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BOGOLIUBOV AVERAGING AND PROCEDURES
OF NORMALIZATION IN NONLINEAR MECHANICS: IV*

YCEPEIHEHHS 3A BOI'OJIIOBOBUM TA IPOIE/IYPH
HOPMAJIIBALUT ¥ HEJIIHIMHIN MEXAHIIIL IV

In this paper we aim to apply the theory developed in [1 — 3] to some classes of problems. Linear
systems in zero approximation are considered. The question of preserving integral manifolds under
perturbations is investigated. Unlike nonlinear systems, the linear one has centralized systems which are
always decomposable. Also, limitations connected with impossibility to diagonalize the coefficient
matrix in zero approximations are removed. In conclusion the method of local asymptotic
decomposition is applied to some mechanical problems.

Teopisa, poasunena B pobotax [1 — 3], sacTocoByeThCA 110 e AKHX KJacis npoGsem. Posrnanyro mi-
Hiftii B Hys1LOBOMY HabHKeHHI cHeTeMu. [lOC/iKEHO MHTAaHHA 30epeXKEeHHA IHTerpajIbHHX MHOIO-
BHIIB mij1 fgieio 36ypens. Ha Bigminy sin HeniHiHHHX cHCTeM JiHIAHI MAIOTH HEHTPaJI130BaHi CHCTEMH,
AKI 3aBXKIH MOXKYTh 6yTH Aekomnososani. [Ipu ubomy 3HATO o6MexeHHs, AKi MoB’A3ani 3 Heniaro-
HAJIBHICTIO CHCTEMH B HYJIBOBOMY Hab/mkenni. Ha 3apepUIcHHA MeTON JIOKaJIbHOI aCHMITOTHYHOL
HCKOMI]OM‘]L[H 34CTOCOBAHO 10 ICAKHX 3aJa4 MEXaHiKH.

1. Linear systems with constant coefficients and a small parameter. 1. 1.
Realization of the algorithm. Consider the system of linear differential equations

¥ o= Ax + edx, . ¢))
where x’=col||x{,...,x,; A, A are constant matrices of dimension n x n. The
linear differential operator
/ ’ ~
Uy = U +¢el’,

where
’

U= &, 59, 0 =A%, F=4,

my
X = Ixfs.c..xpl, 9 = col|9/ax],...,dfx, |,

corresponds to (1).

Assume that the matrix A of the zero approximation system is diagonable. The
case of the general structure of matrix A4 will be considered in section 2. According
to the asymptotic decomposition algorithm, we can make a change of variables in
system (1)

x; = exp(eS)x, x; = exp(-eS)x;, k= 1n,
where S=8,+eS,+....
The operator S; has linear coefficients and is determined by the square matrix I;:

A

SJ' = -eml r!'a‘
As shown in [2], we should solve the operator equation
[U,S,]=F,, v=12,... (2)

The right-hand side F,, of the equations is obtained by calculating the Poisson bracket
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of U, U, S,,...,S,_,. Therefore, the coefficients of this operator are also linear

functions.
According to the general theory, equation (2) is reduced to solving the sequence of
independent’ matrix equations

FT, =T F= Qy ¥ 51,200, 3)
where F,=F= A", and Q, is the matrix of the operator F,,.
The matrix equation (3) in the linear space R is substituted by the equations
Ggly = Q,, v=12..,
where ' _
Gy= FL®E, - E,F.
Let Q,y be a projection onto the kernel of the matrix G ¢ The matrix Qun

corresponds to this vector in the linear space R ") The vector T, is obtained as a
solution of the nonhomogeneous equations
Gf.rrv = Qv — Qw-

We can recover the matrix I',, from the vector I',. The operator of the transformation

S, = %, 0

Hi‘

can be recovered from the this matrix.
In the linear systems under consideration, we can show two properties that simplify
solution of the problem. They are the unchanged order of equations (3) and the

solvability of the homogenerous equation [ £ I',] =0 for any v.
The operator

N\.’ - -‘?m] Q))Na'

which commutes with the operator U, corresponds to the matrix Q.
After necessary transformations and by using the expressions for N,, we can
represent the operator U, in the form

Uy=U+eN, +e’N,+....
The centralized system
% = (U+eNy+e*Ny+...)x, i=1n, @)
can be easily recovered the operator U,,.
Denote M,y = QIN. Then equation (4) can be rewritten in the usual matrix from
% = (A+eMy+e>Myy+ ... )x, (5)
where
[A M,N] = 0.
1. 2. The centralized system is always decomposable. By virtue of
commutativity of the matrices A and My, the centralized system (5) is always
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1046 YU. A. MITROPOLSKY, A. K. LOPATIN

decomposable. This simplifies its integration in comparison with the initial system (1).
Let us formulate the principal resulf on decomposition,
Theorem 1. Ler ?Lj be characteristic numbers of multiplicities rJj= | [P

m, of the matrix A; then centralized system

dx
T (ﬁ[+aMlN+£2M2N+ S
is transformed into the block diagonal form
ME O e 0 My 0 .. 0
= 0 7L . 0 m 0 M\.’E sea 0
2. 2%z z+ Y€ 2, (6)
dt o] e
0 0 s NEs 0 0 i Mo,
where the matrices Mw. 5{;(\,2. e t'i‘:fw,,. v =1, 2,..., located on the block
diagonal, have the dimensions r | Xr;, ryXry, ..., r, Xr,, respectively. The
vector z=col|[z,,...,z, || of new variables is connected with the old variables by

the matrix of reducing transformation L, det L#0, x = Lz. The matrix L is
composed of the basis vectors the root subspaces P(L;) of the matrix A.

Before proving the formulated theorem, we make some remarks. The solution of
system (6), in comparison with the solution of the initial perturbed system, is
simplified due to decomposition of the subsystem into m subsystems of smaller
dimension. To reduce the centralized system (5) to block diagonal form (6), we use
only the information about the characteristic numbers of matrix A4 of the zero

approximation system, since while calculating the matrices M, N MZN’ ..., wedo
not need the above-mentioned characteristic numbers.
Proof of Theorem 1. The identity AM, - M, yA=0, v=1,2,..., implies

(A-ME)YM, - M (A=A, E)=0. If n=col|[n,,....n,Il is the vector of the
root subspace P(A;) defined by the equation (A —XE)n, then the relation is valid:

(ﬂ—l‘-i)‘ﬂ’f\w‘n =0, i=1Lm.
Therefore, M,y maps the vectors of P (A;) into themselves and the subspace

P(X,) is invariant with respect to the matrices M, y. n linearly independent columns
of the projection matrix Py, ..., P, can be chosen to be the columns of the matrix of

the transformation L.

