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FINITE-DIFFERENCE APPROXIMATIONS FOR FIRST-ORDER
PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS

CKIHYEHHOPIZHHIIEBA AITPOKCHMAILIA _
AAO®EPEHIHIAJIBHO-OYHKHIOHAJIbHUX PIBHJHD
3 YACTUHHHUMH NOXIAHUMM NEPIIOI'O IOPAAKY

We consider initial-boundary-value problems of the Dirichlet type for nonlinear equations. We give
sufficient conditions of convergence of a general class of one-step differcnce methods. We assume that

the right-hand side of the equation satisfies an estimate of Perron type with respect to the functional
argument.

Ona HeniHiAHHX PIBHAHL PO3rJIANAETLCA aHasor 3ana4i [lipixJsie 3 KpaHoBOIO 110YATKOBOIO YMOBOIO.
Hapeneni goctaTHi YMOBH 113 30iKHOCTI 3araJIbHOrO KJlacy OJHOKPOKOBHX PI3HHIICBHX METO/IIB.
IMpunyckaeThe, 110 MpaBa YacTHHA PIBHAHHA 3al10BOJIbHAE anator ouinkH [Teppona sinHocHo (hpyHK-
1il, 1110 € AprYMEHTOM.

1. Introduction. Denote by C(X,Y) the class of all continuous functions from X
into ¥, where X and Y arc metric spaces. Define £ = [0,a] x[-b,b], where
aeR, b= (b, ...,b,) € R", a>0, and b;>0 for i = 1,...,n. Let Type R,,
T=(Tp....T,) € RL, R, =[0,+%), and D = [-1(, 0] X [-7,1]. Define also
(cppeeescy) = b+1T and E® = ([-15,al X [~c, cD\{[0,a] % [-b,b]). If
z: EOQUE — R is a function of the variables (x,y) = (x,y,,....y,) and there

1]

c

exist derivatives Dy z, i = 1,..., n, then we writt Dyz = (D) ..... Dy ). For
(x,y)€ E and z: EQUE — R, wedefine a function z(yy): D = R by z(xy(L
s) = z(x+ty+s), where (1,5) = (#,8,...,5,) € D. The function z(,,, is the
restriction of z tothe set [x—Tgy x] % [y—T,y+1T], and this restriction is shifted to
the set D. Let Q = ExC(D,R)xR" and assume that ¢: E® = R and f: Q —
— R are given functions. The paper deals with the initial-boundary-value problem
Dez(%,y) = (%3, Zuyp Dyz(x. ),
(1)
z2(x,y) = @(x.y) for (x,y) € E©,
Below, we give examples of equations which can be derived from (1) by specifying the

operator f.
Example 1. Assume that F: EXRxR" 5> R and o = (0g 0y, ..., 0,):

E — R'™". Wedefine f(x,y.w.q) = F(x,y.wlay(x, y)-x.a’(x.y)=y).q), (x,y,
w,q) e Q, o’ = (o, ..., e,) Then we have an equation with a deviated argument

Dyz(x,y) = F(x,y, z(a(x, ¥)), Dyz(x.y)).
Example 2. For F introduced above, we define
flx,y.w,q) = F(x. y._[w{r,s)df ds, q), (x,y,w,q) e Q.
D

Then (1) is the initial-boundary-value problem for the differential-integral equation

Dyz(x,y) = F(_t,y, j z(x+t, y+5)deds, Dy:(x,y)}.
D
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986 Z. KAMONT

Our formulation of the differential-functional problem is also motivated by a general
model of the functional dependence in ordinary differential-functional equations [1].

We consider classical solutions of (1). Finite-difference approximations relative to
initial-value problems or initial-boundary-value problems for first-order partial differ-
ential equations have been investigated in [2-7]. Generalizations of these results to a
differential-functional case can be found in [8, 9], The main problem in these investi-
gations is to find a suitable difference equation or a difference-functional equation
which would satisfy a consistency condition with respect to the original problem and
be stable. The method of difference inequalities or simple theorems on recurrence in-
equalitics are used in the investigation of the stability. The authors have assumed that
given functions have partial derivatives with respect to all arguments with the excep-
tionof (x,y). In (8, 9] it is assumed that the right-hand sides of differential-functional
equations satisty the Lipschitz condition with respect 1o the functional argument.

