K. Wilderotter (Univ. Bonn, Germany)

ON *n*-WIDTHS OF BOUNDED PERIODIC HOLOMORPHIC FUNCTIONS

The evendimensional Kolmogorov widths d_{2n} , Gel'fand widths d^{2n} and linear widths δ_{2n} of \tilde{A} in \tilde{L}_q and \tilde{C} are determined exactly. It is shown that all three n-widths are equal and a characterization of the widths in terms of Blaschke products is given.

Точно визначені колмогоровські поперечники d_{2n} , поперечники Гельфанда d^{2n} та лінійні поперечники δ_{2n} звуження \tilde{A} в просторах \tilde{L}_q і \tilde{C} . Показано, що всі ці n-поперечники рівні та наведено характеристики цих поперечників у термінах добутків Бляшке.

1. Introduction and Statement of Results. The Kolmogorov n-widths of a subset A of a Banach space X is defined by

$$d_n(A, X) = \inf_{X_n} \sup_{x \in A} \inf_{y \in X_n} ||x - y||,$$

where X_n runs over all n-dimensional subspaces of X.

The Gel'fand n-width of A in X is defined by

$$d^{n}(A,X) = \inf_{L^{n}} \sup_{x \in L^{n} \cap A} ||x||,$$

where L^n runs over all subspaces of codimension n.

The linear n-width of A in X is given by

$$\delta_n(A, X) = \inf_{P_n} \sup_{x \in A} ||x - P_n x||,$$

where P_n varies over all linear operators of rank n, which map X into itself.

Much information on where n-widths may by found in the book of A. Pinkus [1]. In particular, the following fundamental inequality is always valid:

$$d^{n}(A,X), \quad d_{n}(A,X) \leq \delta_{n}(A,X). \tag{1}$$

In the present paper we determine the evendimensional n-widths of the following class of analytic functions. Let $S_{\beta} = \{z \in \mathbb{C} : |\mathrm{Im}(z)| < \beta\}$, and let $\tilde{H}^{\infty}_{\beta}$ denote the space of functions f, which are analytic in S_{β} , real and 2π -periodic on the x-axis, and satisfy $\|f\|_{\tilde{H}^{\infty}_{\beta}} := \sup\{|f(z)|: z \in S_{\beta}\} < \infty$. Let \tilde{A} be the restriction of the real axis of the unit ball of $\tilde{H}^{\infty}_{\beta}$. We seek the value of the n-widths of \tilde{A} in the Banach space \tilde{X} , where \tilde{X} represents either

$$\tilde{L}_q \ = \ \left\{ \ f \colon \left. \mathbb{R} \to \mathbb{R} \right., \ f \ 2\pi \text{-periodic and} \ \left\| f \right\|_q = \left(\frac{1}{2\pi} \int\limits_0^{2\pi} |f(x)|^q dx \right)^{1/q} < \infty \ \right\},$$

$$1 \le q < \infty$$
,

or

1170

$$\tilde{C} = \{f \colon \mathbb{R} \to \mathbb{R} \text{ , } f \mid 2\pi\text{-periodic and continuous}\}.$$

We emphasize that all these spaces are real, but not complex vector spaces.

© K. WILDEROTTER, 1995

Our approach to periodic functions will consist in transfering the analysis from the strip S_{β} to the annulus $\Omega_R = \{w \in \mathbb{C} : R < |w| < R^{-1}\}$, where $R = e^{-\beta}$. The transformation $w = e^{iz}$ maps S_{β} onto Ω_R and the operator $U : f(z) \to g(w) = f((1/i)\ln(w))$ yields an isometry between $\tilde{H}^{\infty}_{\beta}$ and $H^{\infty}(\Omega_R)$, the space of all functions g, which are analitic in Ω_R , real-valued on the unit circle $E = \{w \in \mathbb{C} : |w| = 1\}$, and satisfy $||g||_{H^{\infty}(\Omega_R)} := \sup\{|g(w)| : w \in \Omega_R\} < \infty$. Furthemore U maps the spaces \tilde{L}_q and \tilde{C} isometrically onto the corresponding spaces $L_q(E)$ and C(E), respectively. Denoting by A the unit ball in $H^{\infty}(\Omega_R)$ and by X either $L_q(E)$, $1 \le q < \infty$, or C(E), we see that the n-widths of \tilde{A} in \tilde{X} are equal to the n-widths of A in X. In the following we will concentrate on the later problem.

