(\Theta)$, one can find $u_0 \in \mathcal{D}(S)$ such that $S_N[u-u_0] < \varepsilon$. Taking (18) into account, we obtain

$$\operatorname{Re} \omega[u] \pm \operatorname{ctg} \alpha \operatorname{Im} \omega[u] =$$