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ANOTHER PROOF FOR THE CONTINUITY OF THE LIPSMAN MAPPING
IIE OJHE JOBEJEHHA HEIIEPEPBHOCTI BI/IOBPA’KEHHA JIIIICMAHA

We consider the semidirect product G = K x V where K is a connected compact Lie group acting by automorphisms on
a finite dimensional real vector space V' equipped with an inner product (,). By G we denote the unitary dual of G and
by g*/G the space of admissible coadjoint orbits, where g is the Lie algebra of G. It was pointed out by Lipsman that the
correspondence between G and g} /G is bijective. Under some assumption on G, we give another proof for the continuity
of the orbit mapping (Lipsman mapping)

0:¢'/G — G.

Posrisgaerbest HaniBnpsmuii 100ytok G = K x V, ne K — 3B’s3Ha komnaktHa rpyna JIi aBroMop¢i3miB, 1o Ai0Th Ha
CKIHUCHHOBUMIPHOMY J(IHCHOMY BEKTOpPHOMY npoctopi V' i3 BHyTpiuHiM no0yTkoM (, ). Hexaii G— yHiTapHuii nyan G, a
gt /G — npocrtip KOIyCTHMUX KOCHpSKEHHX op6it, ae g — anredpa JIi mia G. JlincMaH 3a3Ha4MB, O BiANIOBITHICTS Mix
G Ta gt /G € Giexuiero. [Ipn nesxknx npuiymeHHsx Ha G MU IPOIIOHYEMO HOBE [OBEICHHS HEMEPEPBHOCTI BiMOOpaeHHs
opOiT (BimoOpaxkeHHs JlincMana)

0:¢"/G — G.

1. Introduction. Let G be a second countable locally compact group and G the unitary dual of G,
i.e., the set of all equivalence classes of irreducible unitary representations of G. It is well-known
that G equipped with the Fell topology [6]. The description of the dual topology is a good candidate
for some aspects of harmonic analysis on G (see, for example, [4, 5]). For a simply connected
nilpotent Lie group and more generally for an exponential solvable Lie group G = exp(g), its dual
space G is homeomorphic to the space of coadjoint orbits g*/G through the Kirillov mapping (see
[8]). In the context of semidirect products G = K x N of compact connected Lie group K acting
on simply connected nilpotent Lie group IV, then it was pointed out by Lipsman in [9], that we have
again an orbit picture of the dual space of (G. The unitary dual space of Euclidean motion groups is
homeomorphic to the admissible coadjoint orbits [S]. This result was generalized in [4], for a class
of Cartan motion groups.

In this paper, we consider the semidirect product G = K x V, where K is a connected compact
Lie group acting by automorphisms on a finite dimensional real vector space V' equipped with an
inner product (, ). In the spirit of the orbit method due to Kirillov, R. Lipsman established a bijection
between a class of coadjoint orbits of G' and the unitary dual G. For every admissible linear form 1)
of the Lie algebra g of GG, we can construct an irreducible unitary representation 7y, by holomorphic
induction and according to Lipsman (see [9]), every irreducible representation of G arises in this
manner. Then we get a map from the set gt of the admissible linear forms onto the dual space G of
G. Note that m, is equivalent to 7 o if and only if v and wl are on the same G-orbit, finally we
obtain a bijection between the space g /G of admissible coadjoint orbits and the unitary dual G.

Definition 1. Let G be a (real) Lie group, g its Lie algebra and

exp:g—G
its exponential map. We say that G is exponential if exp(g) = G.
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946 A. MESSAOUD, A. RAHALI

Now, we give our main result in this paper, which is another proof for the continuity of the orbit

mapping (see [11]):
Theorem 1. We assume that G is exponential. Then the orbit mapping

0:gt/Gd — G

Is continuous.

This paper is organized as follows. Section 2 is devoted to the description of the unitary dual G
of G. Section 3 deals with the space of admissible coadjoint orbits g* /G of G. Theorem 1 is proved
in Section 4.

2. Dual spaces of semidirect product. Throughout this paper, K will denote a connected
compact Lie group acting by automorphisms on a finite dimensional vector space (V, (,)). We write
k.v and A.v (resp., k.0 and A.¢) for the result of applying elements k € K and A € ¢ := Lie (K)
tov eV (resp.,,to £ € V).

Now, one can form the semidirect product G := K x V which so-called generalized motion
groups. As a set G = K x V and the multiplication in this group is given by

(k,v)(h,u) = (kh,v+ ku) Y(k,v), (h,u)€QG.

The Lie algebra of G is g = £ V (as a vector space) and the Lie algebra structure is given by the
bracket
[(A,a),(B,b)] = ([A, B, Ab—B.a) V(4,a), (B,b)€g.