Corollary 1. Assume that matrix A has a zero root of multiplicity, for example,
ry. Then in the centralized system (6), the first r, coordinates are proportional to
the parameter €, i. e. they are slow variables. Then the centralized system (6) has
ry slow and n—r, fast variables.

In practical calculations, it can be difficult to apply theorem 1. We do not need
eigenvalues to obtain the matrices M, ., ..., My, ... of the centralized system.

While reducing the centralized system (5) to block diagonal form, the eigenvalues are
assumed to be known according to Theorem 1. The following statement can be
sometimes useful.

Theorem 2. Let the matrix A ‘actmg in the space R" possess an invariant
subspace L, c R" . of dimension ky. Then in the space R", we can find a
subspace Ly cR", Ly €L, of dimension ky (ky;=k,), which is invariant

ISSN 0041-6053. Yxp. mam. xypn., 1995, m. 47, N* 8



BOGOLIUBOV AVERAGING AND PROCEDURES OF NORMALIZATION ... 1047

with respect to the matrices A and My, v =1,2,...: ALy=Ly, M  NyLy=
=L,. The centralized system (5) can be reduced to a block diagonal form with
square blocks of dimensions kyxk, and (n—ky)x(n—-ky) an the principal
diagonal:

v v
g1 v ik, 0 w0
v i v
i I qkzl qkzkz 0 0
— v v v v =
dt zae Qiy+11 o iy4lky,  Diy+lka+l oo Gkytln | @
V=
v v v v
dn1 Dk, Gnky +1 cor. Gun

Proof. By virtue of diagonability of the matrix 4, a basis in R" can be
composed of n eigenvectors of the matrix 4. Denote this basis &, ..., §,. If
MNiseee s Ny, is a basis of the invariant subspace L ;. then it can be linearly expressed
.interms of k,; vectors &,,...,E,. Forexample, &, ... .§,¢]. Assume that the vector
g, from &y, ..., belongs to the root subspaces P(A;) corresponding to the root -

A; of the multiplicity r;. Then the identity (A-X,E)M,y=M,N(A-L;E)
implies (A -4, E) M, y&; = 0. Therefore, any vector §; can be transformed into a
vector of the root subspace P (A;). Let us give an algorithm for calculation.

Supplement the system of the vectors My, ..., M, ~with linearly independent vectors
of M,y .. .. , M\,Nnkl, v=12. ... Letthembe My ,j, ..., N, Calculate

the vectors M\-N"lk,+ I» - » MM, and supplement the set of vectors My, ..., Mg,
LI PP TR TR with linearly independent ones. It is clear that in each step, the new

vectors, linearly independent of the previous ones, should be obtained or the
calculation process stops. After a finite number of steps, we obtain a maximal number
of linearly independent vectors 1My, ..., Nk Nk, +15 - » Ng,» Denote the linear

subspace by spanned these vectors by L,. The dimension of the space in a limit is
equal to the sum of dimensions of the root subspaces P(?LJ-). J= 1,k , which involves
the vectors &y, ..., &y . . i

Let the dimension £, of subspace L, be less than n. We choose the basis of L,
as the first k, columns of the transformation matrix L. The rest of the n — k,

columns supplement the basis of L, to a complete basis of R". Upon a change of
variables x = Lz, the matrices 4 and A, are transformed to block diagonal form

D).

Introduce the notations

v v v v
an s iy Dy +lky+1 oo iy on
Q\.-'l = T E) e 5 Q\'?- = o sen ses 5
v v v v
iyl oo Gkgky ks +1 cor Gy
v v
. /S T A N 0 0
vl
Qya1 = ||... , Oy = , v=0,1,2,....
v v O O
dnl Dok 5
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1048 YU. A. MITROPOLSKY, A. K. LOPATIN

Corollary 2. Let the matrices Qg and Q, have no common characteristic

numbers. System (7) can be transformed to a block dwgrmaf form.
To prove this, consider the matrix equation

f O ng 0 _”Q,m 0 'Eﬂ‘sz 0 !!
4 Bk, ||| Qoat 0 Qo flx  Eun |

where €, and E, , are unit matrices of dimensions k5 and n—k,, and ) is an
2 2

unknown matrix of dimensions ko x (n—k,). After multiplication, we obtain the

equation for ¥ Q,% —X Qg = Qqgay- This equation can be solved for any form of

the right-hand side.
Introduce the matrix

E, O

_x (E:H—k:

It is evident that the matrix 4 is reduced to a block diagonal form by the matrix LP.
P L7 ALP = diagll Qyyr Qoall-

Then, all matrices Q.. v =1.2, ..., are reduced to a’block diagonal form by the

matrix LP. If the converse is assumed, then the conditions of commutativity of the

matrices P £”' ALP and Qp, Vol Do

lQm 0 " Qw 0 N 1w HQOI 0 n

0 Qﬂl QN?,I Q\'2 Q\'Zl Q.v2 Q»OZ

imply the identity Q,,Q,,, - Q,2;Q4; =0. Under the assumptions that the

matrices Q,,; and Q ,, have no common characteristic numbers, this identity

implies Q,,,,=0.

The following statement is a criterion for the absence of the common roots of
matrices Qg and Q,:

(a) the matrix equation Q% —X Qq, =0 has only zero solutions;

(b) the matrix determinant G=Q,,,® E, _ ’Ek ® Qm is not equal to zero.

Pz

The matrices M,y involved in the centralized system often can be successfully
used while constructing invariant subspaces of the matrix 4 and decomposing the
centralized system.

Theorem 3. Let the matrix M,y have the zero root of multiplicity k. The

subspace L C R defined by the solutions of the equation ﬂMvNT] 0, ne R
is invariant with respect to the matrix 4.

Proof. The matrix commutativity condition AM, y— M,yA=0 implies that
AM,ym = 0. With the help of the described theorem, we have obtained a subspace L.

which is invariant under the matrix 4. The centralized system can be decomposed by
Theorem 2.
1. 3. The case of decomposability of the zero approximation. Consider the
perturbed linear system when the zero approximation
dt
. ) dr
is an algebraically reducible system. We can assume that (8) has been already reduced

= A4x’ (8)
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to a block diagonal form. Consider the most general case of the structure of the matrix
A. Suppose that A has the block diagonal form

A, 0 e O
0 A wei: &)
a = = . ©
0 0 T
The blocks A4, ,, 4,5, ..., A4,,, of dimensions r, Xr,,ryXry, ..., r, Xr, , havea
block structure too
a4 0 0
0 A e O L g
q = 1. i=Lm. (10)
0 0 e A _
The blocks A4;, I.m, have dimension k; >k, The multiplicity of the block 4 ;

in the matrix 4;; is det_crmmed as

n, =rlk, i=Lm. (11)
Assume, that the system of zero approximation (8) with the matrix 4, given by

formulae (9) and (10), is under a small perturbation of matrix M of general structure.
Represent the perturbed system under consideration as follows:

A, |0 o | 4
4 0 Aa e | 0
ar - 2 X'+ € M £ (12)
dt
0 0 s | o
where x’=col|x{,...,. v, |l The matrix M of dimension nx n has an arbitrary

structure.

