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BOGOLYUBOV AVERAGING AND NORMALIZATION
PROCEDURES IN NONLINEAR MECHANICS. I*

YCEPE/JHEHHA 3A BOTI'OJIIOBOBHM TA IIPOUE/LYPH
HOPMAJII3AIIT ¥ HEJITHIMHIA MEXAHIIIL T*

A new method of asymptotic analysis of nonlinear dynamical systems is developed with extensive use of
group—theoretical methods. The technique of normalization, which is named an “asymptotic decom-
position™ by the authors, is developed in the context of Bogolyubov averaging. In this paper, we also
discuss how this technique helps to understand and develop the averaging method for systems in
standard form and systems with several fast variables. The new method treats a centralized system as a

direct analog of an averaged system according to Bogolyubov. The operation of averaging is interpreted
as a Bogolyubov projector in the construction of the projection of an operator onto the algebra of the
centralizer.

3anpononoBano HOBHH METO/L JIOCAUKCHTA HEINIHITNX JIMIAMIMITHX CHCTEM, Po3pob/ieiHil Ha OCHOBI
LIHPOKOI'0 33CTOCYBAIA TCOPETHKO-1IPYNoBKHX MeTo/iB. Pospobiieno Texuiky nopmanisanii y ricno-
My 38" #43KY 3 MeToj1om yeepeeniis M. M. Boromo6osa, ska nassana anropaMu acHMITOTHYHOIO J1e-
KOMMO3MIEI0. Po3riaany o niramis iirrepnperaiii 1a PO3sUTKY METO/IY yCepe/ et Wo/lo cHeTeM

y cranapruii popMi 1a cucTeM 3 KinbKoMa WaKIKuME aminniyvu. Hosuit metojr inrepriperye nen-
TPAI30BAHY CHCTEMY K NPAMUIL anasior yeepe/nenoi cucremu 3a borosmotonum. Onepattia ycepe-

Helnua iNTepnperyerses Ak npoextop boromotosa juia nodyosl npoekitii Dy/1b-4AK0Io oneparopa na
anreGpy HEHTpaNizaTopa.

1. Introduction. Asymptotic methods of nonlinear mechanics suggested by
N. M. Krylov and N. N. Bogolyubov (Krylov N. M., Bogolyubov N. N. [I, 2], Bogo-
Iyubov N. N. [3]) and described and developed in the famous books of Bogolyu-
bov N. N., Mitropolsky Yu. A. [4], Bogolyubov N. N., Mitropolsky Yu. A., Samoilen-
ko A. M. [5], and Mitropolsky Yu. A. [6, 7] originated a new big trend in perturbation

theory. They deeply penetrated into various applied branches (theoretical physics,
mechanics, applied astronomy. dynamics of space flights, and others) and laid the
foundation of numerous generalizations and various modifications of these methods.
There exist a large number of approaches and techniques, and different classes of
mathematical objects are considered (ordinary differential equations, partial differential
equations, delay differential equations, and others).

An up-to-date survey of averaging methods is given in [8]. It connects the
asymptotic theory with the geometric ideas which have been important in modern
dynamics.

A survey of development of Bogolyubov’s averaging method is given in the papers
of Mitropolsky Yu. A. [9] and Samoilenko A. M. [10].

For the last two decades, new generalizations of asymptotic methods of nonlinear
mechanics. which tend to elaborate general conceptions in the development of these
methods, appeared. First of all, this is a trend called the Lie series and transformations
averaging method. For the first time, Lie series were applied in perturbation theory by
G. Hori [11] for canonical systems and transferred by G. Hori [12] and A. Kamel [13]
to noncanonical systems. The perturbation theory based on Lie series and trans-
formations has some advantages in comparison with the existing method. One of these
is the simplicity of algorithms. One can get acquainted with the ideas of these methods
and the bibliography in the papers of Giacaglia G. E. O. [14], Nayfeh A. H. [15],
Kirchgraber U. and Stiefel E. [16], and Kirchgraber U. [17].

The approach in which, Lic series with respect to a parameter are used as
transformations was proposed by A. Ya. Povzner [18]. Special assumptions concern-
ing spectral properties of an operator associated with a system of zero approximation
made it possible to give a constructive algorithm, formulate several sharp theorems on

* The work is supported by the State Committee on Science and Technology of Ukraine.
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separation of fast and slow variables in a transformed system, and obtain some other
results (Bogaevsky V. N., Povzner A. Ya. [19-21]).