In the present paper. we introduce nonlinear estimations with respect to the func-
tional argument. More precisely. we assume that the function f of the variables (. y,
w.¢) has partial derivatives with respect 10 ¢ = (¢, ... . ¢,,) and satisfies a non-
lincar estimation of the Perron type with respect (o the functional argument. Note that
the conditions indicated above are identical with the assumptions that guarantee the
unigueness of solutions of initial or initial-boundary-value problems for differential or
differential-functional equations [ 1, 10, 11].

In this paper. we use general ideas for finite difference approximations relative to
partial differential equations which were introduced in [1-6. 8, 10. 12-18]. For
further bibliography concerning approximate solutions of first-order partial differential
cquations, see the references in the papers cited above and in [8. 1214, 17].

An error estimate implying the convergence of difference schemes is obtained in
[ 14] by the method of difference inequalitics. Therefore. the authors have assumed in
[14] that the right-hand sides ol equations are nondecreasing with respect to the
functional argument. In this paper, we omit the assumption on this monotonicity.

We prove a gencral thcorem on the error estimate of approximate solutions of
difference-functional equations of the Volterra type.

s . ]
For x € [-Tyal. wedefine E, = {(1.y)e E: t<x} and EV" = {(1.v)e
f - - (

e EWM, t<x} and denote by li=ll, the supremum norm of ze C( E_t.” UE,.R).
We shall use vector inequalitics with understanding that the same inequalitics hold for
their components. For N = (N ....N,) e N" where N is the set of natural
numbers, weput N+ 1 = (N +1.....N,+1). For vy =(y.....y,) and ¥ =
=(F.....¥ ) y. ¥e R" wedeline y*¥ = (3 F..... ¥, ¥, ). Weintroduce a
mesh in EVUE. Let d = (dydy.....d,) e R"™". d,>0 fori=0.1.....n
and let [, < (0.d|. Suppose that, for h = (hg k') € iy, h" = (hy.....h,). there
exists Nye NN = (Np.....N,) € N" suchthat Nohy = 1. N*h’" = ¢. Inwhat
follows. we introduce additional assumptions concerning £ and [,. Assume that
Noe Nand N = (N,.....N,) € N" are defined by

Nohy <a<(Ny+1)h, and N#*h" <b < (N+1)*h.

For m = (my.m . ... .m,). where m; are integers, we denote m” = (m [« oo it)
{» $ n’
and 2w i o™ s [ _\‘f:"”]). where v = m' k. Let M, =
={m:-N<w <N}and M, ={m': =N <m < N} Wedefine
E,={ (") ™Yy oy =0.1..... Ny, m'e M, }.
h i 1] (1 ]

0 ; ! .
EL oz {(.1_[”1[_]‘ _\_[:u J}: iy = __N”. ---N”+ 1.....0. me Mh} U
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FINITE-DIFFERENCE APPROXIMATIONS ... 987

U {(x(m(,), y(nl'}): mgy = l, Ver NU’ m’ E Mk\ Mﬁ }.
Then E, and Ej” are sets of mesh pointsin E and E©), respectively. For a func-
tion z: E{O UE, — R, we write z(™ = z (x"0) y(™)),
Now we define discrete analogs of E,, ||z]|,, D, and Z(xy). We define
Ehmy = {(x?D, y)) e EQUE,: i <mg}

and

Izl m, = max {]zm): (x, ™) € Enmy}.

where —Ny < my < Ny. Let M, = {m: my=0,1, ... No-1, me M,}.
Now we define a mesh in the set D. There exists K = (K, ....K,) € N" such
that K*h’ <1< (K+1D=*h". Let
Dy = { (™, y™)): my = ~Ng,—=Ny+1,...,0, —-K<m’ <K}

If z: E{’UE, - R and 0 < mg < Ny, m" € M,, then z(,,y: Dy — R is a func-
tion defined by

ZE), Y9) = 2(e v,y e
(50:5") = (50, 8155:45, —NgS5520, -K<s'2K.

Let § = {8 =(5008,): Sy {-1,0,1} fori=1, ...n} and z: ELOJUE,‘, -
— R. We define operators A, Ag and A = (A, ..., A,) in the following way:

" _ (mg, m" +5")
AA{’”) = E GJ;.mz o »
s'es

AO:(M) = h(’]‘l [z(m0+l.m') _ A:(m]]‘ (2)

A‘_z(m) = h‘-_l Z Cif)mz(mﬂm‘,wg'? e Y
s'es

where mg = 0,1,..., Nop. m’ € M, a,,.c, €R, and Az = (A2, ...

