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ON n-WIDTHS OF BOUNDED
PERIODIC HOLOMORPHIC FUNCTIONS

The evendimensional Kolmogorov widths d,,, Gel’fand widths d*" and linear widths 8,, of A in
faq and € are determined exactly. Itis shown that all three n-widths are equal and a characterization
of the widths in terms of Blaschke products is given.

TouHO BH3HAYeH] KOJIMOrOpOBCHK] NONEPeyHHKH d, ,, nonepeunuku lespdanga d° " Ta sinmikmi
TIOTIEPEYHHKH &, 3BYXKEHHA A B IpocTopax ﬁq i €. INokasamo, mo Bei Ui A-TOMepeyHMKY PiBHi
Ta HABE/IeHO XapaKTEPHCTHKH X NONEpeHHHKIB y TepMinax noByTkis Biiauike.

1. Introduction and Statement of Results. The Kolmogorov n-widths of a subset A
of a Banach space X is defined by

d,(A,X) = inf sup inf [[x—{l,
Xy xeA yeX,

where X,, runs over all n-dimensional subspaces of X
The Gel’fand n-width of A in X is defined by

d"(4,X) = inf sup x|,
L" xeL"NA :

where L” runs over all subspaces of codimension 7.
The linear n-width of A in X is given by
5 (A X) = inf sup [|x—P,x||,

& xEA

where P, varies over all linear operators of rank n, which map X into itself.

Much information on where n-widths may by found in the book of A. Pinkus [1].
_ In particular, the following fundamental inequality is always valid:

d"(A,X), d,(A,X) < 8,(4,X). W

In the presént paper we determine the evendimensional* n-widths of the following
class of analytic functions. Let Sg = {ze C: |Im(z)|<B}, andlet HF denote
the space of functions f, which are analytic in S p, real and 2m-periodic on the x-

axis, and satisfy | fllzz := sup{[f(2)|: ze Sp} < . Let A bethe restriction of

the real axis of the unit ball of A} p - We seek the value of the n-widths of A in the
Banach space X, where X represents either

2 1/q
7 s 1
L, = {f: R 5R,f Zﬂ-pen(_)dlcancl Ifllg = [E £|f(x)[qu] < m},
lﬁq;(oo,

or

= {f: R—>R, f 2n-periodic and continuous}.
We emphasize that all these spaces are real, but not complex vector spaces.
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Our approach to. period.ic functions will consist in transfering the ahélysis from the
strip -Spg to the annulus Qp = {we C: R<1w[<R_1}', where R = e~P. The
transformation w = e'” maps Sg onto Qp and the operator U: f(z)— g(w) =
= f((1/i)In(w)) yields an isometry between E"ﬁ’ and H”(Qg), the space of all
* functions g, which are analiticin Qp, real-valued on the unit circle E = {we C:
[wl=1}, and satisfy || gllg=(qaz) := su_p{[g(wjl: we Qp} < . Furthemore U
maps the spaces L, and C isometrically onto the corresponding spaces L 4(B) and
C(E), respectively. Denoting by A the unit bail in H™(Qpg) and by X either
L (E) 1 £ g <o, or C(E), wesee that the n-widths of A in X are equal to

the n-widths of A in X. In the following we will concentrate on the later problem.
In order to determine the n-widths of A in X we generalize a technique of Fisher
and Micchelli [2] (see also [3] and [4]). For this purpose we need some more

terminology from complex analysis. Let g (z,{) be the Green’s function for Qp
with singularity at {, thatis, g(z,{) is harmonic and positive on Qp except for a
logarithmic pole at { and g(z,{) = 0, if z € 9Qp. Let A(z, {) be the harmonic
-conjuga'te of g(z, C) on Qp; k isnot single-valued. Its period about: I"!) is given
by 2n® (). Here T and T'®) denote the inner and outer boundary of Qp, and
® is the harmonic measure of T(1), i.e. @ is the unique harmonic function in Qp

with constant boundary values 1 on '™ ‘and 0 on T'®); © is given expliciﬂy by

o(t) = In|l| + InR

2
2InR @

and possesses the important symmetry property

o) + oT1) =1, LeQp 0@ =1/2, LeE. ()

A Blaschke product B of degree.m on Qp is a function of the form

B(z) = A exp [—i P(z,_gj)] ,
ji=1

where |A|=1 and {y,...,(, are points in Qpr, not necessarily distinct, and

P(z,8) = g(z,8) +ih(z, C), is the complex Green’s funcuon In general B is
multlple—valued B is smgle-valued if and only if

Y o(t)e N. | - @
j=1 g o

.