In order to determine the n-widths of A in X we generalize a technique of Fisher and Micchelli [2] (see also [3] and [4]). For this purpose we need some more terminology from complex analysis. Let $g(z,\zeta)$ be the Green's function for Ω_R with singularity at ζ , that is, $g(z,\zeta)$ is harmonic and positive on Ω_R except for a logarithmic pole at ζ and $g(z,\zeta) = 0$, if $z \in \partial \Omega_R$. Let $h(z,\zeta)$ be the harmonic conjugate of $g(z,\zeta)$ on Ω_R ; h is not single-valued. Its period about $\Gamma^{(1)}$ is given by $2\pi\omega(\zeta)$. Here $\Gamma^{(1)}$ and $\Gamma^{(0)}$ denote the inner and outer boundary of Ω_R , and ω is the harmonic measure of $\Gamma^{(1)}$, i. e. ω is the unique harmonic function in Ω_R with constant boundary values 1 on $\Gamma^{(1)}$ and 0 on $\Gamma^{(0)}$; ω is given explicitly by

$$\omega(\zeta) = \frac{\ln|\zeta| + \ln R}{2\ln R} \tag{2}$$

and possesses the important symmetry property

$$\omega(\zeta) + \omega(\overline{\zeta}^{-1}) = 1, \quad \zeta \in \Omega_R, \quad \omega(\zeta) = 1/2, \quad \zeta \in E.$$
 (3)

A Blaschke product B of degree m on Ω_R is a function of the form

$$B(z) = \lambda \exp \left(-\sum_{j=1}^{m} P(z, \zeta_j)\right),$$

where $|\lambda| = 1$ and ζ_1, \ldots, ζ_m are points in Ω_R , not necessarily distinct, and $P(z,\zeta) = g(z,\zeta) + ih(z,\zeta)$, is the complex Green's function. In general B is multiple-valued; B is single-valued if and only if

$$\sum_{j=1}^{m} \omega(\zeta_j) \in \mathbb{N}. \tag{4}$$

Finally we denote by

$$\mathbb{B}_{2n} = \{B_{2n}(z) = \exp(-P(z,\zeta_1) - \dots - P(z,\zeta_{2n})) \text{ with } \zeta_1,\dots,\zeta_{2n} \in E\}$$

the set of all Blaschke products of degree 2n, all whose zeros lie on E. After scaling we may assume that $B_{2n}(z)$ is real for all $z \in E$. Furthermore, all functions in \mathbb{B}_{2n} are single-valued in view of (3) and (4).

We are now ready to formulate our first main result.

Theorem 1.

$$d_{2n}(A,X) = d^{2n}(A,X) = \delta_{2n}(A,X) = \inf\{\|B\|_X : B \in \mathbb{B}_{2n}\}.$$

As already mentioned, our proof of Theorem 1 is built on the technique of Fisher and Micchelli [2]. Indeed, the upper estimate $\delta_{2n}(A,X) \leq \inf\{\|B\|_X \colon B \in \mathbb{B}_{2n}\}$ follows immediately from the cited paper. However, Fisher and Micchelli could only establish a lower bound of the form inf $\{\|B\|_X \colon B \in \mathbb{B}_{2n+1}\} \leq d_{2n}(A,X)$, where \mathbb{B}_{2n+1} denotes the set of single-valued Blaschke products of degree at most 2n+1. Theorem 1 closes the gap between the lower and upper bound of Fisher and Micchelli under the additional assumption that all arising functions are real-valued on the unit circle E.

In the case X = C(E), we are able to show that the infimum in Theorem 1 is attained by the Blaschke product B^* , whose nodes are equidistant.

Theorem 2. Set
$$\zeta_k^* = \exp(i(2k-1)\pi/2n)$$
 for $k=1, ..., 2n$ and $B^*(z) = \exp(-P(z, \zeta_1^*) - ... - P(z, \zeta_{2n}^*))$. Then $\|B^*\|_{C(E)} = \inf\{\|B\|_{C(E)}: B \in \mathbb{B}_{2n}\}.$

Finally we determine the asymptotic behavior of $d_{2n}(A, C(E))$ and establish an interesting connection between the widths $d_{2n}(A, C(E))$ and $d_n(A(H^{\infty}(G)), C[-1,1])$. Here G denotes the interior of the ellipse with foci at the points ± 1 and sum of semi-axes $c = e^{\beta}$, and $H^{\infty}(G)$ is Hardy space of bounded analytic functions on G with unit ball $A(H^{\infty}(G))$.

Theorem 3.

$$d_{2n}(A, C(E)) = d_{2n}(\tilde{A}, \tilde{C}) = d_n(A(H^{\infty}(G)), C[-1, 1]).$$

The same equation holds for the linear and Gel'fand widths. Asymptotically we have $d_{2n}(A, C(E)) = 2R^n + O(R^{5n})$.