A single-frequency method of averaging based on the Campbell - Hausdorff
formula was developed by V. F. Zhuravlev (V. F. Zhuravlev [22], V. F. Zhuravlev,
D. N. Klimov [23]). This method was applied successfully to the investigation of
multi-frequency systems, construction of a normal form, and & number of other
problems. '

All the works cited above in connection with the Lie series and transformations
actually use the well-known Campbell — Hausdorff formula. The Campbell-Hausdorff
formula gives the exact form of a vector field under the action of a one-parameter
group generated by an arbitrary vector field. This formula was either used in an
explicit form or derived in the course of calculation.

Among the authors mentioned above, V. F. Zhuravlev u:sed the group theoretical
principles most consistently.

Another approach consists in determining the procedure of normalization without
employing the Campbell — Hausdorff formula. This approach was used in the theory of
normal forms in the classical works by Delaunay, Poincaré, Dulac, and BirkhofT.

The development of normalization techniques in the context of the N. N. Bogolyu-
bov averaging method is characteristic to the second approach.

A. M. Molchanov’s paper [24] is a pioneer work in this direction.

The connection between the averaging method and the theory of normal forms was
considered in the papers of A. D. Brjuno [25, 26].

An axiomatic approach characterizing general properties of an asymptotic method
is described in the paper of Yu. A. Mitropolsky and A. M. Samoilenko [27].

A connection between the A. S. Lomov regularization method [28], the averaging
method, and the normal forms has been investigated by Gubin Yu. P. [29] and Lo-
mov S. A. and Safonov V. F. [30].

In the monograph of J. A. Sanders and F. Verhulst [8], a definition of a normal
form is given in a close connection with the method of averaging. Normal forms for

_slowly varying systems are given. Also the theory of a Hamiltonian normal form is
presented. New results due to the authors and their Dutch colleagues have been
obtained for a Hamiltonian normalized near equilibrium points.

The results of the authors in developing the methods of asymptotic analysis of
nonlinear dynamical systems with wide use of group-theoretical methods were
summarized in monograph [31]. The papers of Mitropolsky Yu. A. [32] and Lopa-
tin A. K. [33 —35] deal with the same problems.

The present series of three papers treats the technique of normalization which was
called by the authors the asymptotic decomposition in the context of averaging by
N. N. Bogolyubov and realizations of this technique in different Hilbert spaces. The
space of homogeneous polynomials and the space of representation of rotation group
on the plane are considered. The general ideas of approach are illustrated on well-
known models. The dssential aim of such a study is to compare the new and existing
approaches to the problem.

2. General scheme of the algorithm of asymptotic decomposition.

2.1. Formulation of the problem. In the book of Mitropolsky Yu. A. and Lopatin
A. K. [31], a new method for investigating systems of differential equations with a
small parameter have been developed. It was a further development of N. N. Bogolyu-
bov’s averaging method called by the authors the method of asymptotic decomposition.
The idea of the new approach originates from N. N. Bogolyubov’s averaging method
but its realization needed the use of essentially new apparatus — the theory of
continuous transformation groups. Also the Campbell — Hausdorff formula was used.

Let us explain the idea of the new approach. As is known, the starting point of
investigation by the averaging method is a system in a standard form

dx

— = eX(x,t,¢8), (1
dt
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where x = col || x, x5, ..., x, |, X(x,t,€) is an n-dimensional vector.
After the averaging*

T
.1
Xoi(®) = Jim — !x(g, t)dt
and a special change of variables, system (1) is reduced to the averaged system

dx
= = XP@ + e2XP@) +... , 2)

which does not explicitly contain the variable r. Let us rewrite the initial system (1) in
the equivalent form

dx dy

— =&X 1 ¥ ] == = ]

ar (x,y,€) 7 (3)
and the averaged system (2) correspondingly in the form

dx w B

— =tX , — =1, 4

dt ol dt .
where X, (X) = Xf)”(f) - EXEE)(E} + ... . Integration of system (4) is simpler than

that of system (3), since variables are separated: the system for slow variables X¥ does
not contain the fast variable y and is integrated independently.

Everything stated above allows us to interpret the averaging method in the
following way: The averaging method transforms system (3) with nonseparated
variables into system (4) with separated fast and slow variables.

The described property of separation of variables with the help of the averaging
method has group—theoretical characteristics. Really, letusput € = 0 in systems (3)
and (4) and write initial unperturbed systems (systems of zero approximation) in the
form

B all, i s)
dt dt

and correspondingly
dx dy
— =0, =—=1. 6
dt dt ©

Systems (5) and (6) coincide to within the notation. Let the vectors X and X¢ in
systems (3) and (4) have components

X= COI”X|, ""Xn”’ XO = col lelﬂ’ ves .ij".

Put the first-order partial linear differential operator in accordance with system (3):

Wo,= W+eW, (7)
where
d d
= —, =X — X,
dy 8x| ox,
and currespondingly the operator
Uy=U+eU, (8)
where
) ~ ] 9
U= —, U=Xy—+...% Xogp—
oy o o7, o
* To ensure the existence of the average we impose special conditions on the functions XJ-(x,r, €),j= In.