.. »A,z"™). We will approximate Dy z(x,y), Dyz(x,y), and z(x,y) by Az,

Az(™) and Az("™), respectively.
For any two sets X and Y, we denote by F(X,Y) the class of all functions

defined on X and taking values in Y. We introduce now an operator T} : F(Eflm U
UE,,R) > F(E®UE,R) as follows: Put $* = {s=(sg.5;,....5,): s;€ {0,
1} for i=0,1,...,n}. Let z € F(ES?UE,,R) and (x,y) e E©UE. Then
there exists m such that (x), y™?), (x"*D y'+Dy ¢ EOUE, m+1 =

=(my+1,...,m,+1), x") < x < x*D and y) < y < x('+D_ We define

(Taz)(x,y) =
1- ’ ! oy 1=s"
= Z z(m+s}[1—x(’"0}Jsu (l B x—x(m"]J k (}F——}'(”I)Js [l _ j-‘—y(m)J d
ses ho ko h h
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m)\ n [ m;) \ i
y T =yt
W 1 h; X
_ () 1-s’ 7 A () 1-s;
1 o y y l g yl yt
h oy h;

and we take 0°=1 in (4). Thus, we have Txz: EQ)UE — R. We will interpolate
functions z: E” UE, — R by means of Tjz.

Remark 1(8). (i) If z: ES’UE;, - R, then Tz € C(E@UE,R).

(ii) Suppose that the function z: EQ)UE — R belongs to the class C! and
|Dxz(x,y)| < C and |Dyz(x,y)| < C,i=1,...,n, for (x,y) € E. Let z;, =

= ZIE;:‘O)UE". Then || Thz—z||, < C|h| for x € [-Ty a), where |h| =ho+ h; + ...

where

@)

woe g
We consider the following difference method for problem (1)

Aozt = f(x0), ym) (Thz)(my Az™), me My,

(&)

where @, : E}.D) — R is a given function and (Txz)(m) = (T}, z)(x(mw‘},(m')).

2. Error estimations of approximate solutions of difference-functional equa-
tions. Suppose that Fj,: E4xF(E”’UE,,R) - R, he I;. For (x"),y"), z) ¢
€ ExxF(EYUE,,R) wedenote Fj[m,z] = F,(x(™), y""), z). We say that F,

satisfies the Volterra condition if, for each (x0), y(")) € E, and for z, 7 €
€ F(E,” UE,,R) suchthat z|; =Z|p ., wehave Fy[m,z] = Fy[m, £]. Let
Mo my

Xp = {xCNo) xNo+ D) @ x(1) (Vo) } jep Xy =By xm"]}, and
let Vi: F(EPUE,,R) > F(X,,R,) be given by (V,z)(x(™) = max {|z™)]:
m’ e M,}. In the sequel, we will write (Vj,z)(m,) instead of (Vjz)(x(")).
Suppose that 6;,: X, x F(X,,R,)—> R,. If (x™),n) € X5 xF(X,,R,) then
we denote O, [.mo, n] = 0,(x"), ). We say that the function o, satisfies the
Volterra condition if, for each x(™) € X, and for n, § € F(X,,R,) such that
N(xD) = §(xD) for =Ny < i < my, we have o,[mg.m] = 0, (mg. 7).
For a given @,: E}IO) — R, we consider the problem

Z(mp+Lm”) _ Fylm,z], me M:,
(6)
L(m) _ (pg"") on E_;('m.

If we assume that F, satisfies the Volterra condition, then there exists exactly one

solution of (6). Now we prove a theorem on the estimation of the difference between
the exact and approximate solutions of (6).
Theorem 1. Suppose that

1°) the function Fy: ExxF(E” UE,.R) = R, he I,, satisfies the Volterra
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FINITE-DIFFERENCE APPROXIMATIONS ... 989

condition and @y : E,(,m - R;
2°) there exists a function 6,: X* xF(X,,R,) — R, such that
1) ©, is nondecreasing with respect to the functional argument and satisfies
the Volterra condition;

i) for me M} and z,7 € F(EQ UE,.R), we have
| Fylm, z] = Fp[m, 21| < 04[mg, Vi(z - 2)];

