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ON PROPER ACCRETIVE EXTENSIONS
OF POSITIVE LINEAR RELATIONS

PO BJIACHI AKPETHBHI PO3IIHUPEHH A
JOOJATHHUX JITHIMHHUX BIJHOIIEHDL

A linear relation S is called a proper extension of a symmetric linear relation § if § C § C S™. As
is well known, an arbitrary dissipative extension of a symunetiic linear relation is proper.

In the paper criterions for accretive extension of a given positive symmetric linear relation to be
proper are established.

JligifiHe pigHOWIEHHS S HA3HBAETLCI BJIACTIBHM PO3LIMPCHHAM CHMETPHYNONO MiHIHHOrO BiHOMICH-

& * . . S
Ha S, axkmo S € S C S Ak BigoMO, JOBLABHE JIMCHITATHRHE POMIMPEHHS CHMET PHYHOIO JIIHIHHO-
r'o BIJHOLICHHA € BIACTHBHM.

Opeprxati KpuTepil TOro, 10 AKPETHBHE PO3MIHPEHIIA [[AHOrO O/IATHOIO BI/IHOIICHHA € BJIACTH-
BHM.

1. Introduction. Let A be a complex Hilbert space and let H 2= ® 1 be the set
of all pairs (., u”), u, 1" € I, with the inner product

o u’y, (0.7 = (e, )+ ('), (e u’) (v, v')e 117

As is well known [1]. a closed subspace S < H> is a linear relation (lLr.) or a
multivalued linear operator. If I is a closed linear operator in /[. then its graph
Gr(T) = {(u, Tu)yue H(D} isalr.

Basic concepts connected with Lr. can be found in {1]. 1n particular, O(S) =
= {uell: {u.u’ye S for some u’e H} isthe domainof S. S(u) = {u'e H:
(u,u’ye S}, the subspace S*=H>0JS, where J{(xr,x)={(—r"x) for all (x,
x)e H?, iscalled the adjoint of S.

A lr. § will be called

a) symmetric if § € S§*:

b) selfadjoint if S =8*:

¢) positive if (S(u),u)=0 forall ne H(S):;

d) dissipative if Im (8(u),1)=0 forall ne H(S):

e) accretiveif Re (S(u), 1) =0 forall ne H(S):

f) o-sectorial if § is accretive and | 1m (S(u), )| € tgoRe (S(n). 1) for all
ue H(S). where ove [0,7/2):

g) m-accretive if both S and S are accretive;

h) m — a-sectorial if § is m-accretive and o-sectorial.

Alr. § will be called a proper extension of a symmetric Lr. § it S § © §”.

It is well known [2] that an arbitrary dissipative extension of a symmetric Lr. is
proper.

In this paper, criteria for an accretive or o-sectorial extension of a positive Lr, to be
proper are established.

Assume that S is a positive Lr., the sesquilinear form (S(u).v), u, v € H(8),
has the closure [1, 3] defined on a certain lincal H[S] 2 H(S), its values are dc-
noted by S[u.v], nv,ve H[S]. and S{w]=S[u ).

Let Sy and Sy be the Friedrichs and von Neumann positive selfadjoint extensions

of S [1]. For an arbitrary positive selfadjoint cxtension S of S. we have HS]=
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=[Sl c OS] c DISK]. S[u]l=8Splu]l=8[u] forall ue H[S], Sylul<
< S[u] forall we H[S] 4. :

Assume that ®[«] is a positive functional on the lincal & and Dy H. For
we &, weset

{o[u ]>‘DO = inf{®[u—-uyl.uge Oy},

If © isan a-sectorial Lr., then the quadratic forms
Re(O(u), u)., Re[(1xictga)(O(u).u)] = Re(Ou).u) Fctg o Im (O(u), 1)
arc positive on H(0).

We will prove the following theorems:

Theorem 1. Ler S be a positive Lr. and let S be an accretive extension of S.
The following statements are equivalent: 1) §C 8" 2) H[S] c D[Sy] and
Re (S).v) 2Sylv] forall ve H(8): 3) [(S(w).v)[* < (S(w), wIRe(S(v),v)
forall ue H(S). ve H(S).

Theorem 2. Let S be a positive Lr. and let © C 8" be m-accretive. The
following statements are equivalent: 1) OD8: 2) H (O)c H[Sy] and
Re(O(v).v)2 Sy[v] forall ve H(O): 3) | (S(u)v)|? < (Su). u)Re(O(), v)
forall ue H(S), ve H(O).

