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MULTIPOINT BOUNDARY-VALUE PROBLEMS
WITH IMPULSE EFFECTS

MHOTOTOYKOBI KPAHOBI 3AIAYI
3 IMITYJIbCHOIO JI€I0

- By using pseudo-inverse matrices, existence and uniqueness conditions are obtained for solutions of
linear and weakly linear boundary-value problems for impulsive ordinary differential equations.

The case where the dimension of a differential system and the dimension of boundary conditions do
not coincide is considered.

Ha ocHOBI 11ceBA0OGCPHEHHX MaTPHLL OCPXKaHi YMOBH ICHYBaHHA Ta €IHHOCTi Po3B’A3KiB MiHiHHHX
Ta c/IaGKOHeJIIHITHHX KpaHoBHX 3a/ay4 AAA 3BHYAHNX aAndepeHuia/IbHIX PIBHAHB 3 IMITYJIBCHOIO
niero. Po3rJyisiHyTO BHIAJIOK, KOJH pO3MipHicTh Andepeniiia/IbHIX CHCTEM 1 PO3MipHiCTh KpaitoBHX
YMOB He CMiBIa/Ial0Th.

1. Introduction. We consider the linear matrix differcntial equation

= A()+f(1), telab). t#v, j=1p,
(1)

vie (a,b). a=1v) <v <...<V, <V, = b,

where A(¢) isan (2 x n)-matrix with elements continuous in [ a, b]. f(¢) is a first-
order discontinuous n-vector-function for r=v;. j=Lp. ie.

) = £, relvinvl f@)y=fi(a), j= Tp+l
We consider the problem of finding a first-order discontinuous n-vector-function
x(1)=x(1), te ]vj~l, v;] which is a solution of (1) and satisfies the boundary condi-
tions
p+l

> L) = h, @
j=1

where A is an arbitrary vector from R™. The linear operators /;€ C([v;_y, v;]; R "‘)
are represented by Stieltjes integrals

v
li(xj) = j [(l)y(s)]Cj(.v).\'j(s). Jj = Lp+l, 3)

i
where y;(s) = diag[y{l )... y,{,,,, (s)] are (m x m)-diagonal matrices, the elements
of which are functions of bounded variation in [v;_;, v;]. The elements of the

(m x n)-matrices C;(s) are continuous functions in [ vl i= Lp+l

In this paper, the existence and uniqueness of a soluuon of (1)—(3) and the corre-
sponding perturbed problem are proved. The most currently used fixed point theorem
in the theory of ordinary differential equations refers to a mapping F of a Banach
space.

Multipoint boundary-value problems are discussed in [1] with difference boundary
conditions, and in [3] from the viewpoint of the thcory of generalized functions. In
[4 ~ 6], by using a generalized Green’s operator, system (1) with division boundary and
impulsive conditions is considered. System (1). (2) and the perturbed problem are con-
sidered in [7] without an impulse cffect in the boundary conditions.

2. The differential system. The general solution of (1) has the form

;S
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t
x() = XX (9)x(s) + [ XOX @)fw)du, s.telab], @)

where X(¢) is a fundamental matrix of solutions of X =A(r)x with X(a@)=F, (E,

is the unit (n X n)-matrix). But f(z) is a discontinuous function. Solution (4) has the
representation

5 = XX (v,2)x(w_y) + j;] XX ) f (1) du,
(5)

te Jvi_y,v;], j= Lp+l.

We introduce the following notation: the (mx (p+ 1)n)-matrix M = [M,
M, ...M,, ], where

Vg
M, = [(X) = | [dy()]C)X(s) k= TpHl
Vi-1

. are (m X n)-matrices; the matrices

vj _ p+l Vi
Bis) = [[ayw]Cmxw), T(fy= Y [ B©X ©fnds. (©)
s ' j=1 Vi

Substituting (5) in the boundary conditions (2), (3), we obtain an algebraic system
with a solution x;(v;_;), j= Lp+1,