Under the identification of the dual g* of g with £* & V*, we can express the duality between g and
g" as F(A,a) = f(A) + {(a) forall FF = (f,f) € g* and (A, a) € g. The adjoint representation
Ad¢ and coadjoint representation Adg, of G are given, respectively, by the following relations:

Adg(k,v)(A,a) = (Adg (k)A, k.a — Adg (k)Awv) Y(k,v) € G, (A4,a)€Eg,
Adg(k,v)(f, 0) = (Adk (k) f + kL Ov, kL) Y(k,v)eG, (f0)eg,
where ¢ ® v is the element of £* defined by
LoOv(A) =l(Av)=—(AL)(v) YAect, (LeV* wvel.

Note that the map ©: V* x V — £* defined by (£ ©® v)(A) = £(Aw), v € V, A € ¢ satisfies a
fundamental equivariance property

Adi (k) (L ov) = (kL) © (kv), keK.
Therefore, the coadjoint orbit of G passing through (f, /) € g* is given by
05, = {(Ad*K(k)f Y kLG, k.e),k ceK,ve V}.

For ¢ € V*, we define K, := {k € K; k. = {} the isotropy subgroup of £ in K and the Lie algebra
of Ky is given by the vector space ¢, = {A € ¢, Al = 0}. Let 7: & < ¢ be the injection map,
then o; : £ — €] is the projection map and we have

t = Ker (1), (D
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where £ is the annihilator of €. If we define the linear map h,: € — V* by
he(A) == —AL VAct,

then we have ¢ = Ker(hy). The dual h): V — € of hy is given by the relation hj(v)(A) =
= he(A)(v) = —=(A.L)(v), and so hj(v) =L O v VL € V*, Vv € V (for more details see [3]).

The following is a useful lemma from [3], giving a characterization of the annihilator £, in terms
of the linear map hy.

Lemma 1. Using the previous notations, then we have the equality

€ = Im(R}).

Here we recall briefly the description of the unitary dual of G' via Mackey’s little group theory
(see [10]). For every non-zero linear form ¢ on V, we denote by y, the unitary character of the
vector Lie group V given by x; = €*’. Let p be an irreducible unitary representation of K; on some
Hilbert space H,. The map

p@xe: (k,v) — e p(k)

is a representation of the Lie group K, x V such that one induce up so as to get a unitary represen-
tation of G. We denote by #(, ) := L*(K,H,)” the subspace of L*(K,H,) consisting of all the
maps £ which satisfy the covariance condition

E(kh) = p(h"NE(k) Vke K, heK,.

The induced representation
(o0 = Indie /Y (0 ® x0)
is defined on H, ¢y by
T(p0) (R, 0)E(R) = €O E (R ),

where (k,v) € G,h € K and § € H(, .. By Mackey’s theory we can say that the induced repre-
sentation (, ¢ is irreducible and every infinite dimensional irreducible unitary representation of G
is equivalent to one of m(, ,. Moreover, tow representations 7, ,) and Ty ) Are equivalent if and

only if ¢ and ¢ are contained in the same K -orbit and the representation p and pl are equivalent
under the identification of the conjugate subgroups K, and K, . All irreducible representations of
G which are not trivial on the normal subgroup V, are obtained by this manner. On the other hand,
we denote also by 7 the extension of every unitary irreducible representation 7 of K on (G, which
simply defined by 7(k,v) := 7(k) for k € K and v € V. Let Q be a K-orbit in V*. We fix £ € Q2
and we define the subset G(9) of G by

G(Q) = {mal (p @ xe)ip € Ko}

¢=rUJ(Uecw).

QeA

Then we conclude that

where A is the set of the nontrivial orbits in V*/K.

In the remainder of this paper, we shall assume that G is exponential, i.e., K, is connected for
all £ € V*. Let p, be an irreducible representation of K, with highest weight . For simplicity, we
shall write 7, ) instead of 7(,, ¢ and H, ¢ instead of H,, o).
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We close this section by presenting two results which are being used in the description of the
dual topology of GG. These are required for our proof of Theorem 1.

Let N be an Abelian group, and assume that the compact Lie group K acts on the left on N
by automorphisms. As sets, the semidirect product K x NV is the Cartesian product K x N and the
group multiplication is given by

(k1,21) - (k2,2) = (k1ke, 21 + k122).

Let x be a unitary character of N, and let K, be the stabilizer of x under the action of K on N
defined by

(k- x)(z) = x(k~').

If p is an element of I/(\X, then the triple (x, (Ky,p)) is called a cataloguing triple. From the
notations of [2], we denote by 7(x, K, p) the induced representation IndllgféVN(p ® x). Referring
to [2, p. 187], we have the following proposition.