Theorem 3. Suppose that S is a positive Lr. and © is an a-sectorial extension
of 8. The following statements are equivalent:

1y ecsh

2) (Re[(1~iectga)(©@®). v )]} gs)+(Re[(1+ictga)(O@), v )Dps) =
= 2{Re (O@).v)) nsy forall ve H(O):;

3y the sesquilinear form

olu.v] = (Ou).v) — Sylu.v]

is o-sectorial on d9(O).
2. Preliminaries. A) Let § bealr. and let

u(S) = {u+u'su—u. (uuye §}
be a fractional-linear transformation (f.-1.t.).
It possesses the propertics P{U($))=8. p(SH=(nESN™ n (8)) cu(S,) if
S, €8,.
Onc can easily check that § is accretive (positive) if and only if p(S)=Gr (I).
where 7 is a contraction (Hermitian contraction) and S is m-accretive (positive self-
adjoint) if and only if T is defined on /I (selfadjoint contraction).

B) Assume that A is an Hermitian contraction defined on the subspace (A) C H.
M. G. Krein in {5] described the set of all scifadjoint conrtactive (sc) cxtensions of A

as the operator scgment [ A A u b where A, and Ay arethe so-called hard and soft

sc-extensions of A, i.c..unique sc-cxtensions posscssing the properties: for all fe H
i {(+ADf-9)f-9) 9 D(A)} =0, (1
inf{ (I =A,)(f-0).f-0). g€ DA} = 0. 2)

A linear operator 7' defined on H is called a quasiselfadjoint contractive (qsc)
extension of a Hermitian contraction A if
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TDA T'DA |T| <1
In [6, 7], it was obtained that the formula

T = (Ay+A)/2 + (Ay—A) *X(A4y—-A4,)"2)2 3)

establishes a bijective correspondence between the set of all gsc-extensions of A and
the set of all contractions X in the space T, = (AM - AH)H and, if AH=AM, then

A has a unique gsc-extension (the symbol B!/ denotes the positive square root of the
positive selfadjoint operator B).
Let

N=HODA). Hy= (I+AnH, M= {oecH,: U+A,)!"? e N}
and let (/+ Ay )n be the “shorted operator” {5, 8]. Then, forall fe H,

(U+An ff) = inf{{(T+A)(f-9).f~0). o D(A)} =

= (U+ A 2P+ A 1),
where Pgy is the orthogonal projection onto M. From (1), (I+A min =4 M‘Ap'

Consequently, (A4,, -Au)“2 =UPyp (I + AM)“Z, where U is the unitary operator

from M onto, N,
Hence, (3) implies the followi- 1 descriptions of gsc-extensions:

T=Ay+U+A,)" (Y -DPuU+A,)"3/2, )

where Y is an arbitrary contraction in 1.
C) Let S bea positive L.t. Then u(S)=Gr(A), where A is an Hermitian con-

traction, & (A)= (S +I)D(S). In {5, 1], it was established that the following equal-
ities hold:

H(Sp) = Gr(A, ) W(Sy) = Gr(4y).
Put Ajy = A, |H,, (I+ A2 10 be the inverse of (F+ AV? in H,. Since
Sy = {{U+Ay)f U-Ay)f).fe HY, we get for v=(I+Ay)f.
(Sy()v) = (U=AF) U+ A = =IlT+ AFI? + 20+ A2 1P =
= —llvll2 + 21U+ AR ol
Therefore, H[Sy]= (1+AM)“2H =(I+ A)) 1/2H0 and

Snlv]l = =llvll® + 21| (7 + ad) ™12 (5)
forall ve D[Sy].

D) Assume that S is an accretive Lr. Then p(S)= Gr(T). where T isa
contraction, O (T)=(S+1)D(S), and

S = {{U+T)fd-T)f)fe (D)}
Hence, for v= I+ T)f, fe O(T). we have
(S).v) = ~lIvll* + 2(f U+ T)p). (6)

E) Let © be adensely defined a-sectorial operator.
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In accordance with [3], the Friedrichs m — a-scctorial extension of O is the op-
erator associated with the closure of the scsquilinear form (Ouw, v), u, v € H(O),
H[O]=H[O,].

