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ON MONOTONICITY AND SIGN-CONSTANCY
OF SOME RATIONAL EXPLICIT METHODS
FOR NONLINEAR SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS

NPO MOHOTOHHICTbD I 3HAKOCTAJIICTD

AEAKHUX JPOQOLOBO-PAIIIOHAJILHHUX ABHUX METOIIB
JJIs1 HEJIITHIMHUX CUCTEM

3BHYAUMHUX JTUOEPEHIIAJIbHUX PIBHSHDL

One particular type of explicit rational numerical methods for nonlinear systems of ordinary differential
equations is studied. A property called sign-constancy of an integration method is considered. This
means that the product of approximate solutions at two consecutive grid points is positive for the corres-
ponding differential equation. Unconditional (i.c., for all step sizes) monotonicity and sign-constancy of
rational methods are proved.

Bunuaerics OHH THIT YHCMOBHX IPOOOBO-PALIOHATBLHHX ABIHX MCTOMIB JI/IA PO3B’ A3yBAHHSA HEJIHIN-
HIHX CHCTEM 3BHYalHEX dpepenuiaipbumx piBusns. Posrnsgaerbes BJIAcTHBICTh 3HAKOCTAJIOCTI Me-
Toy iHrerpypanig. 3HaKOCTAMICTDL 031aYaE, 10 CKAJAPIHN JOSYTOK HaO HIXKEHHX Po3B’sA3KiB, B3A-
THX Y IBOX CYCHIHIX TOMKAX CITKH, € HOMATHHM AN Bianosiuioro andepeHuianbHoro piBHAHNA. [o-

BEHEHO Oe3yMOBHY (LI BCIX 3Ha4C¢HL KPOKY) MOHOTOHHICTD 1 3HAKOCTAJICTD JPOOOBO-pallioHaIbHHX
Metouis.

1. Introduction. Let (-,-) be an inner product on € ' and let ||-]| be the
corresponding inner product norm,

We consider the Cauchy problem for the class F, of monotone nonlinear auto-
nomous systems ol ordinary differential equations, i.e.,

Y = fG0). Re(fG(10).x1) < 0, )
y(()) = yy. 1€ [O:T]..

where f: €" —C" isa sufficiently smooth function.
~ For the inner product norm and (1), it is casy to verify that. for all /7>0, any sol-
ution v(r) satisties

Iye+ I < Iyl
According to [1], we call an integration method monotone for (1) if the corres-
ponding inequality holds also with respect 1o this norm for two consccutive approxi-
mations with step size s e (0: /). In the present note, we call the method uncondi-

tionally monotone it it is monotone for all 4> 0.
We consider the following standard cxplicit one-step intcgration methods of the
first and sccond order applied to (1):

H=u+hfu). (2)
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i =u+ 05h[Ffa) + f(N)]. (3)

where 1 is an approximate solution at a certain grid point 7. ¥ and # are approxi-
mate solutions at the grid point ¢+ # obtained by methods (2) and (3), respectively.
Methods (2) and (3) are monotone with corresponding values of /1, which depend
on the given equation (1) and, thercfore. they are not unconditionally monotone.
Let F, C F,; denote a class of sign-constant sysiems (on the interval [a: b]) of
ordinary differential equations, which means that. for the corresponding cxact sol-
utions, the inequality

Re(y(r1).y(12)) >0

holds forall ,.t,€ [a: 0] < [0:7].
Now we introduce a property of the numerical method called the sign-constancy,
which is useful for the theoretical study of integration methods applied to F».
Definition 1. The integration method is called unconditionally sign-constant if,
for a system from the class Fo and for all h> 0. the following inequality holds:

Re{u.w) > 0.
In [2], it was shown that, {or a particular rational first-order method. we have
unconditional sign-constancy => unconditional monotonicity.

Explicit methods (2) and (3) are not unconditionally monotone and (2) is not un-
conditionally sign-constant. One can p.ove the unconditional sign-constancy of (3) for
the lincar system y’= Ay with a self-adjoint matrix A only. It is casy to sec that im-
plicit mid-point, trapezoidal, and some other methods arc not unconditionally sign-
constant even for the scalar equations y'=«y with ¢ <0. However, the implicit
Euler method possesses this property.

Some classes of rational explicit Runge—~Kutta formulas were investigated also in
[3-6]. In this note, some new rational methods are introduced and their unconditional
monotonicity and sign-constancy are proved.

2. A rational first order method. A two-parameter family of unconditionally
monotone and unconditionally sign-constant rational methods of the first order was
presented in [2]. In the recent note, we consider the b-parameter first-order family for
an arbitrary >0

o =u+hp)f, =1, 4)
where

L D)

1+br*° Re(f.u)’

The parameter b affects the local crror so that we must choose it as small as
possible. The following thcorems help us to do that:

Theorem 1. If b > 1/16, then method (4) is unconditionally monotone for F;.
Proof. Since

(W,7) = (u,u) + 2hpRe (fou) + h2p2(f.f) =

= (u,u) + /,,21,(f,f){1J i g%ff—l;)} )

= (u.u) + /‘12],7(f.f>|:]) + z} .
B

for any function p = p(#) such that.

p(r)
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0<p() < _2 (5)
,
and for all /1 >0, we have
lzl < {luli.
Choosing
1 h(f,
pr) = ——. = LT

1+6r2° T Re(f.u)

it is easy to verify that (5) holds if b>1/16.
Theorem 2. [f b >1/4, then method (4) is unconditionally sign-constant
for F,.
Proof. The following relations hold:
Re(f ,u):I B
(u,n) -

(u, ) [1 L Relfow), . b(f.f) ,,z]

Re(iw.u) = (u.u) + hpRe(f, i) = (u.u)til + hp

N (I+br2) (u,u) Reg(f,u)
This quadratic function of # is positive if
2 2
ReZ(f) gy LSV . )
(u.u)~ Re“(f,u)

By using the Cauchy —Schwarz—Bunjakovsky inequality, we establish that inequal-
ity (6) will hold forall .ue C " b>1 /4, which completes the proof.