The perturbation in the right-hand side of (12) does not allow to reduce this system
to a block diagonal form like the system of zero approximation (8). We prove the
theorem allowing the possibility of decomposing the perturbcd system (12) to block
diagonal form.

Theorem 4. If the blocks A;, i =1,m, in matrix (10) of the system of zero
approximation have no common characteristic numbers, then the centralized system
corresponding to perturbed system (12) has the block diagonal structure

4, 0 ... 0 M“’) 0 sz 0
‘ 0 Ay ... O e =
dx _ 2 (S Mu e U L o
dt v B

0o 0 .. A, 0 0 oy L

where the block matrices ML of dimensions riXr, i=1m,

.Tlilw') . (r(w') ‘rl(w')
e i
(vi) (vi) (vi)
age - [T T T i,
(vi) (vi) (vi)
T}‘lll ‘I;'l.z Ei Tl"‘:'p'f
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1050 YU. A. MITROPOLSKY, A. K. LOPATIN

are r'ompos'ed of square matrices 'T-(.‘-',‘,), j ’, i7" =LW;, of dimensions k;xk; The
matrices ‘I ,, involved in matrix (14), commutate with the matrix A;:

ATIN = TR A, jhi7=Tw, i=Tm.

Before proving Theorem 4, we make the following remark. Integration of the
centralized system (13) is much simpler than that of the initial perturbed system (12)
since this system and the system of zero approximation is decomposable into m
independently integrated subsystems of dimension rq, ..., r,,. Let us prove two

auxiliary statement which will be used while proving Theorem 4. They are of special
interest too. These statements show that owing to the decomposability of the system of
zero approximation, all calculations can be much simplified.

Lemma 1. Determination of the elements of the algebra of the centralizer ‘3{(]1)
from the equation of the order m

Gf = 0, | - (15)

where Gg=F @E-E® :’FT, is reduced to the solution of m independent

algebraic equations of order k,-z

Gg A" =0, i=Tm, (16)
where Gg. = F,;® E-E® F.
Proof. Represent (15) as the equivalent matrix equation
Fr-xF=0. (17)

since matrix ¥ has the block diagonal form (9), matrix % will be determined in a
block matrix, too

X X2 cor o Xim
X1 X2 - Xom

x = . e e Ry ?
x»:l ani L x»ml

where the element ;; has the dimension r; xrj, i,j= Lm. Subsulutmg the values of
the matrices 4 and 7 into equation (17), we obtain the system of m? independent
matrix equations _

uxu Xu’qn =0, f’j= m (18)

If we assume that the matrices A; and A, for i#j, have no common characteristic

numbers. matrices A;; and A;; will also have no common characteristic numbers.
Therefore, when i #j, the trivial matrix ¥ ;; =0 is a unique solution of the
homogeneous system (18). We have only form m equations

'ql 1Xi1= 111}111 = 0{'“ ’/qmmem e Xntm-ﬂmm = 0. (19)

Due to the block diagonal form of the matrices A4,;, i = Im, further simplification of
(19) is possible. Since the matrix 4;; has u; (see (11)) blocks 4; on the principal
diagonal, %;; can be determined as the block matrix
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() (i) (i)

X1 X12 Xip,
(i) (i) )
_ %2 X2z e X,
Xii = ’
M L0 Q)
Xpr  Xpz o X,

where x';'j J'.j”= 1u; hasthe dimension k;xk; i=1m.
Upon substituting the values A;;, x,; into equations (19) with the index i, we
obtain the system of LL,-Z independent matrix equations
[€) - (1) Sp ERE T
Axjm = Xy A JVJ7= LG
Solution of these equations is reduced to determination of the general solution of one
equation,

Ay = xH A, (20)

where () is a square matrix of order k,. Passing from equations (20) to the
equivalent system (16), we obtain the necessary statement.

Corollary 3. The dimension k of the algebra of the centralizer B is
determined by the formula

m

k = Z “?21
i=1

where g; is the number of linearly independent solutions of (20).
Let the linearly independent square matrices
i) () : T
Xisoes Xgs @=L,
of dimension r;xr; where g, = p?g‘-. be a solution of (19). Denote a matrix of

dimension r; % r; composed only of zero elements by 0“). The basis of ‘B},” can be
represented as
i _ g (1) G=1) (1) Ali+D) (m)
Z{ = diaglo®,...,040,x,0%0, .0

. i=1g, i=1m.

The block diagonal structure of the matrix A4 of zero approximation also simplifies
the problem of finding the projection prF,, of the right parts of the operator equation
(2). This takes place because the appropriate algebraic system splits into subsystems of
a smaller dimension. '

Proof of Theorem 4. The centralized system corresponding to perturbed system
(12) can be written in the form

dx y 2 I
i (A+eMy+e° M,y + ... )x,
where the matrices M} N My, ... commutate with 4.
The set of M, ..., My, ... is not empty in the general case. Moreover,
matrices M) have a structure which has been described in Lemma 1.