Finally we denote by _
IBZM = {BZn{z} = eXp (—'P(Z, C]) —...—P(Z, CZH)) with Cl: vee iy CZnE E}

the set of all Blaschke products of degree 2n,-all whose zeros lieon E. After scaling
we may assume that B, (z) isrteal forall z e E. Furthermore, all fanctions in B ,,

are single-valued in view of (3) and (4).
We are now ready to formulate our first main result.
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1172 K. WILDEROTTER

Theorem 1.
dy (A, X) = d*"(4,X) = 8,,(4,X) = inf{||B|ly: Be B,,}.

As already mentioned, our proof .of Theorem 1 is built on the technique of Fisher
and Micchelli [2]. Indeed, the upper estimate &,,(A,X) < inf{||Bllx: Be B,,}
follows immediately from the cited paper. However, Fisher and Micchelli could only
- establish a lower bound of the form inf {||B||x: Be€ By,.1} < dy,(A,X), where

B ,,.; denotes the set of single-valued Blaschke products of degree at most 2n + 1.
Theorem 1 closes the gap between the lower and upper bound of Fisher and Micchelli
under the additional assumption that all arising functions are real-valued on the unit
circle E.

In the case X =C(E), we are able to show that the infimum in Theorem 1 is

attained by the Blaschke product B *, whose nodes are equidistant.
Theorem 2. Ser (, = exp (i(2k—1)n/2n) for k=1, ...,2n and
B (z) = exp(-P(z, () —...— P(2,(3,) ). Then
| B HC(E} = inf{|| Bllc(z): Be Ba,}
Finally we determine the asymptotic behavior of d,,(A, C(E)) and establish an

interesting connection between the widths d,,(4,C(E)) and d,(A(H™(G)),
C[-1,1]). Here G denotes the interior of the ellipse with foci at the points 1 and
sum of semi-axes ¢ =eP, and H™ (G) 1is Hardy space of bounded analytic functions
on G with unitball A(H™(G)).

Theorem 3. _ ;

d,(A,C(E)) = d3,(4, C) ='d,(A(H™(6)), C[-1,1]).

The same equation holds for the linear and Gel’fand widths. Asymptotically we
have d,,(A,C(E)) = 2R" +0 (R°™).

2. Proof of the Theorems. _

Proof of Theorem 1. As mentioned in the introduction, the upper bound 3,, (A,
X) < inf{||Bllx: BeB,,} follows directly from [2].

In order to establish the lower bound for d,(A,X) and d”(A,X), we need the
following version of the Pick—Nevanlinna interpolation theorem for -the space

H”(Qpg, C). By definition H™(Qpg, C) consists of all complex-valued bounded’
holomorphic functions on. Q. In contrast to H™ (Qg), functions in H”(Qg, C)

are not necessarily real-valued on the unit circle E. )
" Theorem 4. Fix 2n+ 1 distinct points zg, ...,22, in E. and let tqy, ..., 12,

= 1. Then the vector t = (tg, ... ,12,)

. Set p(t) =it {|| fllg~: fe H"(Qp.

be 2n+ 1 real numbers with 2 ol J[

belongs to-the unit sphere S>" of R *"*!
C), f(zj) = t;, 0<j<2n}. Then we have:

(i) p is a continuous function on § 4

(if) There is a unique function B, € H”(Qpg, C) with ||B,||=1 and B,(zj)=
= 1;/p(£), 0<j<2n.
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(ii1) The ﬁmcnon B, is a single-valued Blaschke product of degree at most
2n+1.