We omit the explicit form of these conditions.
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in accordance with system (4). Operators (7) and (8) are called associated with
systems (3) and (4), respectively. If we put € = 0 in formulas (7) and (8), then
operator (7) turns into the operator

W, =ws= 2 ©)
dy

associated with the system ol zero approximation (5) and operator (8) turns into the
operator

= 2_
=5

associated with the system of zero approximation (6). It is easy to show that the

Uy=U (10)

Poisson bracket of the operators U and U is identically equal to zero,

(U,0)=UU -U0U = 0. (11)

Let us consider a one parameter transformation group determined by the operator
U and given by the Lie series

% = e Ulx030) Figs
(12)
j':n = e-"U(-Tn-.“(J) X0 »
y = U (T0.70) Fos
where X9, ..., X,g, ¥p arenew variables; U ( Xy, yp) = d/9d¥,; s is a parameter

characterizing the group. It is known from the theory of continuous transformation
groups that identity (11) means that the system of differential equations (4) is invariant
under group (12), i.e., after the change of variables (12), it turns into the system

dx, - dyy
=0 —¢gx p e
pr € Xo(Xp) dr

which coincides with the original system (4) to within the notation.

In the considered case, the invariance of system (4) with respect to transformations
(12) can be easily established by the immediate check, since relations (12) are defined
in the finite form by the formulas

"fl = '_f](]’ ¥ 'Tn = _u(_l' T = j:(] + 5.

At the same time, by the immediate check one can easily ascertain that, in general
case, the identity similar to (11) does not hold for the operators W, W of the
perturbed system: [W, W] = WW - WW # 0. This implies that system (3) is
not invariant with respect to the one-parameter group

X, = es“(.r{,,_v"]xm‘
(13)
— 5VP(xp.v)
x" = g ( 0-¥n 1"0'
y = e-\’w{lu-m)yo,
where xg, ..., X,0 Yo are new variables; W(xq, yy) = d/dyg: s is a parameter

characterizing the group generated by the operator W, which is associated with the
system of zero approximation.
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Indeed, relations (13) can be easily represented in the finite form
X| = Xjgs oo s Xy =X,00 Y =Yg + 5. (14)

Under the action of transformation (14), system (3) turns into the system

dxl] d\’(]
— = eX(xg, yg+5,€), — =1
*; (x0, Yo ) s

which does not coincide with the original system to within the notation.

The above considerations allow us to give the following group—theoretical inter-
pretation of the averaging method: the averaging method transforms system (3),
which is not invariant with respect to the one-parameter transformation group *
generated by the operator W (9), associated with the system of zero approximation
(5), into averaged system (7), which is invariant with respect to the one-parameter
transformation group generated by the operator U (10) associated with the system’
of zero approximation (6).

2.2. Main algorithm. Consider the system of ordinary differential equations

dx

ar o(x), x(rg9) = xq, (15)

where x = col||x;, x5, ... x, ]|, © = col]|o(x), ..., ®,x)|], ©;,x)e DG), i =
=Tn, Gy=IxGeR"', G eR" tel, is the domain of existence and
uniqueness of the solution of Cauchy problem of the system (15); D(G) is the
manifold of analytic functions defined in G.

Let ‘D'(G) denote the set of lincar differential operators in partial derivatives of
the first order (further. they are called the operators) with the coefficients from D(G).

Put the structural properties characterized by some invariance group as a basis for
studying system (15) acted by small perturbations. System (15) is invariant under the
local one-parameter transformations Lie group, which has the form of the series

x =exp(pzZ(x))x (16)

(p is a parameter characterizing the group; Z is some operator of D' (G)), if, under
the action of this transformation, this system turns into the system

dx -
I w(Xx)

coinciding with the initial system to within the notation. As is known, for system (15)
to be invariant under the transformation of the form (16), it is necessary and sufficient
that the operator Z be a solution of the equation (see [31, p. 35])

[7.8] =0, (17)
where U = @, (x)d/dy; +...+ w,(x)d/dx, is the linear differential operator
associated with system (15) and [, | is the Poisson bracket.

If Z,, Z, are some solutions of equation (17), then the Poisson bracket [Z, Z,]
is also a solution as the Jacobian identity implies

lu,1Z,.2,]] + [Z,,[U.2,]1] + [2,,[Z,, U]] = 0.

The set of solutions of equation (17) yields a Lie algebra B, which characterizes
completely the initial system (15). Note that the algebra B, is not empty since it
contains the element S = U. It is clear that transformation (16) preserves thé
invariance of system (15) for any element Z € B,,.
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The totality of transformations (16), where Z € B,, generates a group G (B).
Further, it will be sufficient to consider only the algebra B, generating this group.