Let us prove two more statements on the structure of solution of the centralized
system (13). Introduce the vectors

1)
x('—'

) (m) _ p z
Xplseeos Xpnp “,....x = N X, X e |l
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1052 YU. A. MITROPOLSKY, A. K. LOPATIN

The vector of variables x is expressed by these vectors in the fdllowing way: x=

=col |+ @, ..., x|,

Integration of (13) can be substituted by integration of m mdependcnt subsystems
i=1m,

-ﬂ; 0 0 (I"(W-} rI“l(z\"f] s {I’l(u\'rl}
) i 0 4. ... 0 (wi) {vi) T(w) .
dx = i +Z T T’ZZ 2p; x(i). [¢3))
dt T et W‘) ...(V_J ...M}
0 0 .. & TH:‘ v Tz T

Theorem 5. The solution of centralized system (13) can be represented in the
form

eAili=1o) s 1

i Ait=19) :

(i _ 0 € gz O n(;}(T)‘ (22)
o 0 e 2Nt

where the vector M D(1)=col " M (Dsoee My, (‘E)ﬂ is a function of slow variables
T=¢t and is determined by integration of the system of equations with slow time

() .
a- (Ze‘ ‘M,.‘,.‘”]n"’. 23)
Thus, integration of (13) is reduced to integration of m independent subsystems
dy? @)
L) SR T
dt 2

of orders k;, i=1m, and to integration of m independent subsystems of orders
ri, i=1Lm (see (23)), which depend on slow time 1.
Proof. Represent the relations (22) in the compact form

x(l') - eA,-,-(.‘—rﬂ)n(i)_ (24)

Let the vector n ) be constant. Formula (24) represents the solution of the system of
Zero approximation

dx(!) _ -{(‘.}_

ﬁ‘- i
dt

- Suppose that 1 @) are new variables in formula (24). Upon the change of variables
in (21) and after simple calculations, we obtain

) o {
dn _ [(,_A,-,-(f—r[;}( Z EVM:%V)J?"&';(?-’U‘]H W (25)

dt o)

Since A4;; and M V) commmute, (25) can be represented in the form

dﬂm ( Z evM(v)J

Introducing the slow time T=gf, we obtain (25).
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" So far, we have not assumed that the characteristic numbers of the matrices 4;, i =

= I,m, involved in the system of zero approximation are known. If they are really
known, we can formulate one more result on the decomposition of the centralized
system (21). Since (21) involves subsystems identical in structure, we can simplify our
calculations by introducing a representative system in the form

P 0 .. 0 q-lflv) ‘1-1{2\') Tl(}r)

5 0. ? s O0f & JT©° ¥ ... TV
% 2 : _ iy 2 2 ils (26)

(V) (v) (v)

0 0 .. P o 2 .. T

where P are matrices of dimension k x & with multiplicity involving [ in the
coefficient matrix, ‘I}}V’ arc square matrices of dimensions k& x k, x =
=col|%,.... %[, s=kW
The matrices P, = diag||?. ... . P|| and Z = {‘I,-}-") . i,j=Lp, are supposed
to be commutative, i. e.
P2, =2 P, V=12 27)

Theorem 6. Let the matrix P in (26) have the characteristic numbers A i of
multiplicities mj, j=1,..., p; then we can indicate the change of variables

X=LZ, which decompose this system into independently integrated systems of

dimensions m |\, ... .mp].l((m] +ooEmy = kL)
% 0 ... 0 RN 0 .. 0
- 0 P .0 = (v)
dz _ 2 +2€\.0 R v ) ;.
dt ol
0 0 .. 2 o o .. ogW
where
P = diag|{A;,.... A H, R
\-—v-..—d'
m;p

are square matrices of the dimensions |, WX W, i=1,p.

Proof. Denote the root subspace of the matrix P, by P (k). It is determined by
various solutions of the equation (2,-1,E)E=0, & =col|l§,,... . &, s =kn
Identity (27) implies

(2,-ME)Z, = Z (P, M\, E).
Multiplying both sides of the matrix identity by the vector £ e P(;), we obtain
(P;-N\,E)Z,E=0. Therefore, the subspace P(X;) is invariant under the matrix

&, v=1,2,.... The reducing matrix £ is composed of the vectors of the root

subspaces P(X;), i=1,p.

1. 4. A model of a mechanical system. Let us assume that oscillating masses of
the algebraically reducible mechanical system are subjected to small perturbations
€A, €A, (Fig. 1). In this case, additional terms proportional to the parameter € and
characterizing the presence of perturbation factors, appear in the matrix of the system:
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Fig. 1. Model of a mechanical system with disturbed symmetry.

¥ 3,/2 0 0 -3a;/2 3a/2

¥a 0 3¢//2 -q a/2 a /2
5}3 = 0 . —ap ay +a3 0 0 +
5}4 —ﬁaz/z 021{2 0 dy +ay 0
¥s J3ax /2 3a3/2 0 0 a; +ay
0 0 00 0 M
0 0 00 0 Yy
+€|0 0 0 0 0 JI+... ¢y =0, (28)
e ¢ 0 ey O Y4 _
cy €2 0 0 Caa ¥s
where
3 1 A A
€31 = "2-02%? €32 = —Eazgl? C34 = —(02“13);]-1
3 A, 1 A, A,
4] = Ay == €49 = ——Ar—=; C44 = —(ay+az)—=.
Cq1 e 42 g 44 (az 3)m

Only one matrix of perturbations for the first power of the parameter € is written out
in (28). Upon the change of variables y =Sy", "= col || y{, ¥5, ¥3, ¥4, 5. |,

5 3/2 3, 0 -0 0

b /2 ay+az 0 0 0

¥l + <0 0 3a,/2 3q 0 +

¥ 0 0 a/2 " ay+ay 0

¥5 0 0 0 0 a, +as
0O 0 0 0 0 ¥
@1 492 923 924 925 Y2

+ellgs; O 0 0 0 |+... pll¥] =0, 29)

0 G 4943 qas a5 Y4
ds1 42 453 Gsa dgss ¥s

where
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q _ _0‘2(&1+A2)_ q ” “(ﬂz+a3)(Al+A2)_ q - ﬂQ(Al—Az)'
21 am : 22 m T 23 ——'—4\[3”1 3
(a, + a3)(Ay — A,) :ZSa (A —As)
924 = 25 = —2 2345!; 2 g3 = 212:” 2,
3(G+G)A—A as (A, + A
- r«f__ )+ a3)(A _2): g = h(4 2);
6m 12m
(ay +a3)(A; +Ay) :ZBa (A —Aj)
Qas = qus = ——2 36m1 2, gs1 = 26::1 2
—_— _3(ay +a3)(A - Ay). oy = Q81 +8).
52 3m . * 53 6m L]
(ay + az) (A + A
dsg -~ 455 == 2 3;( L 2).
m

By introducing the new variables

g

=X, Y=2x3, ¥ =2x3 ¥=2x Y= x5 Y= X
¥i= X, ¥4= x5, Y5 = x5, 35 = X,

we pass from second-order system (29) to a normal system of differential equations.
Finally we obtain