Method (4) may be considered as a modification of Euler’s scheme (2) (which
corresponds to the special choice & =0 in (4)). Here, the function p(r) provides a
regularization in the sense that the inequality J# | < || ]| holds forall &> 0.

3. Rational second-order method. Similar to (4), a rational second-order method
can be chosen in the form

no=u+ hpr)f,

] 0
n=u+05a{p)f+ p(F)f].
where
N _ h(f.f)
pir) = 1+br*" "e Re(f.u)’
and
- ] _’ f
F= f@) = flu+ hpo)f). 7 = _Ric(—{z?j}_)

It is casy to verify that method (7) has the second order of accuracy. It may be re-
garded as a modification of (3). Now we are going to prove unconditional mono-
tonicity and sign-constancy of (7). We need the following lemma:

Lemma 1. For approximate solutions of problem (1), the following inequality
holds for all h> 0:

Re(fou) + 05ap(f.f) < O. (8)
The proof follows from the property of unconditional monotonicity of method (4)
because [|&] <|{lul| for b>1/16 and
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(7.7) = (u,u) + 2hpRe(f.u) + W2p2(£.f) > 0.

Theorem 3. Method (7) (with b > 1/16) is unconditionally monotone for F.
Proof. Let p = p(¥). Using inequality (8) three times in the following trans-
formations, we get forall 7>0:

(4,8) = (u.u) + hpRe(fou) + hpRe(Fou) + 02512 pf+pF|* =
= (u.u) + 0.5hp[Re(fou) + 0.5hp(f.f)] + 0.5hpRe(fou) +
+ hp[Re(f,u)+ 0.5hpRe(f.F)+025hp(f.f)] <
(e.u) + 0.5 hp[Re(fu) + 0.5hp(f.f)] = 025 12p>(f.f) +
+ hp[Re(f,u) + 0.5hpRe(f.F)+ 025hp(F. F)] +

A

+ 0.25 l'zzj)gllpf+l_’f“2 =

() + 05hp[Re(fiu) + 05hp(ff)] = 025h%p2(f.f) +

il

+ hpRe(F.u) + 05hppRe(f.F) + 02502 P*(F. F) + 02522 (f.f) +
+ 05hPpRe(f,F) + 02502 p*(f. F) =
= (u.u) + 05hp[Re(fou) + 05hp(f.f)] + hpRe(f.u) +
+ hpp(f.F) + 0502 p*(F.F) = (uow) +
+ 05hpIRe(fou) + 0,5hp(fof)]1 + hp[Re(F.u)+ 0.5hp(F. f)] < (u.u).

Theorem 4. Mcthod (7) (with b > 1/16) is unconditionally sign-constant
Sfor F. :

Proof. Here, we start again with (a4, i)

(. 4) = (u+ 05hpf +0.5hpf.i)

= Re(u,i) + 0.5Re(hpf+hpf.i) =
= Re(u,zf)' + 05hRe(pf+DPf.u+05h(pf+pf)) =
= Re(u,i) + 05hpRe(f.u) + 05hpRe(f.u) + 025 lﬂ}]pfﬂ;f”z =
= Re(u, i) + 0,5hpRe(fou) + 05hp(f.f)] +
+ 05hp[Re(f.u)+ hpRe(f.f)+0.50p(f.F)] =
= Re(u,8) + 05hp{Re(fou) + 05hp(f.f)] +
+ 05hp[Re(f.@) + 05hp(f.F)] > 0.
The expressions in the square brackets are negative due to Lemma 1. Therefore,
forall >0. we have Re (u,it) >0, which was to be proved.

4. Conclusions. For both methods (4) and (7), we set b =1/12. which is suffi-
cient for solving the monotone systems (1). We implemented them as a pair of embed-
ded methods using |7 — @] for the step size control.

Our numcrical experiments show that we can integrate monotone equations with a
step size that is. in average. two or three times larger compared to what methods (2)
and (3) allow. We emphasizc here that local errors of the rational method are affected
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by the additional term. Some overhead is needed also for computing inner products;
therefore, essential advantages in processing time are possible for equations with a
complicated right-hand side.

As a warning, it must be said that the methods discussed abovce are neither B-stable
nor A-stable, [1] though formal applications of the scalar test equation y'=Ay give
A -acceptability. The reason is not obvious: here. we emphasize only that. for rational
mecthods of this type, the stability for a scalar test equation is not cquivalent to the
stability for the simple linear system y’= A4 y. as we usually have for nonrational
methods. Therefore, these methods cannot be efficiently applied to most stiff systems.
But rational methods can be used for the numerical integration of semi-discrete para-
bolic problems whose solutions are often monotone and sign-constant (see also [1. 3]).
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