The Lie algebra B, will be called the algebra of the centralizer of the element U
(further, this item will be considered in detail).
Under small perturbations €®(x”"), system (15), which will be called the system
of zero approximation, is transformed into: :
dx’

dt

where ®(x) = col || @,(x), ..., ®,(x) ||, @(x)e DG), i =T,n, € isa

= o(x’) + ed(x), x'(1) = x,, (18)

small positive parameter. Denote by Gg, = JxJ,x Ge R"™% J,.=10,1], the
domain of existence and uniqueness of a solution of the Cauchy problem for system
(18), which will be called the perturbed system. Following the general idea described
in the introduction, we compare system (18) with some standard system. For this
purpose, we make the change of variables as a Lic transformation in system (18)

X = exp(SS).tj, j=Ln, (19)
where
€ g
exp (eS) =‘I * T!S + ES +oy
3
S=85 +&5 +..; S, = y,-,(x)i * Y le) =, (20)
- a.l'| at

S,e D'(G), i=T1n.

It is easy to write the transformation X; = exp(-¢eS7) J.; which is the inverse to (19).
Using a close connection of system (18) and the associated differential operator

U, = U +¢eU’, (21)
where

0 = &(x) j)_ +ot @,(x) —a—
oxj ox;,
we subject this operator to transformation (19) and then consider the transformed
system of ordinary differential equations after the application of transformation (19).
For simplicity, we use the following notation for the functions f (x’) = f° and
f(x) = f. The form of the operator U, is given by the Campbell - Hausdorff
formula
2 3

’ £ 5
Un s Uu - F[UU. S] + E[[Un,s}.sl s “3—;‘ [“UO.S],S],S] o AP
Substituting the values of the operators § and Uy, given by relations (20) and
(21), after simple calculation, we obtain for the operator U, in new variables
Uy > Uy=U+¢e(-|US,]+F)) r..+ " (-|U S, +F,) +.... (22)

where F, =U; F,=-[U0,8,]1+ +[[U,$,].8,]1+..., F, are known

functions of the operators U, U, S |, ..., S,_,. The explicit form of these functions

can be obtained after some calculations.
The form of the transformed operator Uy and, therefore, the form of the
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BOGOLYUBOV AVERAGING AND NORMALIZATION PROCEDURES ... 1177
corresponding system of differential equations depends on the way of choosing the
sequences of the operators

S[9S2; ey (23)

which have not been defined yet. To find these operators we form the sequence of the
operator equatlom *

[U.s;]1=F;, j=1,2,... (24)
The formed infinite sequence has the recursive character, as it follows from the
structure of the right-hand sides F, F,, .... After solving the first equations of the

system, we define the right-hand side F, of the second system and so on. Since the
equations of system (24) have the same homogeneous part, for studying the®problem of
solvability of (24), it suffices to consider one equation

[U.s] =F, | (25)
which will be called the equation-representative of system (24). Generally speaking,
an arbitrary operator F € D' (G) can be in the right-hand side of the equation (25). -

The solvability of the operator equation (25) is determined by the structure of the
solution of homogeneous equation (17), which, in turn, gives the algebra of the
centralizer B,.

The inhomogeneous equation (25) must have eolutlons with definite analytic
properties. For example, it should not contain secular terms on the trajectories of the
system of zero approximation, preserve the stationary point, and so on. This is

possible only if the right-hand side of equation (25) does not contain elements of B,,.
Necessary properties of the solution of the operator equations can be realized after
replacing system (24) by the system

where prF; denotes the projection of the operator F; to the algebra ‘B, (the exact
definition of this notion is given further). Let the sequence of operators (23) be
determined from the system of equations (26). Then the transformed operator (22) U
will take the form

Uy=U+¢eN +e"'N, +..., 27

where the notation

N, = prF, ): b\,ﬂ, 2y 5 S (28)
i=1

is introduced. We restore the transformed systcm

dx; —
7;’ = 0;(x) + eN(x)x;, j=1n, (29)

where N(x) = Nj(x) +... + E""N\,(x) + ... by using operator (27). Taking into
account the structure of operator (28), this system can be written by using the known
coefficients:

dx; > -
=t = 0;() + Y €'byo(x), Jj=Tn. (30)
‘4 j=1

2.3. Egquivalence between the construction of the standard system and the problem
of finding the symmetry algebra. The algebra of the centralizer B, is the generating
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Lic algebra of the obtained system (29) (or (30)). To underline the connection
between system (29) and the algebra of the centralizer B, we shall call system (29)
the centralized system. The operator form (29) of the centralized system would be
preferable in our theoretical reasoning.