X 0 0 1 0 0 "0 0 0] 0 O
X 0 0 0 1 0 0o 0 of o0 o0
X3 B /2 Ba; 0 0 0 0o 0 o0of o0 o0
Xy -a/2 - 0 0 0 0 0 ofo0 o
Xs 0 0 0 0 0 0 1 0|l o0o o
w0 o 0 0 0 0 o o 1| o of
X7 0 0 0 0| -3¢/2 -3a 0 0| 0 O
Xg 0 0 0 0| -a/2 b 0 0] 0 O
Xg 0 0 0 0 0 0 0 o[ 0 1
10 0 0 0-0 0 0 0 0f|-p O
0 0 1 0 o0 o0 o0 o]o o x{
0 0 0 1 o o0 o0 oflo0o o &
0 0 0 0 o o0 o0 oflo o %
421 422 0 O 423 q24 0 0 | gy O x4
0 0 0 0 0 0 1 0]0 o0 x4
0o 0o o0 oo o o 1lo oft[lel ©°
0 0 0 0 0o 0o o0 o]lo o X}
0 0 0 0 943 daa 0 0 | qs O xg
951 452 0 gs3 gs4 O 0 0 gss O 5
0 0 0 0 o o o0 oflo o J Wxfo

where b, = a,+a,.
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| Denote the matrix of zero approximation by 4 and the perturbation matrix by 4.
Upon introducing the notations

0 0 1 0
-3¢1/2 -ay/2 0 0 0 1
M= 2 | a, = ;
"301 —301 /2 —30] 0 0
—a/2 -b 0 0
A, = 3 31
: ﬂ—b] 0 =1
we can write the matrix of zero approximation in the following way:
a4 0 0
/q = [0 ’ql 0
0 0 A,

Using the described theory, we can find the centralized system of the first
approximation for (30). The matrix equation for determining elements of the algebra

of the centralizer B is represented in the form

a4 0 0 |l x2  xs
0 A 0 fIxa1 A2  Xa3| =
0 0  AYixsr A2 A3

X Xiz XA 0 0
= IX21 X2 X230 a4 0 | (32)

X31 X2 Xaffo .~ 0 Ay
where

(1,4)
X11» X122 X210 X22€ R ;

22) 4,2) (2,4)
X33€ R, X13X23€ R, X3spX32€ R

This equation decomposed into nine independent matrix equations
Aix1 = X1 Ap Az = X124 Axas = X134,
AX21 = X214 A2z = X224 AiXa2s = X234
AyX31 = X314z A3z = X325 AzXas = X33,

By virtue of the assumption that the matrices 4, and A, have no common
characteristic numbers, X3, X23. X31. X32 are zero. The remaining five equations
can be decomposed into two groups. The equations for % ;.. %12, X 21 X 22 are
equivalent to solution of the equation

(4,4)

Ax=%xA,, XER (33)

The second group is composed of the equation .
AyX33 = X33 A, (34) .

Under the assumption that the matrix M has various characteristic numbers, we can
find a general solution of equation (33). Talking into account the structure of matrix

A, (see formulae (31)), equation (33) can be represented in the form
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' 20 M
X1 Xzi _ % X-HN E 35)
A3 Xa X3 XIE, O

where %, %2 X3 X4 € R(Z‘z), ‘E, is the unit matrix. System (35) is decomposed

into four matrix equations
X2 = X3M x4 = X1 My = X4M Mys = X2

The system of these equations is reduced to finding the matrices 7 . X » from the
identical equations

|-

My, = X, M, My; = X3 M. (36)

Under the assumption that M has different characteristic numbers, we can easily
obtain the general solution of (36):

X1 =W Ey + oM x5 = U3Ey + Uy M Wy Mo By Uy € P
Analogously, the general solution of equation (34) has the form

132=a]£2 +az,‘742. ap,as € f o

Thus, the general solution ¥ of equation (33) depends on four arbitrary parameters
and can be represented by the matrix

- ‘M;EZ*'U:M M + M
MEy + UM WE, + M
Coming back to equation (32) and considering the structure of the matrices X33 and

A, we can write the general element Z of the algebra of the centralizer ﬂf,') in the
following way:

4 g2 | a3 a4
G2y @3 | 3 g
Z =931 32| 33 d3y

Ay Q42| Q43 dyy
0 0 U 0 aSSI

o o O O

where
ayy = WE;, + UM, ay; = paM + Hdm'fg- ay3 = RoEy + HyoM,
ajg = U M+ IJ'IEMZ' ayy = U3y + WM ayp = 1 Ey + UM,
azz = W Ep + WM, azy = WoEy + WM. a3y = UsEy + HeM,
azy = WM + IJSMQ- azy = W3Ey + Uiy M a3y = uysM + UJGMQ-
agy = W3 Ey + UgM. agn = UsEy + UM, a3 = 15 Ey + UM,
agq = W13y + Mg M ass = 07 Ey + Ay
Let u;=1, u;=0, i#j, where i, j runover the values from 1 to 18. We obtain 18

independent elements in the algebra of the centralizer ‘B,(J" and denote them by

Z,, ..., Zg The projection of the matrix A onto the kernel of the operator G 4
should be found in the form of the sum
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Ay = Y, a2, , 37

1=1

The coefficients 0.y, ..., 0y, g, are determined from the system of equations
2m0y, +2my0p, = pps 40, + 2m 0, = 0

2m,0gy + 2ma0y, = qi 2m 0, + 2my0g, = 05
2m 0y, + 2ma00,, = Pyt 40gg + 2m 0y g = 0

2my0g y + 2ma0g 5 = gai 2mOg9 + 2m,y0, .0 = 0; (38)
2my0g s + 2myGg 6 = Pyt 40g 3 + 2m 0oy = 0;

Zmy0g s + 2m3g g = q3i 2m g3 + 2my00,4 = 0;

20,7 = 553 —2(ay+a3)0g;3 = 0,

where

1 1
Py = —5024z; — 4y (@ +ay). py = —=

B 5 %2923 — qa4la, +ay);

1 _ 3
p3 = —Eazq” —q“(al-é-az}; m =tuM m,= IIM'Z: my = tr M

1 3 1

q, = E 2(231@")1 —3&1%2) + (az+a3}(5a2q21 + gy +gz));
1 3 1

g, = 5 ( q1q23 +’%c11‘?.,4) + (a2+a3)( a3 +q24(a1+a2));
1 3

43 = -2— ( 4443 +3a1£144) + (a,+ a3)( arqa3 + qaa(@ +aﬁ))_

It is easy to solve the system of algebraic equations (38):

T 1 my b - 1 ny -
i 2 nymy —mzz 2 n"tlll':»'g—m"tz2 e
1 my m
Hggs = =g AP *

Py b e g
2 mmy—-mz ' 2 myms — my !
Analogous expressions can be obtained for oy, ,, 0y;, and Oy, s. O

1
Qg7 = PEEEE Ggyg = 0.

The other coefficients are identically equal to zero. With the help of the coefficients in
expansion (37), we can obtain a centralized system in the first approximation:

o M0 o0 ]o 0 By 0 byl O
© 010 oo Ib21 ol 6,5 0 | o0
@ _ o oo a]o 0 0] 0 bl 0 . (39
s 0 0|®x 0|0 0 0| by 0|0
0 0 0 0 |Aal 0 0 0 0 [bss|
where

b12 ='303M+(104M2, b14=01011M+ GGIZM;Z’
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byy = g3 Ex + Qg M, b3 = 0y Ep + O M,

b3y = 0g sM + 0‘0169‘{2' byz = 0o sEy + g M, bss = 017 E).