(i) V: t— B, is a continuous mapping from S*" into the set B ans1 0f
single-valued Blaschke products of degree at most 2n + 1, when B ,, . is g:ven
the topology of uniform convergence on compact subsets of Q R-

For a detailed exposition of the Pick— Nevanlinna theorem we refer to ([3],

Chapter 5). .
Theorem 4 gurantees the existence of a unique Blaschke product B, e IBg,, +1

interpolating the data ¢ /P (£) with minimal A" -norm. A priori it is posmble that B,
is complex-valued on E. However, since the data ¢ are real, the Schwarz reflection

principle implies, that the function B,(1/Z) is a minimal interpolant as well. In view

of the uniqueness of the minimal interpolant we conclude that B ,(z) = W{Ez‘)
Therefore B, is real-valued on E and its zeros are located symmetrically with respect
to E. We numerate the zeros in the following order: '

Z1, 1/?1,..., Zy, 1/.2-‘1, Zig]s vens .Zk,

where zy,...,z;¢ E and z,,y,...,2z,€ E. By (3) we have (z;)+ cﬁ(llfj) =

=1forj=1,...,1, ®(z;) = 1/2 forj=1+1,..., k. Since B, is single-valued,

we obtain from (4) that : : .
k

é( ofz) +o(Uz) + 3 ‘ofs)e N

J=I‘+1

This is possible only if £—1 is an even number. Consequently B, possesses always
an even number of zeros and in particular the degree of B, must be less or equal 2n.

" Let us denote by 152,, the set of single-valued Blaschke products, which are real-
valued én E with an even number of zeros less or equal 2n, which are located on E
or symmetn.caﬁy with respect to E. As a result of the precedmg analysis we obtain a
mapping

v: s> !Ezﬂ, i—)B,;

V  is a continuous odd mapping, when ]B«,” has the topology of local uniform

convergence.
Having established the existence of V, we use now the same technique based on
Borsuk’s theorem like Fisher and Micchelli [2] to conclude that -

mf{]]B”X BE]B"::} d"r:(A X) dgﬂ(A X)

From the last inequality we see that Theorem 1 will be proved, if we manage to show
that

inf{||B||x: BeB,,} = nf{||B|lx: BeB,,}.
For this purpose we remark, that, since B 2, 18 compact with respect to local uniform

convergence on Qp, there exista B e B,, ~such that ||B |y = inf{|[B]ly:

i *
Be B,,}; B must possess 2n zeros, counted with multiplicities. Indeed,
assuming that the number of zeros of B” were less than 27, the Blaschke product
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1174 ; . K. WILDEROTTER

exp(-2P(z, 1))B"(z) would belong to ]E’l’_rr' Since |exp(=2P(z,1))| =
= |exp(~2g(z,1))| <1 on E, we obtain the contradiction ||exp(-2P(z,
. 1))B @) |lx < 1B ¢)|lx. Hence B™ has 2n zeros zi,..., z3,.

We claim that all zeros of B~ lie on E.. Again we assume the contrary to be true:
Suppose, the zeros zj -does not lie on E. Since zeros, which are not Jocated on E,

alwé.ys occur in pairs, zz =1/ zI is a zero of B" as well. After rotation we may
assume zy, z; € (R,1/R). For ze E we obtain by symmetry that | exp (P (z,
z1) = P(z, z3)) | = exp(-2g(z, z1)). Since for fixed ze E and variable o € (R,
1/R) the function g(z, &) attains its maximum in o«=1, we conclude that
|exp (=2P(z, 1))| < |exp(—=P(z, z;) =P (z, z3))|. Consequently, if we set
B”(z) = exp(—P(z,1)=P(z,1)=P(z, 23)~...—P(z, z3,) ), we arrive at the
contradiction ||B” Iy < [1B*|IX. Hence all zeros of B lie on E. This observation
completes the proof of Theorem 1. '

Proof of Theorem 2 is based essentially on the following theorem.