2. Proof of the Theorems.

Proof of Theorem 1. As mentioned in the introduction, the upper bound $\delta_{2n}(A, X) \leq \inf\{\|B\|_X \colon B \in \mathbb{B}_{2n}\}$ follows directly from [2].

In order to establish the lower bound for $d_n(A,X)$ and $d^n(A,X)$, we need the following version of the Pick-Nevanlinna interpolation theorem for the space $H^\infty(\Omega_R,\mathbb{C})$. By definition $H^\infty(\Omega_R,\mathbb{C})$ consists of all complex-valued bounded holomorphic functions on Ω_R . In contrast to $H^\infty(\Omega_R)$, functions in $H^\infty(\Omega_R,\mathbb{C})$ are not necessarily real-valued on the unit circle E.

Theorem 4. Fix 2n+1 distinct points z_0, \ldots, z_{2n} in E and let t_0, \ldots, t_{2n} be 2n+1 real numbers with $\sum_{j=0}^{2n} \left| t_j \right|^2 = 1$. Then the vector $\mathbf{t} = (t_0, \ldots, t_{2n})$ belongs to the unit sphere S^{2n} of \mathbb{R}^{2n+1} . Set $\rho(\mathbf{t}) = \inf\{\|f\|_{H^{\infty}}: f \in H^{\infty}(\Omega_R, \mathbb{C}), f(z_j) = t_j, 0 \le j \le 2n\}$. Then we have:

- (i) ρ is a continuous function on S^{2n} .
- (ii) There is a unique function $B_t \in H^{\infty}(\Omega_R, \mathbb{C})$ with $||B_t|| = 1$ and $B_t(z_j) = t_j/\rho(t)$, $0 \le j \le 2n$.

- (iii) The function B_t is a single-valued Blaschke product of degree at most 2n+1.
- (iv) $V: t \to B_t$ is a continuous mapping from S^{2n} into the set \mathbb{B}_{2n+1} of single-valued Blaschke products of degree at most 2n+1, when \mathbb{B}_{2n+1} is given the topology of uniform convergence on compact subsets of Ω_R .

For a detailed exposition of the Pick-Nevanlinna theorem we refer to ([3], Chapter 5).

Theorem 4 gurantees the existence of a unique Blaschke product $B_t \in \mathbb{B}_{2n+1}$ interpolating the data $t_j/\rho(t)$ with minimal H^∞ -norm. A priori it is possible that B_t is complex-valued on E. However, since the data t are real, the Schwarz reflection principle implies, that the function $\overline{B_t(1/\overline{z})}$ is a minimal interpolant as well. In view of the uniqueness of the minimal interpolant we conclude that $B_t(z) = \overline{B_t(1/\overline{z})}$. Therefore B_t is real-valued on E and its zeros are located symmetrically with respect to E. We numerate the zeros in the following order:

$$z_1, 1/\bar{z}_1, \ldots, z_l, 1/\bar{z}_l, z_{l+1}, \ldots, z_k,$$

where $z_1, \ldots, z_l \notin E$ and $z_{l+1}, \ldots, z_k \in E$. By (3) we have $\omega(z_j) + \check{\omega}(1/\overline{z_j}) = 1$ for $j = 1, \ldots, l$, $\omega(z_j) = 1/2$ for $j = l+1, \ldots, k$. Since B_t is single-valued, we obtain from (4) that

$$\sum_{j=1}^{l} (\omega(z_j) + \omega(1/\overline{z}_j)) + \sum_{j=l+1}^{k} \omega(z_j) \in \mathbb{N}.$$

This is possible only if k-l is an even number. Consequently B_t possesses always an even number of zeros and in particular the degree of B_t must be less or equal 2n.

Let us denote by $\hat{\mathbb{B}}_{2n}$ the set of single-valued Blaschke products, which are real-valued on E with an even number of zeros less or equal 2n, which are located on E or symmetrically with respect to E. As a result of the preceding analysis we obtain a mapping

$$V: S^{2n} \to \hat{\mathbb{B}}_{2n}, t \to B_t;$$

V is a continuous odd mapping, when $\hat{\mathbb{B}}_{2n}$ has the topology of local uniform convergence.