Comparing (39) with the initial perturbed (30) we can see that the centralized system
decomposes into two independent subsystems of orders 8 X8 and 2 x 2. The system
of order 8 x 8, in its turn, decomposes into two successively integrated subsystems of
orders 4 x4 and 4 x 4.

Under the assumption that the characteristic numbers A,, A,, A3, A, of the

matrix 4, (see formulae (31)) are known, (39) admits further decomposition into

independently integrable subsystems. In fact, let 1Y = col | n{”’, n¥’,n{’,n¢|, j =
=14, be the eigenvectors of the matrix 4. Introduce the notations (i’ =

= I'fl(l"').ﬂ(gj) ||. Q(")‘ ||1‘t(;) f{}ﬂ Then the relation
1<
C(zj}

CU)
H{M‘ 0 ﬂﬂc(;)ﬂ =
is valid.

To simplify our calculations we assume that the characteristic numbers of the
matrix M vary. In this case, the characteristic numbers A,, A,, A3 A, of the

matrix A, also vary.
Introduce the matrix

e’ 0 Am® am® o 0 0 0 00
o o0 o 0 0’ 0 Am” Amy’ 0 0
n® P AP Am® 0o 0 0 0 00
0 0 0 0 P 9P @ Aan® 0 0
8 o 2 2P Aq® An® o o o 0 0 0
0o 0 0 0 Y 0 A Amy? 0 0
o Am® Am® 0 0 0 0 00
0 0 0 0 ,nil-i] ng“ A 11(4] 1471(4'” 0 0
0 0 0 0 0o 0 0 0 10
0o 0 o0 0 0 0 0 0 0 1

Upon the change of variables x=Sy, the centralized system (39) falls into five
independently integrable subsystems of the second order

>, 010 0 0 0 0 O 0o 0

o »]0 0o 0o 0o 0 o 0o 0

0 0|~ 0]O 0 0 0 0o 0

o olo 2] 0 0o o o 0o 0

gy JJo 0o 0 0% 00 o0 0 0
% o o o olo x|lo o o of”

0 0 0 0 0 0|xr O 0 0

0 0 0 0 0 00 g 0 0

O 0 0 0 0 0 0 0 0 1

o o o 0 0 0 0 Of-(@m+a) O
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hy B 10 0. @ B © 0 0 0
b bp|l 0 0 0 0o 0o 0o o0 0
0 0 |5 010 0 0 0 0 0
0 0 |by bu|O 0 0 0 0 0
o o 0 0o [m 0]o o o0 ol
0 0 0 0 |bg b| 0O O 0 0 ’
0 0 0 0 0 0|67 0]o0 0
0 0 0 0 0 0 |bg Bbg| O 0
0 0 0 0 0 0 0 0 [ao1r 0
0 0 0 0 0 0 0 0 0 17
where
byy = Moy + 7&“04! by = Mgy, + 7"31'0‘012-
byy = Mg s + MOgye
byz = Aylgy + MyQgs bag = Ag0gyy + A3y 0
bag = Ay0lgys + 7"320‘016»
bss = Ay0g3 + A30gg bse = Aoy + A3ag;,,
bes = A30gys + N30
by7 = Mglgy + NgOgg brg = Agtgyy + Nty

e 3

Each subsystem, it its turn, is reduced to quadratures. We should determine the matrix
of the operator S. This determination is also reduced to the solution of a system of
linear inhomogeneous algebraic equations. We do not present these calculation here
because of their awkwardness. _

2. The general case of the structure of a matrix of zero approximation system.
2. 1. Formulation of the problem and realization of the algorithm. Consider the
case when the matrix in equation (1) A is nondiagonable (defective). It should be
considered while solving the operator equations

[U.S,]=F, v=1,2 (40)
and equivalent matrix equations
FNL-NF=Q, Hi=4a, F=4, 1)

or
foﬁv = (iw G.'Tz g:]®£n_ En®9]‘

which are equivalent to (40).
The matrix G ¢ will also be nondiagonable. So the kernel N ¢ of G, defined as

a solution of the homogeneous equation G g’z =0, will not coincide with the kernel

KF} of G which is defined as a solution of the homogeneous equation G} % =0.
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To preserve the symmetry of notation, we take IC'}P for the kernel 1\7’9— of the matrix
G ¢ Thus, Ng-’ < Ngg).
It is evident that we consider the subspaces ﬁg), j=1r.
G = 0. (42)
As is known from linear algebra, the chain of subspaces
(D V2 () g+
is broken when the equality N&‘-) N}”” is fulfilled. The number j -should not

exceed the multiplicity of the zero characteristic number of G 4

Let j be the power in equation (42) and vector 7% be its solution. The smallest
(n,n)

power index j is called the height of vector %. For the linear space R, the set of
equations (42) can be represented in the form
[Fx] =0.[£(Fx1]=0,....[F....[Fx]] =0 43)
—_——

J
It is evident that if j is the height of the vector %, then j—1 is the height of the
vector G ). In algebraic Lie notations, its means that, if the element ¥ € N:(f), then
the element [ F, x] e N&f‘”. It is easy to show that, if ¥ e N(‘ ), x"e N}; L

then [x'.x"] e N_‘,}"'”, where j,=max(j’, ;). Really, Jachblan identity implies
[F 2"+ " RN+ (" A1l =0, that [x" [F. 1) [x" (2",
Fll e N-frm_z) and, hence, [x',x" 1€ N;é"}.

Denote the maximum height of the vectors of the matrix Gg¢ by r and the number

of independent solutions of the equation G ¢ =0 by k. The obtained result can be
formulated as a statement.

Theorem 7. Let the matrix G g with the maximum height of the vectors r
correspond to U in the linear space R™™. Assume that the dimension of the
kernel G:;- is equal to k. Then all the operators X € B(Vg,), satisfying the
equation

[O.[U..lUX])..]1= 0
R
k

vield a finite dimensional Lie algebra of rank k.