Thus, the centralized system (29) is the standard system for the initial perturbed
system (18). This system is obtained from the perturbed system with the help of a

transformation similar to series (20), where the operators S |, S,. ... are solutions of
the system of equations (26).
The centralized system (29) possesses the following propcrucs: its zero approxi-

mation coincides with the system of zero approximation (15) and it is invariant with
respect to the one-parameter transformation group:

x=exp(pU(x))x, (31

where ¥ = col|| &, ..., X, || and U is the operator associated with system (15) of
the zero approximation.

The described algorithm of passing from the perturbed system (18) to the
centralized system (29) will be called the algorithm of asymptotic decomposition.

The invariance of the centralized system under one-parameter group (31) can be
taken as its definition. Then the obtained result can be formulated as follows:

The algorithm of asymptotic decomposition puts into correspondence to a
perturbed system (18) a centralized system (29);

and only the zero approximation of the perturbed svstem is invariant with respect
to (31).

The integration of the centralized system (29) is simpler than that of the initial
perturbed system (18). Now we introduce more precise definitions and auxiliary
notions, which were omitted in the previous discussion of the problem.

We have already mentioned the defining role of solutions of homogeneous equation
(17) in the construction of the algorithm of asymptotic decomposition. We shall find
these solutions in the generating Lie algebra ‘B of the perturbed system. This algebra
is generated by the operators U, U and it contains the elements U, U , LU, U IR
[U,[U, U] ..., obtained by calculations of the Poisson bracket of these operators.
It is evident that B, C B < DG). Together with equation (17), we can consider
the equation

(U, [U, Y]] =0 (32)

in the algebra ‘B. It is casy to show that all solutions of equation (32) of ‘B also give
the Lic algebra B'" and B, ¢ B'". The algebra B will be called the algebra of
the centralizer of the second degree (by the number of the Poisson bracket in equation
(32)). By induction, we can define the algebra of the centralizer of an arbitrary degree
k. Further, we restrict ourselves (if it is not mentioned otherwise) to a study of the
algebras of the centralizer of the first degree, i.e., the identity B = By should hold.
This case has been of the most practical significance. If we considered only the
general situation, we would not have obtained important results but only complicated
our calculations.

With B, there is another important subalgebra B, < B admitted by the operator
U. Its elements satisfy the relation [U, B.] = B,

Define a linear mapping Ly acting on the algebra B by the formula LyX =
=|U,X], Xe B. Thus, the algebra of the centralizer B, is the kernel of the

mapping Ly and the algebra B, is the image of the mapping Ly,.
Returning to the inhomogenecous equation (25), we should note that the choice of
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If a i = am,.;axj. i, j=1,n, then system (35) can be represented as follows:
Uy; = a;(x)y; +... + a;,0)y, + bj(x), j=1Ln.
Now consider the matrix A = [lall, i,j = T,n, the vectors

¥ = colllyy,....v.0l, b(x) = col||by(x),....b,0)].

-

and the operator W = U® L£- 4, where
U® E = diag|U,...U|,
e

£ is the unit #x n matrix. Then system (25) can be represented in the compact form
Wy = b. The system

Uy, = b(x), .... Uy, = b,(x) (36)

is a particular form of system (35). The system of the form (35) or (36) is called a
Jacobian system. Together with the inhomogeneous system (35), we consider the
homogencous system Wy = 0. Itis evident that we obtain the homogeneous equation
in the deseribed way by solving the homogencous operator equation (17). It is easy to
sce the converse statement is valid too.

2.5. Various approaches to solution of the Jacobian system give rise to various
methods in nonlinear mechanics. By chbosing a special basis, we can simplify the
integration of the operator equation (25) and that of the Jacobian system (35)
corresponding to this equation. The problem of reducing the system of equations (35)
to the system of equations (36) is considered there too.

Let there exist n lincarly unconnected solutions Z, ..., Z, of the homogeneous
operator equation (17) and right-hand sides of equation (25) are expanded in this basis:

F < bi(x)Z, + ..+ b(x)Z,.
Now we obtain the solution § of operator equation (25) as the sum

S =YX E e Y2

Since |U.Z;]=0, ) = I,n, we obtain the expression for the Poisson bracket
[U. 8]
[br' YIZI+ +Yrrzn]= UY!Z|+ "'+UYHZH’+

+nlU.Z)l+...+7,IU.2,]=U0v,Z,+..+Uy,Z,.
Finally. we indicate the result:
Uy Z;+ ...+ Uv,2Z,=bZ,+ ...+ b, Z,.

By cquating the coefficients of the basis operators, we obtain Jacobi equations in the
form (36).