Having established the existence of V, we use now the same technique based on Borsuk's theorem like Fisher and Micchelli [2] to conclude that

$$\inf\{\|B\|_X: B \in \hat{\mathbb{B}}_{2n}\} \le d_{2n}(A, X), d^{2n}(A, X).$$

From the last inequality we see that Theorem 1 will be proved, if we manage to show that

$$\inf \big\{ \|B\|_X \colon B \in \hat{\mathbb{B}}_{2n} \big\} \ = \ \inf \big\{ \|B\|_X \colon B \in \mathbb{B}_{2n} \big\}.$$

For this purpose we remark, that, since $\hat{\mathbb{B}}_{2n}$ is compact with respect to local uniform convergence on Ω_R , there exist a $B^* \in \hat{\mathbb{B}}_{2n}$ such that $\|B^*\|_X = \inf\{\|B\|_X : B \in \hat{\mathbb{B}}_{2n}\}$; B^* must possess 2n zeros, counted with multiplicities. Indeed, assuming that the number of zeros of B^* were less than 2n, the Blaschke product

 $\exp(-2P(z,1))B^*(z)$ would belong to $\hat{\mathbb{B}}_{2n}$. Since $|\exp(-2P(z,1))| = |\exp(-2g(z,1))| < 1$ on E, we obtain the contradiction $||\exp(-2P(z,1))| < 1)B^*(z)||_X < ||B^*(z)||_X$. Hence B^* has 2n zeros z_1^*, \ldots, z_{2n}^* .

We claim that all zeros of B^* lie on E. Again we assume the contrary to be true: Suppose, the zeros z_1^* does not lie on E. Since zeros, which are not located on E, always occur in pairs, $z_2^* = \overline{1/z_1^*}$ is a zero of B^* as well. After rotation we may assume z_1^* , $z_2^* \in (R, 1/R)$. For $z \in E$ we obtain by symmetry that $|\exp(-P(z, z_1^*) - P(z, z_2^*))| = \exp(-2g(z, z_1^*))$. Since for fixed $z \in E$ and variable $\alpha \in (R, 1/R)$ the function $g(z, \alpha)$ attains its maximum in $\alpha = 1$, we conclude that $|\exp(-2P(z, 1))| < |\exp(-P(z, z_1^*) - P(z, z_2^*))|$. Consequently, if we set $B^{**}(z) = \exp\left(-P(z, 1) - P(z, 1) - P(z, z_3^*) - \ldots - P(z, z_{2n}^*)\right)$, we arrive at the contradiction $||B^{**}||_X < ||B^*||_X$. Hence all zeros of B^* lie on E. This observation completes the proof of Theorem 1.

Proof of Theorem 2 is based essentially on the following theorem.

Theorem 5. Let B_1 and B_2 be two Blaschke products in \mathbb{B}_{2n} . Let $\alpha_1, \ldots, \alpha_{2n}$ be 2n distinct points on E. If $B_1(\alpha_k) = B_2(\alpha_k)$ for $k = 1, \ldots, 2n$ and $B_1(1/R) = B_2(1/R)$, then $B_1(z) = B_2(z)$ for all $z \in \Omega_R$, i. e. B_1 and B_2 coincide.

Proof of Theorem 5. By the Schwarz reflection principle we can continue both Blaschke products across the boundary $\partial\Omega_R$ onto a domain $\hat{\Omega}$ with $\Omega_R \subset \hat{\Omega}$.

For each $\varepsilon > 0$, and all $z \in \partial \Omega_R$,

1174

$$|(1+\varepsilon)B_1(z)| > |-B_2(z)| = |[(1+\varepsilon)B_1(z) - B_2(z)] - (1+\varepsilon)B_1(z)|.$$

Thus by Rouche's Theorem the functions $(1+\epsilon)B_1-B_2$ and $(1+\epsilon)B_1$ have the same number of zeros in Ω_R , namely 2n.

The function $(1+\varepsilon)B_1-B_2$ converges locally uniformly on $\hat{\Omega}$ to B_1-B_2 for $\varepsilon \to 0$. Suppose that B_1-B_2 is not identically zero. Then by a well known result from complex analysis each function $(1+\varepsilon)B_1-B_2$ has at least 2n+1 zero in $\hat{\Omega}$ for sufficiently small ε , which converge to the 2n+1 zeros $\alpha_1,\ldots,\alpha_{2n}$ and 1/R of B_1-B_2 . Since $(1+\varepsilon)B_1-B_2$ has exactly 2n zeros in Ω_R , one sero \mathbf{z}_ε must lie in $\hat{\Omega} \setminus \Omega_R$. Let $(1/R^2)(1/\overline{z}_\varepsilon)$ be the point in Ω_R , which is conjugate to z_ε with respect to the outer boundary of Ω_R . Because of the Schwarz reflection principle the equation $(1+\varepsilon)B_1(z_\varepsilon)-B_2(z_\varepsilon)=0$ implies the equation

$$(1+\varepsilon)B_2((1/R^2)(1/\overline{z}_{\varepsilon}))-B_1((1/R^2)(1/\overline{z}_{\varepsilon}))=0.$$