Proposition 1. The mapping (x, (K, p)) — 7(x, Ky, p) is onto KxN.

We denote by A(K) the set of all pairs (K’, p’), where K’ is a closed subgroup of K and p’
is an irreducible representation of K’. We equip A(K) with the Fell topology (see [6]). Therefore,
every element in K x N can be catalogued by elements in the topological space N x A(K). Larry
Baggett has given an abstract description of the topology of the dual space of a semidirect product
of a compact group with an Abelian group in terms of the Mackey parameters of the dual space (see
[2], Theorem 6.2-A). The following result provides a precise and neat description of the topology of
K x N.

Theorem 2. Let Y be a subset of K x N and 7 an element of K x N. Then 7 is weakly
contained in Y if and only if there exist: a cataloguing triple (x, (K, p)) for w, an element (K', p')
of A(K), and a net {(xn, (Ky,,pn))} of cataloguing triples such that:

(i) for each n, the irreducible unitary representation w(Xn, Ky, , pn) of K x N is an element
of Y;

(ii) the net {(xn,(Ky,,pn))} converges to (x,(K',p));

(i) K, contains K', and the induced representation Ind?< (p') contains p.

3. Admissible coadjoint orbits of semidirect product. We keep the notations of Section 2. Fix
a non-zero linear form ¢ € V*, and we consider an irreducible representation p,, of K, with highest
weight . Then the stabilizer G, of ¢ = (p, £) in G is given by

Gy = {(k,v) € G (Adi (k) + kL O v, kL) = (M,e)} -
= {(k:,v) €G; ke Ky, Addi(k)p+L0ov = ,u} =
= {(k,v) € G ke Ky Adl (k) = ﬂ}
since 1; (¢ ® v) = 0 (see Lemma 1 and the equality (1)). Thus, we have G, = Ky x Vy, then 1 is

aligned (see [9]). A linear form 1) € g* is called admissible if there exists a unitary character x of the
identity component of G, such that dy = id)w. According to Lipsman (see [9]), the representation

of G obtained by holomorphic induction from (1, ) is equivalent to the representation 7, ¢). Let 7
be an irreducible representation of K with highest weight A, then the representation of GG obtained by
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holomorphic induction from (A, 0) is equivalent to 7. The coadjoint orbit of G through (), 0) € g*
is denoted by O)Cf. It is clear that Of is an admissible coadjoint orbit of G. We denote by g* C g*
the set of all admissible linear forms on g. The quotient space g /G is called the space of admissible
coadjoint orbits of G. Moreover, one can check that g:E /G is the union of the set of all orbits Oa 0
and the set of all orbits Og\;.

We conclude this section by recalling needed results. Let L be a closed subgroup of K. By
Tk and T7, be maximal tori, respectively, in K and L such that T, C Tk. Their corresponding
Lie algebras are denoted by t¢ and t.. We denote by Wi and W the Weyl groups of K and
L associated, respectively, to the tori Tk and 77. Notice that every element A € Py takes pure
imaginary values on tg, where Py is the integral weight lattice of Tx. Hence such an element
A € Py can be considered as an element of (ity)*. Let C}; be a positive Weyl chamber in (it;)*,
and we define the set PE of dominant integral weights of T by P;g = Pg N C’}. For X\ € Pg,
denote by (’)f\( the K -coadjoint orbit passing through the vector —¢A. It was proved by Kostant in
[7], that the projection of Of\( on t; is a convex polytope with vertices —i(w.\) for w € Wk, and
that is the convex hull of —i(Wx.\). For the same manner, we fix a positive Weyl chamber CZ“ in
t* and we define the set P, of dominant integral weights of 77..

Also we denote by 1/ the C-linear extension of both the natural projection of £* onto [* and the
natural projection of t; onto t. Consider tow irreducible representations 7 € K and Pu € L with
respective highest weights \ € PJr and p € PJr We have the following result.

Lemma 2. If jn = if(s.\) With s € Wk, then 7\ occurs in the induced representation Ind¥ (p,,).

We refer to [1], for the proof of this lemma.

4. Main results. We shall freely use the notations of the previous sections.

Remark 1. We have the following convergence:

by — £,

K, CK,.

To study the convergence in the quotient space gf/G, we need to the following result (see [8,
p. 135] for the proof).