We use the approach to the solution of the operator equation (25) that has been just
described in the previous section. It leads to an important particular case of
implementation of the asymptotic decomposition algorithm. This implementation
admits the following group—theoretical interpretation. The assumption that » linearly
unconnected solutions of equation (17) are known is equivalent to the assumption that
the symmetry algebra and its corresponding group of symmetry for the system of zero
approximation are known. The averaging method (KBM method) connected to passing
to a standard form and applying the averaging operation also fits in the described above
scheme. From this point of view, it corresponds to passing, in the zero approximation,
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to the commutative Lie group generated by n  linearly unconnected commuting
operators. We consider these questions in detail in section 3.

Here, it can be said that the choice of a method for solving operator equation (25)
leads to various implementations of the asymptotic decomposition method.

The main idea of the approach that is developed below is using the group—
theoretical properties of the zeva approximation system. Under various assumptions
about a particular group connected with the zero approximation system, different
modifications of existing and new methods are obtained. We consider particular
implementations of algorithms for the groups GL(2), SO(2).

3. The asymptotic method of separation of variables by Krylov, Bogolyubov,
and Mitropolsky (KBM method) and the asymptotic decomposition method.

3.1. General remarks. In the present section, we apply the asymptotic decompo-
sition method to a class of systems that traditionally were studied by the asymptotic
method developed by N. M. Krylov, N. N. Bogolyubov, and Yu. A. Mitropolsky (see,
for example, Bogolyubov N. N., Mitropolsky Yu. A. [4]). This also enables us to
establish explicitly a connection between the asymptotic decomposition method and
the above mentioned method. We consider purely algorithmic aspects only, casting
aside such questions as justification of algorithms, appearance of resonances, and
passage of a system through the resonance.

Below, we will show that the asymptotic decomposition method being applied to
the same objects as the classical asymptotic method yields the identical results.
However, the algorithm of the asymptotic decomposition method is in essence simpler.
The following points of simplification can be pointed out. First, logical clearness of
the structure of the changes carried out. This is implied by the general logic of the
asymptotic decomposition method. Second, actual simplification of computations,
since there are no needs to invert equations of the change and carry out the accom-
panying symbolic computations. Third, the computations needed for an arbitrary fixed
approximation can be carried out according to an explicit recursion formula, which is
suitable for computer usage.

The prlnupal conclusion that can be made after comparison of two mcthods in the
present section is the following.

In the asymptotic decomposition method, the operation of averaging, which is
used in the KBM method, is a certain way to construct the projection prF of the
operator F.

In the asymptoti somposition method, the centralized system is a direct analog
of the averaged system of the KBM method.

We refer to the operation of averaging used in the asymptotic decomposition
method to construct the projection of an operator onto the algebra of the centralizer as
the Bogolyubov projector.

It is worthy to note that existence of the Bogolyubov projector is not a sufficient
condition for cocfficients of the change of variables to be bounded, and ensures only
that the order of their growth does not exceed ¢. To ensure boundedness of these
coefficients it is necessary to impose additional restrictions on the properties of
coefficients of the system.

3.2. Systems of the standard form. The Bogolyubov projector. N. N. Bogolyubov
and his disciples studied systems of the form

X' = eX(x' t,¢€), (37)
where x’ = col || x{, ..., x;|l, X = colll X7, ..., X, |l.

Systems of form (37) are referred to as systems of the standard form. Let us
introduce an additional variabl¢’ s” into system (37)

i =eX(x' s, €),
® (38)

§ =1
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and apply to it the asymptotic decomposition method.
Let us write down the operator Uy associated to the system

U(’] = U’+€gr,
where
- LN
B _.‘:J_ i ZX,_f_

0 P A e
ds =1 7oy

Operators U| =d/dx{, ..., U,

» = 0/dx; commute with the operator U’ = d/ds’

and form a basis of algebra B, of centralizer. This Lie algebra is finite-dimensional
and commutative. Hence, the case described at the beginning of subsection 2.5 has
been realized.

After transformation (20) operator Uy, turns into the operator

’

Uy 2 Uy=U+¢e(-[US| +F)+..+&"(-[US,] +F,) +....

The coefficients of operators of the transformation

; 0 ]
‘S_I— = 'le(x..s‘)‘aTl + ...+ 'Yjﬂ{,l'.&'):)';:

are found from the operator equation

x| = ;= prr;, ] = | L A— )
U.sS; F; - prF;, j 2 (39
Let us write the operator F; of the right-hand side of (39)
d dJ
Fj=f”(x,.§‘)a +‘..+fj"{.\..§')a_—rﬂ‘ (40)

Assume that the average values for the coefficients f;; of operator (40) exist
7
lim o [Falas)ds = fO0x) < boo, k=T
Jim — | fi(x,5)ds = fip(x) < +oo, = lLn.
ToeT 0
Let us introduce a particular notation for the average value of a function f;, (., s)

(f:jk(x- 5)) o j}(;(.\'].