MIX w1 () X @D x0) . X )5 )] = k=1 D

If M~ is an arbitrary ((p + 1) n X m)-half-inverse matrix of M [2], then the

R®*D™ into

square ((p+1)nx(p+1)n)-matrix Py, =E—-M M is a projector of
the null space N(M) of M, ie. Py, :RP*D" s N(M). We represent the projector
matrix P, in a hypermatrix form P,, = (P PE...PEH I". where P, j=Lp+i

are (nx (p + 1) n)-matrices.
System (7) has a solution if and only if

(E';n_MM—)(h"l-(f)) =0. (8)
The general solution of (7) is 4
xi(wj_p) = X(v;_, ) Pipw + XN (R =T (), 9)

~ where w is an arbitrary (p +1)nx 1 vector, the elements of which are numbers and
N i j = Lp+1 are (nxm)-matrices from the hypermatrix form of M~ =

T

= [N,N,...N, 1"
Now we substitute (9) in (5) and obtain the general solution x°(r, w) of (1) — (3)

{ Law = x?(t,w), J=Lp+Lte]lv,_1v;]

‘ - v . (10
X0 (tw) = XOPGw + X(ON;(h=T(f) + jv,j., X)X ) f; (u)du (10

Theorem 1. A necessary and sufficient condition in order that problem (1) — (3)

have solutions is that (8) holds for any half-inverse matrix M ~. Solutions are given
by (10).

ISSN 0041-6053. Ykp. amam. xypu., 1995, m. 47, N° 6



772 L. I. KARANDJULOV

3. A perturbed system. Let Q be the domain ‘
Q ={(txe)|relab], llx]l<p. €e€l[0,g]}
We consider the perturbed system
¥ = AMx + f@t) +eg(t,x,e), t#v;, telab] (11

with the boundary conditions (2), (3). Besides, g(#, x, €) is a function from € into
R”, which is first-order discontinuous for r=v;, i =1,p, continuous with respect to
x, has a continuous derivative with respect to €, and satisfies the Lipschitz condition

lg(rx,e)-g(ry.e)ll < L(p.g)llx-yll (12)
uniformly with respect to ¢, €. The Lipschitz constant is a nonnegative, nondecreasing
function of p and €y such that L(p,g;) >0 as p =0, gg—> 0.

We substitute f+€g for f in (6), (7) and, since / is a linear operator, we obtain

-— —_ - T - -
MIX @) x,(9) X @) (v)) . X )51 ] = h = 1(f) - el (g).
(13)
Depending on the dimension of the matrix M and rank M, we consider two cases.
31 m=(p+1)n, detM=0, Mt =L L,.. LPH]T, L; — (n x m)-matrices.
In this case, system (13) has a unique solution
x;1) = X)) Li(h = T(f) - el(g), j= Lp+l. (14
By means of (5), we find the system of integral equations and determine the solution of
(11),(2), (3) )

x(t) = x(1), te ]vj_l. vj], j = Lp+l,

15)
t
%) = % () - eXOLT(g) + & [ X)X () g;(u, x; €)du,
Dj_]
where
()= X;(1), te Jv._,, vj], Jj = Lp+1,
(16)

t
(0 = XOLh-T() + [ XX @ fw)du.
Dj_,
Let Q[ a, b] be a Banach space of a first-order discontinuous function x(z) for

t=v;, i=Lp. withanorm |[x|| = max max |x;()|. Then the existence of
j=Lp te Vi .Y

constants g;, i=1, 8 and t€ [a, b] is fulfilled
NAON < g1 1XON < g2 1XTON S g3, 1M S ga,
O < g5, N2l < g6, IBi()Il < g7 at se [a, b), j= Lp+l, (A7)
” l_(f)” < ‘Zg, ”g(”xl 8)” < M(S) at (t,x, 8)6 Q.

Let F be an operator acting from the ball ||x||<p into Q and let it have the
form

F(x) = T()-eX@)LI(g(s,x, &) +e(Lg(u,x.v"1), (18)
where
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t
~ ~ ~ ~ ~ __] .
L=(pLys L) )0 = [ XOX @) o(u)du, 1€ 1v;_,v)]
l)j_‘

If x!(z) and xz(r) belong to the space Q[ a, b], then, by virtue of (17) and (18),
we get || F(x') = F(A) || <eql(p, go) llx' —x*|l. where ¢ = 293(qaq7 + 1) (b~
—a). But 0 <e<< 1. Then there exists a constant 8 € (0, 1) such that eqL(p.gy) <
< 0. Consequently,

IFEH-FEHI < ol =22, (19)

Inequality (19) shows that the nonlinear operator (18) is contractive for € [a, b],
llx||]<p and €€ (0,g,]. Then F has a unique fixed point x* =F(x*), i.e., there

exists a unique solution x =x*(¢)e Q[ a, b] of system (15). This solution satlsfles
the boundary conditions (2), (3).