The way of constructing the centralized system is analogous to the rule described in
Section 1 of this chapter. The right-hand side of equation (41) is expanded into the
sum:

Q= QN+ QAR AR e NP, QR e TP (44)
By definition

prF, = N, (45)

where N, = xml Qma can be taken as a projection of the right-hand side of (45). The
introduced definition implies that the matrix Q(’) satisfies the identity
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[F....[FQR1...]1 =0,

r

and the operator A, satisfies ;
[U,...[UNy]...] =0.
[P

r
Obtaining the component Q{,ﬁ in (44) and the solution T',, of the equation
Ggly = Q- QR
is analogous to the case of a diagonable matrix. :
A centralized system with a nondiagonable matrix 4, in essence all the properties

of a centralized system with the diagonable matrix 4. This is explained by the
representing A as the sum:
' A=A;+4, (46)
where 4, A, are diagonable and nilpotent components of 4.
Formula (46) implies the representation of the operator U as the sum: U=
=U,+U,, where
Ud= '%ml-g:da: Un= émlg':.la; }-d-_- ﬂ;, ?ﬂ: ﬂ;{‘ -"r= ’q‘r’
2 ] kL i -
Ag= D, A, A, = DA, Kk'eZ,
j=0 j=0 '
The operator U, is semi-simple component and U, is nilpotent component of U.

The following important statement is valid with respectto U,.
Theorem 8. The semi-simple component of U commutes with Ny, ..., N,

involved in the associated centralized system operator Uy=U + €Ny + ... + "N,
[UsN,] =0 v=12,... (47)

where the N, are defined by the equalities (45).
Proof. Represent the identity (47) as an equivalent matrix identity

(Fax) = 0. 1e RS,
(i}

The proof will be carried by induction for the elements of the subspaces }'\’5r s J =
=1, ..., r, defined by the sequence of equations (43). Let % € N_.(;) be determined as

a solution of the equation [ %, %] =0. Then the matrix y is commutes with ¥, i..
Fy =% F Hence, F>y = FxF=xF, and y is also commutes with the matrix FZ.
This implies that any entire positive power #° commutes with . The sum o , 7'+
+ 0,72 pr.py€ Z*, alsocommutes with x: [, P '+ a, L x)=a,[ 7, x] +
+ o, /% %] =0. Hence,

k’ :
(Fax] = {Z{,}gfﬂx] =0, xe Ng).
Jj=

Further, we use the induction method. -Assume that for the elements of the space
N Eﬁ’-),. defined to be solutions of the equation
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[F.[FX1.. 120, xe NP, (48)
J
the theorem is fulfilled and the identity to be proved holds for r=j: [F,x]1=0, x €
€ N;{-). For elements of the space Nf}i“’. the defining equation has the form

[FoilFdla] =0 ke NEY (49)
— ———
s :
If the condition (49) is fulfilled for %, then condition (48) is fulfilled for 9= [ F, ¢ ]
By assumption [ %y 21 =%, [# x]]=0. Let us prove, that the identity

[Fo(%x1) =0, peZ?, (50)

holds for F, where p is an arbitrary positive number.
* For the Poisson bracket [ #*, %], we use the formula

_ p-l . .
[#.3] = 3 FENE. (63V)
j=0
The validity of this formula is checked by substituting [ F,x]= Fyx-x F°, [F
x] = Fx —x F Multiply both sides of (51) by #°. By assumption, F,;[F x]l=[F
x] %, Hence

FlP.x] = Z FFP 7 N F 1P = 29’”" *[?‘x]?"?} =7, 1] %

Jj=0 j=0
Hence, the desired identity (50) is proved. Let us write it for p =1
[Fa [Fx1] = 0. (52)
Denote the matrix of the equation [ %, x] =0 in the linear space R™™ by G 7
We can write identity (52) in equivalent form G_;";- x =0. By virtue of the
diagonability of the matrix (‘; equations (“_; % =0 and (‘ x 0 are equivalent

to [Fpx]=0, x€ N};’-"”.
2.2. Basic theorems. The operator U of the centralized system can be
represented in the following way:

Uy=U;+U, +&N; +...+ "N, + ...
The centralized system can be represented in the form
% = (Fy+ Fo+eM, +2 M5+ ... )x, (53)
where M,y = (Q(r)) T denotes the transposition.
Talking into account the fact about the commutatively of the operators U, and U,
with U,, v=1,2,..., wecanrelate U, to the algebra of the centralizer. Here,

Theorem 1 concerning the structure of the centralized system, can be automatically
applied.

Now formulate an analogy of Theorem 1 for the considered case of a matrix F of
general structure based on Theorem 8.
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Theorem 9. Let the matrix A be reduced to the normal Jordan form by the
invertible matrix L

£'ac = diag{E,. E,.... E, }.

where E|, E,..... E
X r,., respectively. Then, upon the change of variables x= Lz, the centralized
system is transformed to the block diagonal form

are Jordan blocks of dimensions r | Xry, roXry, ..., 1, X

m

€ 0 .. 0 Qu O . 0
: = we B
Be 0 E 0 +Z€ 0 Qv2 z,
dt val .
ljo o .. , o o0 ae ekl

where Qui. Quas ..., Qy,, are square blocks of dimensions r|Xry, ryXry, ...,
r?ﬂ' x rﬂl
The fact that A4 is nondiagonable matrix is considered in the following statement.
Theorem 10. The solution of the centralized (53) can be represented as the
product:

B g
xn=Y @eﬂr’n(-c). (54)
: pr L

where W is the smallest integer such that AY =0 and the vector M(T)=
=col||n () ... .M, (|| is the solution of the system of equations

% = (M, +eM,,+...)n. NO) = x(0), T=c¢r (55)
Proof. Let us make the substitution x=exp (A1)N in (53). Then

% = exp(—=A(eM,, +53M\.3+ ... )exp(A4nm.
¢

Because of the commutatively of 4 and M. we obtain (55). On account of [ A4,

A,]=0, the relation exp ((A,+ A,))=exp Ayt exp A,t takes place. and as a
corollary of this, formula (54) is true. Therefore. if the matrix is not diagonable, the
solution contains terms which are proportional to powers of an independent variable.

3. Method of local asymptotic decomposition. Consider the special case of the
choice of the operator P which is a projection on the algebra B of a zcro
approximation system, supposing that the system is decomposed (see also [4]). In this
case, in the operators Uy, ..., U,, associated with the zero approximation system, the
variables are separated. For example, the case where a full decomposition vector of
variables x=|| x|, ..., x,|| can be split into subgroups Xy = Il Xivs wee s xv}\,JH. J=

= T"E Vi + ...+ Vv, =n sothat the operator U can be represented as a sum

U= UV: + ...+ va.