3°) m: E},O) UE, — R is a solution of (6), V,: E},m UE, = R, and there

exist By: Xp >Ry, Yt Xi > R, he ly suchthat

|7 — o™ | < B on EP, | @)
[7imo ™) — Fim, 5| < v for me My, ®)
and
|3,{,:"°+” > o,[mg, Bsl + ﬂ:’"’}, mo=0,1,..., Ng—1.
Under these assumptions, for my = —Ng, =Ng + 1,...,0,1, ..., Ny and m’ e M,
we have
w - mm| < B ©

Proof. It follows from (7) that estimation (9) holds for —Ny € my < 0, m’€
€ M. Assume that (9) is satisfied on Ej », Then we have from assumption 2° and

(8)

—(mg+Lm’) _ —(mg+lm’ —(my+1,m’ -
|v,£"'° Ll - "')| < lv,f"‘“ " F;‘[m.'l'h]J +

+ | Fim. 5] = Flm@)| < v + 0,[mo, V(% - )] <
< Y + o, lme, Bil < B0, m'e M.
This estimation and (7) imply
|F;m0+l.,m’) _ Eén@ﬂ,m’)l < Bf‘:ﬂnﬂ]' m' e M.
This completes the proof of (9).
Remark 2. If the assumptions of Theorem 1 are satisfied and [, is non-
decreasing on X, then |7, — @, |, . < Bi™) for —Ny< my< Ny.
3. Convergence of the difference method. For we C(D,R) we denote by

| wllcpy the supremum norm of w. For the above w, we define Vw: [-Tp, 0] = R,
by

(Vw)(1) = max {|w(t,s)| :s€ [-T,T]}, t€ [-Tp 0]
If N:[-Tap) > R, and ap>0, xe [0,a9], then M:[-T.0)> R isa
function given by M,)(7) = N(x+1), t € [-Tp, 0]. Suppose that N* e N is defined
by N*hy < ag < (N*+ 1)hy. If N :[~Tp, ap) > R, then 7, is the restriction of M
to the set J* = {xNo) x(No+ D xN*)} Suppose now that B : J* — R. Denote
by L[hy, B] afunction given by
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990 Z. KAMONT

Llhy,B]:[-%.a*] o R, a* = N*h,
L[ho, B](x) = B{l"l-l) hal(x_x(l'))'._ ﬂ(l)[l_ hal(x_x(f))]‘ XE [x(l')’x(f+|)]-
In the sequel, we will need the following assumption:
Assumption H . Suppose that the function o : [0}. ay) %X C([-7, 01, R,) > R,,
ag > a, satisfies the conditions
1°) o is continuous on [0,ay)x C([-T5,0],R,) and o (x,0)=0 for x €
€ [0, ay), where 6(r) = 0 for e [-14,0];
2°) if (x,w), (X,Ww)e [0,a))xC([-7,0],R,) and x < ¥, w < W, then
o(x,w) < o(X, w);
3°) the function n(x) = 0, for x € [—Ty, ay), is a unique solution of the problem
N'(x) = 6(x,N()), Nx)=0 for xe [-70]. - (10)
Assumption H . Suppose that
1°) the function (p:E(o) —R isof class C!, fe C(, R), and
| f(x. 3, W, @)= f(x, 5, W,q)| < 0(x,V(w=W)) on Q, (11)
where o is given by Assumption Hy;
2°) foreach P = (x,y,w,q)e Q there exist partial derivatives (Dqlf(P). cers
quf(P)) =D, f(P) and D, f(x,y,w, )€ C(R".R") where (x,y,w)€ ExC(D,R),

3°) foreach Q™ = (x, y"), w,q) € E,xC(D,R)xR", we have
n -
Gy + ho 3, D, D, FQ™) 20, me M;; (12)
i=1

4°) there exists c,>0 such that h;<cohy, i=1,....n, and h;h;' <cy, i,j=

=1,...,n
Assumption H,. Suppose that the operators A and A satisfy the conditions

1) for my = 0,1, ..., Ny, m" € M, we have

Yoy mly Fogh, 50 § & Ly

s'es s'es
o () _ §
2 sjagm =0, z 5iCg,, = 8,}-, iJ = Lo ots
s'es s'es

where 8‘}- is the’Kronecker symbol;

2°) there exists ¢ > O such that my = 0,1, ..., Ny, m’ € M, we have
S la.l<e Yld]se i=Lo.mn
s'es s'eS

The following theorem enables us to get an estimation between exact and approximate
solutions of (1).