Lemma 3. Let G be a unimodular Lie group with Lie algebra g and let g* be the vector dual
space of g. We denote g* /G the space of coadjoint orbits and by p : g* — ¢*/G the canonical
projection. We equip this space with the quotient topology, i.e., a subset V in g*/G is open if
and only if p_* (V) is open in g*. Therefore, a sequence (0., of elements in g*/G converges
to the orbit OF in g*/G if and only if for any | € OF, there exist I, € OF, n € N, such that
I =1limy, ool

Now, we are in position to prove the following propositions.

Proposition 2. Let (O(um ém)) be a sequence in gt/G. If (O(Gumlm))m converges to (’)&g)
in gt /G, then we have: ({y,)m converges to { and for m large enough, p,, € Ind%m (pum ).

Proof. We assume that the sequence of admissible coadjoint orbits (O(C;mfm))m converges to
O(Cfuf) in gt /G. By referring to [3], we show that the coadjoint orbit O(C;,e) is always obtained

by symplectic induction from the coadjoint orbit M = (965 0 of H := K, x V passing through

(1, 0) e, V* (8, x V :=Lie(H)), ie.,
OG0 = Mina = J(0)/H, 2)
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where J7: M=MxT*G — €, x V* is the momentum map of M and the zero level set Jﬂ%l (0)
is given by

J%HD:{«A@d@m@gJA@AMu+€®vJ»,keK@gGGUEV}

Let ¢y be the action of H on M, hence H acts on M =M x T*G by @57 as follows:
e (e, 9, f) = (par(h)(a), gh™", Adg (h) f) 3)

forall h € H,(a, g, f) € M x T*G. By identifying g* with the left-invariant 1-form on G. Then
we can write T°G =2 G x g*.

Using Lemma 3 and by combining (2) with (3), then there exist sequences ky,, h,, € Ky,,,
U, Wy, € V, and gy, € G such that the sequence (¢p,)., defined by

bm = 957 (km, V) ((Adi (B ), Gins (A (B 1™+ o © 0 ) ) =
= (Adie (ko)™ + 25, (G © 0m), ) G (s ) ™,

(Ad%U%JMJum—%Ad}@mgwm()wm)+£m()wm€mﬂ
converges to (1, £), e, (i, ¢)). 1t follows that
by — £
and
Adj (kmhm)p™ + 15, (b © Um) — 1 4)

as n — +o00. By compactness of K we may assume that (ky,hn,)m converges to p € K, C K.
By using the fact that ¢} (b, © vy,) = 0, we, from (4), obtain that

p" = Ad*(p~Hp
for m large enough. Furthermore, we known that there exists an element s € Wy, such that
Ad*(p~')u = s.u. Hence ™ = s.u for m large enough and we conclude by Lemma 2 that for m
large enough, p,, € Indflgﬁ (pum).
Proposition 2 is proved.
Proposition 3. If the sequence (O(Cimlm))m converges to O in g+ /G, then we have: ({m)m

converges to 0 and for m large enough, Ty € Ind% . (pum).

Proof. We use the notations and proceedings of the proof of the last proposition. Let us as-
sume that the sequence (O(C;m,fm))m converges to (’)g\;. Then there exist sequences ky,, by, € Ky, ,
U, Wy, € V, and gy, € G such that the sequence (¥,,),, defined by

Uy, = SOM(km, V) <(Ad*K(hm)Mma ), Gy (Adge (R )™ + Ly © Wiy, Zm)) =
:@@@MWWHMMQWM@%meW,

(Adic (ki) 1™ 4+ Ade (k) (brs © W) + o © Vi, )
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converges to ((X,0), eg, (A, 0)). From the above facts, we conclude the following convergence:
b — 0, Q)
Ad* (kho) g™ — M. (6)

By assumption that the sequence (kA )m converges to p € Ky, we obtain, from (6), that ™ =
= Ad*(p~ ')\ for m large enough. Hence there exists w € Wy, such that u™ = w.\ for m large
enough. Lemma 2 allows us to derive that 7, € IndﬁZ (pum) for large m.

Proposition 3 is proved. "

Proposition 4. If (OS,.),,, converges to OF in gt/G, then \™ = \ for large m.

Proof. Suppose that (OS,.), converges to Of in g*/G, then there exists (ku,)m C K such that

Adj (k)N — X as m — +o0.

By compactness of K we may assume that (k,,),, converges to k € K. Then we obtain \"* =
= Ad}; (k=) for m large enough. Hence there exists w € Wi such that Adj (k=) = w.\ for
m large enough. It follows that A" = w.\ for m large enough. Since the weights A" and A\ are
contained in the set iC;g and since each W -orbit in €* intersects the closure z'C}; in exactly one
point, it follows that A" = X for m large enough.

Proposition 4 is proved.

Combining the above Propositions 2, 3 and 4 with Baggett’s theorem (Theorem 2), we obtain our
result (Theorem 1).
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