£

i=1g. (56)

Then the operation of the projection of an arbitrary operator F onto the algebra B
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consists of leaving, in the expansions of the coefficients, only those variables from the
group where we take the derivatives with respect to (56). As a result, in the
decomposed system, the variables are separated as in (56).

- By implication, the integration of the original perturbed system is replaced by
-integration-of a sequence of subsystems with separated variables. Since the theorem of
solvability of operator equation

[UI,S] = Fl —PFI,..-,[U,.,SJ = Fr_P'F[

has a local character, the considered method is called the local decomposition method.
Recall that the question of proof of the algorithm is open and, therefore, all the
calculations are formal. .
" Consider some examples in which the local asymptotic decomposition method is
used. :
3.1. Dynamics of flying apparatus. The problem of local asymptotic decompo-
sition of perturbed movement of flying apparatus is considered (see Fig. 2).

Fig. 2. System of coordinates for describing the dynamic motions of an airplane.

Suppose that an airplane-type flying apparatus has the vertical symmetry plane
x,0y,. Denote the stationary coordinate system Ax,y;z;. The coordinate system
connected with the flying apparatus is denoted by Ox,y,z, and the semi-velocity
system is denoted by O x*y*Z". The equations of movement bf relative semivelocity
coordinate system have 13 variables.

Longitudinal variables: V — speed of center of gravity; 6 — angle of inclination
of trajectory with respect to horizontal; ®_ — projection of angle speed vector on axis
Qz; v — pitch angle; x — coordinate of center of gravity along axes Oxy; H —
height of flight; m — mass of apparatus.

Profile variables: ¥ — angle of trajectory rotation; ®, — projection of angle of
speed vector on axis Ox ; ®,— projection of angle of speed vector on axis Oy; ¥
— angle of yaw; y— angle of bank of flying apparatus; z — coordinate of center of
gravity along axes Oz .

Longitudinal movement of the flying apparatus consists of the translational
movement of the center of gravity along the axes. Ox; and Oy, (i.e. in symmetry
plane Ox, y,)and rotational movement with respect to axes Oz,. Lateral movement
is added from the translational movement of the center of gravity of the flying ap-
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paratus along axes Oz, and rotary movement with respect to axes Ox, and Oy,.
The common movement of the flying apparatus consists of the two mentioned move-

ments.
Granting that the above denotes equations of flying apparatus movement, we take

the following form ([5]).
Equations for longitudinal movement are

av
dt
a9
dt

i

Fy(V.8, v, H, m, ¥, y,v):

Fo(V, 0,0, H,m, ¥, v, 7);

dw.
dt
dv dx
— = F(0,0,7), — = F(V,6,P);
g7 »(0, @, Y) o ( )
dH dm
= Fy(V, — = F,(V,H,Y).
dt H( 9)* dt m( » 'JY).

Equations for profile movement are
ay
dr

=Fy (V,0,0,0,,Hm Y, 0,0,Vy7Y); 7

= Fy(V.0,Hov,m, ¥, y. )

do,
dt

dw,
dt

F(,,x(V, 6, o, vH YWY, 0, O V. )

Fo (V.0,0, v H, ¥, 0, 0y, Y, V) (58)

ay _

o = Fy(0,v, 0, 0, 7)

Fy@v.0,m, 2
dz
dr

Explicit expressions for the right parts of equations (57) and (58) will not be stated
here as they are contained in the work cited above. Later on, we use the vector form
dn/dt=F(t.,m) for (57) and (58), where N=(M, N2, ... ., N13) F =(Fy, Fq, ...

.Fy3) are variables and functions of the right parts of the movement equations in
the same order as before. ‘

Let m =mn« be a certain programmed movement of flying apparatus and dmns/dt=
= F(1.m+) Consider movement in the neighborhood of this programmed movement
N ="ms+€AMN, where a small parameter €> (0 characterized the smallness of the

perturbed movement.

If, in the main programmed movement, there is no sliding (f = 0), then, granting
the symmetry of the flying apparatus, the system of perturbed movement equations can
be represented in the reduced form:

% s [Zu 11*9*) ZAna] F;+¢e2..;

dAn ; e 3\
atfzJr N [Zs‘mg) 2 Z’-\ﬂg) R v e

= F,(V, 0,¥).

The following expression
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[ZAH;]F = ZA ar;}}n*)

is used for simplification: indices n and 5 denote similar sums but consist of only
longitudinal or profile movement parameters. At €= 0, the system of perturbed
movement equations (59) is split into independent systems.

Using the described method, find the expression for §,; and the transformation (up

to values of order &, inclusively) has the following form
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Further, the original system of (59) is split into two independent systems (up to values
of order & inclusively)
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3. 2. A model of gas dvnamics. Consider one more example which is a
hyperbolic system of nonlinear partial differential equations. The most studied among
them are systems of quasi-lincar equations with two independent variables. As is
known, such systems describe nonstationary one-dimensional and supersonic two-
dimensional stationary flow of compressible gases and liquides.

Consider equations describing the isocnlropic flow of polytropic gas
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Here, the following is assumed:
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the variables s, r are Riman invariants s=u—@(p), r =u+ @(p). expressed in
terms the movement parameters; « is flow speed; r is density; Yy is an exponent
characterizing the pressure of polytropic gas; and the parameter v characterizes
symmetry of the gas flow. Suppose v =0 in equations (60) and receive plane-
symmetrical movement equations

ds ds ar or
—+(Us+Pr)— =0, — + (as+Pr)— = 0. 61
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At y=3, equations (61) are separated into two independent quasi-linear equations
ds ds ar or
—+s5s— =0 — +r—=0. 62
ot ox at o (02

Consider movement equations similar to equations (62) which are plane-symmetrical
and split. To this end. suppose that

v=g Y=3+eAy O<e< (63)
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If we substitute v and 7y, according to formulae (63), into equations (60), we obtain

% + s% = eF,(x, r,..i‘)'. % + a‘”'g% = eF(x, 1, 5), (64)
where
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By €=0, (64) can be split into two independent quasi-linear equations of (62) type.
At e#0, after a sequence of calculations, we obtain the following separated system
(up to values of order € inclusively) for new variables z,, z,, connected by the
formulae of obtained change of variables:
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The above-mentioned examples illustrate the possibilities of a local asymptotic
decomposition method for different classes of height-dimensional systems of
differential equations. These problems are actual enough and can often used in various
applications.
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