If © isan a-sectorial Lr., then

0 = Gr(0) @ (0,60)),
where © isan o-sectorial closed operator (the operator part of ©). Put §, = £H(O),
Ty to be the orthogonal projection onto §, ©(=7,0. Let Oy be the Friedrichs
extension of ©y in . Put

O = Gr(8y) ®<0, D).
where @t =HO09,.
Clearly, ©0) ¢ @é and Op isan m— a-sectorial extension of ©. We will call
© the Friedrichs extension of ©. Itreadily follows from the definition that
H[O] = H[OF). Blu,v] = Oplu.v] = Oyplu.v]. w,ve H[O].
F) Let S bean m —a-sectorial Lr. Then

S = Gr(8) @0, SO),

where § isan m — o-sectorial operator in the subspace § = H(S).
In accordance with [3], the operator S has the representation
§ =S¥ +it)5y,
where SR is the positive selfadjoint operator associated with the positive form b[u,

v] = (S‘[u,v]+§[v, u])/2. G =G". || G|l<tga is an operator in the subspace

R (S¥?). and
H[S] = BS] = B(SK?).

G) Let Sy Dbe the von Neumann extension of the positive L.r. S. Passing to the
operator part Sy and using the relation cstablished in [4], one can prove that, for all

ve H[Sy].
sup {| (S (u), v)I*/ (SQu) 1), ue D)} = || ¥ ll? (8)

and O[Sy]=H[SY?] consists of all vectors v, for which the left-hand side of (8)
is finite.

H) Let S be an m — a-sectorial extension of the positive Lr. S and let S be the
operator part of S. Using (7) for v e B(S’}e/z). ne H(8), we get

(S(u).v) = (S(w),v) = (§,1¢I2(I+i(~})§é/2u,v) = (8Y%u, (I -iG) g}elzv).

Denote by 7 the orthogonal projection onto the subspace (S}f)D(S). Taking into
account the above relation, we obtain, forall ve O [S].

sup {| (S(u). v) |2/ (Su).u). ue HS)} = | & (1 —iG) 5y v )% ©)
Therefore, H[S] < H[Sy] and, from (8). (9),
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Il V2o l1> = 121 -i6) Sy vl|*  forall ve OH[S]. (10)

I) The following lemma will be used in the proof of the Theorem 3:
Lemma. Suppose that F is a selfadjoint contraction in H, L is a subspace in
H, and Pg is the orthogonal projection onto L. The following statements are

equivalent:
1) R reduces F;
2) U-F)o+(+F)g = 2Pg, where (I £ F)q are “shorted operators” .

Proof. Put R1=HOR, H,=HO (1+F)!2®* P, to be orthogonal projec-
tions onto g)i. By the definition [5. 8]. ((IxF)g f.f) = nf {({ X F)(f-).f-¢).
pe R} = [|P.UEF)2f| forall fe H,.

D=2). If F{ <&, then F{* < &+, Therefore,

1P P2 = |12 F)! 2Pg fII,
(U+F)ef.f) + (U-F)of.f) =
= [d+ PP fI* + 1 U-F)'PPo fII* = 2| PaflI%. fe H.
2) = 1). Forall fe H, we have

P a+ P2 AP + P =P 21 = 20l Po 1™ (11
Substituting fe K in (11), we obtain

AP = NP U+E) AP + (P d-E AR <
21t 112
Consequently, P, (/= F)""2f= (1+F)"2f forall fe ®. Hence. F® c® QE.D.

3. Proof of Theorem 1. Suppose that A and 7 aref.-Lt. of S and S respect-
ively. Then T is a contractive extension of the Hermitian contraction A. Denote by

< LA+ YR + [ =R AP

H the domainof T anlet P Dbe the orthogonal projection onto H .

1) = 2). Forall fe H and ¢ e (A), we have the cquality (Tf, @)= (f, Ag).
Therefore [9], there exists a contractive extension 7 of T on H such that T D A.
This means that T is a gsc-extension of A. Put ® =u(Gr(7)). Then © isan m-
accretive proper extensionof §, O @)=+ T)H, © D S. From (4),

I+T = (% A 2T+ 172(Y =DPg) T+ Ay)t'2,

where Y is the contraction in M.
From (5) and (6), for v=(I+ T)f=(I+T)f. fe H. we get

Re (S(),v) = Sy[v] = 2Re(U+ T)ff) = 2[[ U+ Ay) ' 2U+ T £l =
= 2Re ((I+ 1/2(Y =DPyp )T+ A3)' > (1 + Ap)' /2 f) -
=201+ 172V =D P + Ay 2 £ =
= 12Ul P+ Ay 2 1P = 1 YPp L+ Ap)" 2 £11%) > 0.