Hence the function $(1+\varepsilon)B_2-B_1$ possesses the zero $(1/R^2)(1/\overline{z}_{\varepsilon})$ in Ω_R , which tends to 1/R for $\varepsilon\to 0$. On the other hand, repeating the above analysis once more, we see that $(1+\varepsilon)B_2-B_1$ has exactly 2n zero in Ω_R , which converge to $\alpha_1,\ldots,\alpha_{2n}$. This is a contradiction. Hence B_1-B_2 must be identically zero and Theorem 5 is proved.

In order to prove Theorem 2 we denote by B^* the Blaschke product with equidistant nodes z_1^*, \ldots, z_{2n}^* . Let B be an arbitrary other Blaschke product in

 \mathbb{B}_{2n} . After rotating we may assume that $B^*(1/R) = B(1/R)$. Furthermore both B^* and B are real-valued on E.

The decisive idea of proof relies on the fact that B^* has an extremal alternant consisting of 2n points. Therefore the assumption $||B||_{C(E)} < ||B^*||_{C(E)}$ implies that $B^* - B$ has at least 2n zeros on E. Since furthermore $B^*(1/R) = B(1/R)$, we obtain $B^* = B$ and the minimal property of B^* is proved.

Proof of Theorem 3. In order to determine the asymptotic behavior of $\|B^*\|_{C(E)}$, we transform the domain of definition Ω_R of B^* twice. In the first step we pass over from $B^*(z)$ to $B^*(e^{iw})$; which is a periodic, even and analytic function in the strip S_{β} with zeros in $w_k^* = (2k-1)\pi/2n$, $k=1,\ldots,2n$.

In the secon step the change of variables $w \to v = \cos(w)$ maps S_{β} analytically onto the interior of the ellipse G with foci at the points ∓ 1 and sum of semi-axes $c = e^{\beta}$. Furthermore, the transformation $F(v) \to f(w) = F(\cos(w))$ yields a one-to-one correspondence between functions F analytic in G and functions f, which are periodic, even and analytic in S_{β} . Consequently $\Phi^*(v) = B^*(\exp(i\arccos(v)))$ is a well defined analytic function on G with the following properties:

(i) $\Phi^*(v) = 1$ for $v \in \partial G$;

(ii)
$$\Phi^* \left(\cos \left((2k-1)\pi/2n \right) \right) = 0, k=1,...,n.$$

Hence Φ^* is a Blaschke product of degree n on the simply connected domain G with zeros in the Chebyshev nodes of the interval [-1,1]. Osipenko [5] showed that

$$\|\Phi^*\|_{C[-1,1]} =$$

= $\inf\{\|\Phi\|_{C[-1,1]}: \Phi \text{ is a Blaschke product on } G \text{ of degree at most } n\}$ =

$$= d_n(A(H^{\infty}(G)), C[-1, 1]).$$

Furthermore Osipenko [5] gave an explicit formula for $\|\Phi^*\|_{C[-1,1]}$ in terms of elliptic functions. In particular he established the following asymptotic behavior:

$$\|\Phi^*\|_{C[-1,1]} = 2c^{-n} + O(c^{-5n}).$$

Since $c = e^{\beta}$ and $\beta = \ln(1/R)$, we obtain the statement of Theorem 3 by using the inverse transformation.

The results of this paper are part of the author's dissertation [6].

- 1. Pinkus A. n-Widths in approximation theory. Berlin: Springer-Verlag, 1985.
- Fisher S. D., Micchelli C. A. The n-widths of sets of analytic functions // Duke Math. J. 1980. 47. – P. 789 – 801.
- Fisher S. D. FunctionTheory on Planar Domains: A Second Course in Complex Analysis. New York: Wiley-Interscience, 1983.
- Fisher S. D. Optimal sampling of holomorphic functions // Methods of Functional Analysis in Approximation Theory. – Basel: Birkhäuser-Verlag, 1986. – 76.
- Osipenko K. Yu. Optimal interpolation of analytic functions // Math. Zametki. 1972. 12. -P. 465-476.
- Wilderotter K. Optimale Algorithmen zur Approximation analytischer Funktionen: Dissertation. Bonn, 1990. – 110 p.

Received 05.11.93