Theorem 5. Let By and B, be two Blaschke productsin B,,. Let oy, ...,
Oy, be 2n distinct pointson E. If B (o) = By(o) for k=1,...,2n and
B1(1/R) = B5(1/R), then B ((z) = By(z) for all z € Qp, i.e. By and B,

coincide.
Proof of Theorem 5. By the Schwarz reflection principle we can continue both

Blaschke products across the boundary dQp onto a domaln O with Q rC Q.
For each >0, andall z€ dQp, :

1 (1+e)By(2)| > |-By(2)| = [[(1+8)B1(2)-By(2)] — (1+&)B(2)].
Thus by Rouche’s Theorem the functions (1+€)B;—By and (1+&)B; have the
same number of zeros in Q.p, namely 2n.

The function (1+&)B;—B, converges locally uniformly on Q to B 1—By for
g — 0. Suppose that B;—B, is not identically zero. Then by a well known result
from complex analysis each function (1+&)B;—B, hasatleast 2n+ 1 zero in Q
for sufficiently small €, which converge to the 2n+ 1 zeros ¢y, ..., 05, and 1/R
of By—B,. Since (1+&)B;—B, hasexactly 2n zerosin Qp, one sero %, must
liein Q\Qp. Let (I/Rz)(lf?é) be the point in Qp, which is conjugate to z
with respect to the outer boundary of Qp. Because of the Schwarz reflection principle
the equation (1+¢€)B(z,)—~B,(z,) = 0 implies the equation

(1+€)B,( (1/R*)(1/2,) ) -B;( (1/R*)(1/%)) = 0

Hence the function (1+¢&)B,—B; possesses the zero (I/Rz)(llia) in Qp,
which tends to 1 /R for € — 0. On the other hand, repeating the above analysis once
more, we see that (1+€)B,—B; has exactly 2n zero in Qp, which converge to
O, ..., 0ty,. This is a contradiction. Hence B;—B, must be identically zero and
Theorem 5 is proved.

In order to prove Theorem 2 we denote by B " the Blaschke product with
equidistant nodes z7, ..., z;,. Let B be an arbitrary other Blaschke product in
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ON n-WIDTHS OF BOUDED PERIODIC HOLOMORPHIC FUNCTION 2" 1175

B 5,. After rotating we may assume that B*(1/R) = B(1/R). Furthermore both
B™ and B arereal-valued on E. _

The decisive idea of proof relies on the fact that B* has an extremal alternant
consisting of 2n points. Therefore the assumption ||B|lc(g) <l B llc(gy implies
that B*—B has at least 2n zeros on E. Smce furthermore B*(1/R) = B(I/R)
we obtain B" =B and the minimal property of B is proved..

Proof of Theorem 3. In order to determine the asymptotic behavior of || B ||c( E)>
we transform the domain of definition Qp of B” twice. In the first step we pass over
from B (z) to B (e"”')' which is a pcriodic even and analytic function in the strip Sg
with zeros in wj = (2k—1)n/2n, k=1, ...,2n.

In the secon step the change of vanables Ww—7v = Cos (w) maps Sp analyl::ca]ly
onto the interior of the ellipse G with foci at the points 1 and sum of semi-axes
¢ = eP. Furthermore, the transformation F(v) — f(w) = F(cos(w)) yields a one-to-
one correspondence between functions F analytic in G and functions f, which are

periodic, even and analytic in S g Consequently ®*(v)=B" (exp (i arccos (v))) is
a well defined analytic function on G with the following properties:

@ o* (v) =1 for v e JG;

@) @ (cos((2k-1)r/2n)) =0, k=1,...,n

Hence ®" is a Blaschke product of degree n on the shnply connected domain G
with zeros in the Chebyshev nodes of the interval [—1, 1]. Osipenko [5] showed that

2"l oot =
= inf {|| ®|[ ¢[_1,17: @ is a Blaschke product on G of degree at most n} =

= d,(AH"(G)),C[-1,1]).+

Furthermore Osipenko [5] gave an explicit formula for || ®° llcr-1,17 'in terms of
elliptic functions. In particular he estabhshed the following asymptouc behawor

| @ Hc:[ 1,11 = 2¢7" + 0(c™5™).

Smce c=eP and B=I(1/R), we obtain the statement of Theorern 3 by us1ng the

inverse transformation.
The results of this paper are part of the author’s dissertation [6].
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