Define the projection of an operator pr F; by the following

0 d
prF; = (fj!(,\‘,.v» 5 R (L-"(_r,s)) e (41)
1 G :

X
In virtue of independence of average values from the variable s, the following
identities hold

[U, prF;] = 0.

Therefore, prF; actually belongs to the algzbra of centralizer By. Operator (41) will
be referred to as Bogolyubov projection.

Now let us turn to the problem of determination of the coefficients y j;, k = In,
of the operator of transformation S; of equation (39).

By subsection 2.4, it can be easily established that equation (39) is reduced to the
system of partial differential equations
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ady .

% = f_:fl(‘\'..s‘) = f}?(l‘).
oY i, ‘

ﬁ:‘;—:t‘ = .fjn(,t,y) =5 f}?,(l)

These systems are integrated casily,
T
Yiu(x T) = [(fiules) = £3)ds + G(x), k=Tn.
0
Functions Ci(x), ..., C,(x) can be regarded as integration constants and require
a particular choice. To simplify the calculations we suppose that all of them are equal
to zero identically, i.c., Cj-(_r) =0, k=1n.
The following statement is true.
Theorem 1. The existence of the Bogolyubov projector ensures that the order of
growth of the coefficients v ((x, T) does not exceed T when T — oo,
Proof. Lect us find the limit

,
1
= TI]_])anI[_fjk(_r. s)ds — fi(x) = 0.

Consequently, y;(x, T) = o(T).

It follows from the proved theorem that additional assumptions are needed for
coefficients f;(x, 1) to be bounded in 1. In problems of nonlinear mechanics, it is
supposed that functions f;,(x, r) are periodic in ¢t and that ensures boundedness of
coelficients f;;(x, t) in the variable ¢.

Let us illustrate the above considerations by examples.

Example 1. Consider the standard system of the form

i § 1 -
X = €sin xl(l + e I]' = 1. (42)
s

The right-hand sides of system (42) are bounded in 5 °. Let us write equation (39) for
system (42) in the first approximation

Il

[U.S,] = F, - prF,.

Here,

J ~ _ 1 d
U=, F, = U = sinx s
ds : Sln‘l[]+.§+l)ax|

The operator S| is searched in the form

0
S, =v(xp, ) a"
X

For the coefficient of the operator F,, its average exists

T . g
[1+ 1 ]ds: lim S0 (T +In(7 + 1) _

. . .
lim — Ismx, = sinx,
T—e T s+ 1 Tt T

therefore, the Bogolyubov projection
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_prF; = sinx; —
X

can be defined.
The coefficient ¥, (x, 5) is determined as follows:

r
Y (x. T) = I(sinx,(l + —]-) - sinxl}fs = sinx;In(7 + 1).
0 s+ 1

When T — oo, the function y,(x, T) grows slower than T since the identity

lim In(T + 1) Z 0
T
holds.
Example 2. Consider the second-order system
Y =Yg Y3 =~y -E€¥i (43)

which is equivalent to the Duffing equation.
After the change of variables

= p'sing’, p' = ¥y} +y3,
Y1
= p'cosp, @ = arclg —,

system (43) turns into the system of standard form

p’ = +e(p’)? [—%sin&i{p’ + isin2cp’).

o =1+ e(p’)2 (% + %cos«p’ - icosZ(p’).

Write down the operator Uy, associated with system (44) U} = U/ + eU’, where
Uy = 9/0¢", U = b (p’,9")d/dp’" +b,y(p’,9’)d/dp’,
bi(p.9) = +(p)? [ sindg’ ——‘:m2<p]
(45)
by(p ") = (p")* (3 + lcos4(p’ - lcosZ(p').
8 8 2

Let us apply to system (44) the algorithm of asymptotic decomposition. We restrict
ourselves by the first approximation and consider the operator equation

(U.S,1=0 -pU, (46)

where 5, =v,(p, ‘P)a/ap+72(p ¢)d/d@. Compute the average value of
coefficients (45)

_ T
(by(p,9)) = JL"L% {b;(p,rp}drp =0,

L]

pe.

0| W

.
: 5 | ;
(ba(p,9)) = tim — {bz(p-wdtp =
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According to the general theory,

cU = 3 ,0
F 8 i a<p
The operator equation (46) is replaced by the system of differential equations
&; -
a_q; = bi(p,9) - (bj(p,0)), j=1,2.