For X (¢) of (16)and 7(g(s,0,€)) of (6), we obtain the estimates

I xOI < gamy, (20)
where m, = max (q496. 449s. 9395(b—a)) and
7 (g(s5.0,e)|l < M(eymyqy. 1)

where m, = q3(b—a).
We evaluate || F(0)|| by means of (18), (20), and (21)

HF O < g2(my + eM(e)ma(qagr +1)).
If €€ (0,gy]. then there exists a constant K such that g,(m; + eM(g) x
x my(qaqy + 1)) isnot greater than K, i.e.,
IFO)Il < K. (22)

We choose p suchthat K < p(1-6).

Consequently, the nonlinear operator F satisfies the requirements of the fixed
point theorem [8], according to which the fixed point x* is a unique solution of (11),
(2), (3) and is obtained by the iterative process (1)

L@y =0,
(23)
Ky = T -eXOLI(g(s, x5 €)) +e(Lg(u, x* €)) (1),
such that
() -0l < 6. 24)

_ Theorem 2. If m =(p+1)n and M is a nonsingular matrix, then there exists
€y> 0 such that, for any € € (0, &), the perturbed boundary-value problem (11),
(2), (3) has a unique first-order solution x*(t) discontinuous for t =v,, i = ip.
This solution is obtained by means of the iterative formula (23) such that estimate
(24) is satisfied.
32. m=(p+1)n and detM = 0.

Let M~ be an arbitrary half an inverse matrix of M. System (13) has a solution if
and only if

(En-MM)(h-1(f)-el(g)) = 0. (25)
According to the notation of Section 2, we obtain the general solution of (13)

ISSN 0041-6053. Ykp. mam. xypn., 1995, m. 47, N° 6



774 L. 1. KARANDJULOV

5 (vj_y) = X)) Phe+ X )N;(h=1(f)-el(g)), j = Lp+1. (26)

where ¢ isa (p+ 1)nx 1 arbitrary numerical vector.

Substituting (26) in (5), we find a system of integral cquations for determining
Cox(t)

i

x(t) = x(1), te v, vl j= Lp+l,
27

5(t) = X(OPfje + (1)~ eXON; T(g) + €] XX ) gj(u, x;, €)du,
vy

where X (¢) are obtained from ¥ (¢) in (16) by substituting N; for L;.
If condition (8) is satisfied, then, for € =0, the boundary-value problem (11), (2),
(3) has a general solution x°(#, w). Let x(1, c, €) be the general solution of (11), (2),

(3). Then condition (25) is fulfilled and the nonlinear function g(s, x(s, ¢, €), €)
satisfies the condition

(E,,-MM )I(g(s, x(s,c €)e)) = 0. (28)

Let x(1, ¢, €), for £=0, be reduced to the solution x°(z, w). Then w satisfies
the condition

(E,,,—MM’)}I-(g(s,xO(s,w),O)) =0. 29)

Theorem 3. Let the vector w satisfy system (29) and let the Jacobian of (28)
with respect to ¢ be nonvanishing at the point € =0. Then there exists a number
€y >0 such that, for all €€ (0, ¢gy]. system (11), (2), (3) has a unique solution.

Proof. Let w be a unique solution of (29). Then for a sufficiently small p and
¢ such that || ¢ —w]| < u, the mapping

J(x) = X(O)Pyc + X (1) — eX@N1(g(s, x,€)) + e(Lg(u, x,€)) (1)

has a unique fixed point x*(¢z) for ||x]|<p. The proof of this proposition is very
similar to the proof of Theorem 2.

Consequently, the integral system (27) has a unique solution of class Q [a, b] and
is obtained by means of an iterative formula. We substitute this solution in (28). But
the Jacobian of (28) with respect to ¢ is nonvanishing; therefore, by means of the im-
plicit function theorem, we obtain the vector-function ¢ = c(g) such that ¢(0) = w.
We substitute ¢ = c(€) in (27) and obtain the required solution of (11), (2), (3).

Remark. The case m# (p + 1)n is considered by analogy with subsection 3.2.
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