2) = 1). Relations (5) and (6) imply (I + T)F < (I+Ay)''?H,
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Re(f.U+T)f) 2 | (1+ )" Pu+ DHfl>. fe A, (12)
Put Q= PT. Then Q isa contraction in ., Qr=(Q+Q")/2 isa seltadjoml
contraction in H .
Inequality (12) can be rewritten as

N+Qp)' AP 2 U+ Al 2a+ TYAPR fe Al

Hence, (I+ AY) Y2+ T)f=W(+Qg)"*f fe H, where W is a contraction.

Furthermore. we have, for all fe .
7+ Qr) 211 = Re(f I+ T)f) = Re(f, (I+ AY)2W(I1+0p) " 2F) <
< T+ A) " AN+ ) 2 1L

This implies [| (7 + Q)" 2AI1* < (7 +A,) "I, fe M. or Qx< PAy|H. For

pe D(A). (Qre.¢) = Re(T). 9)= (A9, 9) = (PAy 9. ¢) Hence, Op|D(A)=

= PA. Consequently, 0" | D(A)=Q|H(A) = PA, ie., O is a gsc-extension in

H of the Hermitian contraction PA. This yields Gr(T) C (Gr(4))" and § € §".
2) < 3) is an immediate consequence of (8). Q.E.D.

4. Proof of Theorem 2. 1) = 2) is a consequence of Theorem 1.
2y=1). Let T beaf.-l.t. of ®. Then T is a contraction defined on H and

T" D A.
For Tp=(T+T")/2, using (5)and (6), we get

v

N+ TR)V2AR 2 1+ A 2a+ DA, fe H.

As before, this inequality implies 7 g <A, and. in view of 7" D A, we have

T|H(A)=A. Thus, © D S.
2) < 3) is a corollary of (8). Q.E.D.
5. Proof of Theorem 3. Consider the Friedrichs extension S of ©. Then S is

m —a-sectorial, H[S]=H[O] c H[Sy]. and, for the operator part S,
S = SY*(+i6)SY?, G=G6", |G| < 1ga.

Put X = J{(Sm) 0 SY2H(S), &, Py tobe orthogonal projection onto X+ and &

respectively.
A direct consequences of the definitions are the following relations for all

ve H(O):
(Re[(1ictga)(©@),v))pes) = (U Fegabg SF2v, SFv),  (13)
(Re (@) ) Das) = 1P S °v II”. (14)
Besides, for « e (S),
I K2l = Re (S(w).u) = (Stuhu) = ((I+iG) §%u. 5 %w),
Hence,
#Gw =0 (15)
1) = 2). Since © is accretive, from Theorem 1,
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Re (O(),v) = || S¥*v]|* forall ve H(@O). (16)

Since H(O) is the core of the sesquilinear form  ©[u, v] = S[u. v]. (16) implics
that

Re S[v] = i S¥2v||® forall ve H[O].
It follows from rclation (10) that
Il SFP0 112 2 1720 -iG) S ve DL
Therefore, the bounded selfadjoint operator
L=1-{+iG)7(U~-iG)
acting in the subspacc XK. (S’”Z) is positive. Using (15) for ¢ = 51/21, ue NH(S),

we have (L@, @) = ||(p||'——l|(pl|“ = (). Consequently, L& =0. This yields G & =

=0. Thus. G¥ c K.
Now the lemma implics

(I-ctgaG)ge + (I+ctgaG)g = 2Pg.
Hence, in view of (13) and (14), for v € & (©).
(Re [(1—ictga)(O),v))p sy + (Re[(1+ictga)(O®),v)Dp s =
= 2\Re(0().v))p s a7

2)=1). Let (17) be true for all v e H(O). Since O (O) is the core of S1/2,
have from (13), (14), and the lemma that GX < K.

Taking (15) into account, we get G 7 =#G =0. Hence. from (10), for v €
e H(O),

Snlvl = 1 S¥20l1? = 18U —i6) S 11* = | & S0 I < Re (O(),v).

In accordance with Theorem 1, © C §*.
3) = 1). If @ isan «a-sectorial form, then

Re(©O(v),v) = Sy[v] forall ve H(O).

Furthermore. we apply Theorem 1.
1) = 3). Since © is a proper accretive extension of S, from Theorem 1,

DOy = D[Sy]. Forall ue H[Sy] and uye H(S). we have
Sylu.ugl = (u.Suy)).
Hence, it is easy to check that, for all w e D (©) and uye H(S), we have
olu—uy] = olu]. (18)
An immediate consequence of (8) is the relation
inf{Sy[u—ugl,uge H(S)} =0 forall ue H[Sy].

Therefore, for given €>0 and w € H(O). one can find uye H(S) such that
Sylu—ug] <e Taking (18) into account, we obtain

Rew[u] £ ctgoImwlu] =
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