These systems can be easily integrated in terms of trigonometric functions

|:)2 (%COSZ({) - ;licos—'lcp],

T

92 (%sméltp - —sm2<p]

Therefore, the centralized (averaged) system in the first approximation takes the form

Y2

p =0, ¢=1+€-§-p2.

The relation with the original variables is given by the formulas

p=p+ey(p.@)+e+.., ¢ =¢+ey(p,p)+el+..,

where p = po, ¢ =1(1+€3/8p5).
The system with rotating phase

X =&eX(x,y,€), y=wx)+e¥(x,y,€) 47

is more general than the standard system (37). Here, x is an n-dimensional vector
and y is a scalar.

3.3. Systems of nonlinear mechanics with several fast variables. 1f we suppose
that in system (47) the variable y is a vector, then we have a case of several rotating
phases (or several fast variables). The application of the asymptotic decomposition
method to such systems brings a series of new features into the algorithm
comparatively with the standard system (38). The theory of these systems appears to
be highly complicated.

In the present section, for the sake of definiteness, we consider a system with two
rotating phases.

The motion of a pendulum, which is under the action of an external force, is
described by the equation 7 + w?z = €f(z, z,1). By using the change of variables
z = x"cos y’, z = —wx’siny’, we can reduce the oscillator equation to the
following system

=X, y,s"), Y =ow+e¥xly,s"), s =1. (48)
The operator U, associated with system (48), U, = U’ + eU’, where

’ 0 d 0 d
U' = — +0—, U =X(xy.s —,+Yx*s Z
5t 9% (""" 25,87 35
after the application of the asymptotic decomposition method (in the first approxi-
mation), turns into the operator Uy = U + eprU.
The coefficients Yi(x,y.8) of the operator of transformation

AR

d
S = (-‘.9 _‘.95) =
1 =Y oy

ox

are obtained as a result of solving the operator equation
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(U.S,1=0 -prU. (49)

We will assume that the average values of the coefficients X(x,y,s), Y(x,y,s)
of the operator U with respect to the variables y and s exist, .

nn
_lim iij JX(J.‘. ws)dyds = X0(x) < 4o,
,jr.'_”’ 1725 0
y —) o0
' (50)
L
. 0
lim —— Y(x.v.8)dvds = Y (x) < 400,
2;1—”" nT {'[ }[
7

Let us introduce the notation (X (x, y,s)), {(¥(x,y,s)) for the average values of the
functions X(x, y,s), Y(x,y,s). Therefore, the Bogolyubov projector

prU = {X(x,y,5) 9 + (Y(x,y,5) 2
dx dy

can be chosen to be pr U . Itis clear that [U,prU] = 0 and pr U belongs to the
algebra of centralizer B,,. '

To find coefficients of the transformation S ;. we pass from the operator equation
(49) to the system of partial differential equations

M + (:)E,CY—L = X(x, v, ) - X°(x),

ds dy

ﬂ:_ + maY—l = Y(x,y,5) — Yn(x),

ds dy
973 Y3
— + w— = 0.
ds ds

Take the coefficient y; = 0. The equations for y, and 7y, have identical structure
and, therefore, we consider in detail the integration of the first equation of the
described system.
The problem of integrating a linear inhomogeneous equation is equivalent to the
problem of integrating the homogeneous equation
/
-a-‘i + m%h + (X(x,y,5) - X”(,r))

ds dy Y,

v _o. 1)

In its turn, equation (51) can be replaced by the system of ordinary differential
cquations
& = iy
Vo= o,
Y = X(x,y,5) - x(x).
FFinding the coefficient 7y, (x, vy, s) is reduced to the simple quadratures

1 (x, o, 1) = j(X(x.m.'..'} - X°(x))dr.

0

I we make an additional assumption that function f(z, Z.7) in the original
cquation of nonlinear oscillator is periodic in ¢ with the period 7 = 2rm/m. then
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functions X, Y in (48) are periodic in y and s with the periods 2t and 2n/m
correspondingly. In virtue of conditions (50), the Fourier series in ¢, ¢t of the

function X(x, ot,1)— Xo(x) will not contain a free term. As a result, the function
Y (x, oz, t) will be limited by ¢. This problem is treated from other point of view in
[36, p. 201]. The second coefficient y,(x, y,s) of the transformation §, is found
similarly. ’

The solution of the original system (48) (in the first approximation) is determined
by the formulas

#

X

I

x + ey (x,9,8) + €% +..,

Y o=y +eN(x,y,5) + €2 ...

Here, the variables x, y, s are a solution of the centralized (averaged) system of the
first approximation

i = ex’x),

¥ =0 +eY(x),
=1,

The structure of averaged operators depends in large degree on resonance relations
between frequencies determined by the variables y and s. We do not touch this
problem here.
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