Theorem 2. Suppose that

1*) assumption H,—H, are satisfied and v, is a solution of (5);

2°) u: EQUE 5 R isa solution of (1) and the function u|g is of class ck
3°) there exists B:I,— R, such that

|9 - g™ | < B(h) on E,
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FINITE-DIFFERENCE APPROXIMATIONS ... 991
and lim B(h) = 0.
h—0
Under these assumptions, there exist y: 1 4R, and €,>0 such that
ity =il m, < BCR) for mg =0.1...., No. |h] < g, (13)
where u, = “iEf,mUE;, and
lim y(h) = 0, 14
Jim () , (14)
Proof. We apply Theorem 1 to prove (13), (14). Suppose that §, is defined by
Aﬂ “;‘ml s f(x(mo:‘. y{nl’ i. (Thuﬁ){m)-A”}lm]) + a[hi'ﬂ). me M;'

It follows from condition 2 in Assumption /, that there exists o : I, — R, such that
| 8| < a(h) for me M; and lim a(h) = 0. We define F:E, xF(E” U
UE,.R)—> R by

Fulm,z] = Az + hy f(x'™, y("), (T, 2) gy AZ™).
Then we have

‘(mo+'|.m',1 R , -
Vi = r.‘i[m-"h]- me Mh*

Am) _ (m) ()
Vi = @, on E,
and
| Fylm, uy,] - ui,"'“”"" '"| € hya(h), me M,

(m) _(m) (0)
[, = v, | < B(h) on E;".

Suppose that z, 7 € F(E)” UE,.R). Then we have for me M;,
Fplm.z] = Fylm. 2] = Az — A7 & hoBy(m.z, T + hyChlm.z,. 7]. (15)
where

Bylm.z, 2] = f(x0, y", (T,2) uy AZ™) = f(x"0), y, (T, 7 )y, AZ),
Cilm.z. 2] = fx"0) YO (T, ) A2) = f (6700, y (T, 2 )y AT™).
It follows from Assumption H| and from (2) that
|AZ"™—AT"™ & By Cylm.2, 2] =

ol PACEET b PR SRR Y |
i=1

s'eS

where Q is an intermediate point. Inequality (12) and Assumption H, imply

|AZ™ — A 4 by Cplm.z, 21| S V(- T)(my). (16)

It follows from (11) that

| Bym,z, 21| £ 6,(x™, V(T,2)(my= (T, my]). me M. (17)
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Put S = {s'=(s,....5,):5€ {0,1},i=1,...,n}. Itis easy to see that, for
y") < y <y e have

mHNs m) =5’
5 (¥ y=y¥"NT _
> - -1
W W

s'€S;
Then

z(mo,m +5) _ E(mo.m +57) } x

[(T,2) ()= (T, ) (x| £ Y

s'eSg

_ mg) L m o mn=s
x (1 R ] i’ o B! b
ho " h’

+ 2 |2(m0 +Lm'+s") ftmﬂﬂ,m’ﬂ’)l x

s'eSy

_m) [y SmNS _ ms
" (x x ) y=3 i 2
ho K h

— {mg) y
< [1 - u—) max {| 2o 2" | i’ e M, } +

ho
x — x\mo)

ho

The above estimations and (17) imply

max {| (")~ 20" | .’ e M, }.

|Bulm, z, 21| < 0, (x"™, (LLhg, Vy(z = 2D atme)y). (18)
It follows from (15) — (18) that
| Fplm, z)-Fy[m, 21| < 0,[my,V,(z-2)], me My,
where
oulmg, Bl = B + hyo (x", (L kg, B1)(xmy))) (19)
my=0,1,..., Ny, Be F(X,,R,)
Consider the imitial-value problem
N'(x) = o(x, (Llhg, My Dixy) + lh),
n(x) = Bx) for xe [~T0]. 20)

It follows from Assumption /, and the theorem on continuous dependence of
solutions on initial values and on the right-hand sides of equations that there exists
€y >0 such that, for || <g,, there exists a solution X -, k) of (20). This solution is
defined on [-T, a] and }EEE‘(] o(x, h)=0 uniformly with respect to xe [-T, al.

Since o -, h) is a convex function on [0, a],

o(x™0* k) 2 @(x™0, h) + hyo (x™0, (L kg, @y (- WD) (stme)) +

+hya(h), my =0,1,..., Ny—1,
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FINITE-DIFFERENCE APPROXIMATIONS ... 993
where (1);,0( -, h) is the restriction of -, #) to the set X,
Thus, we see that all the assumptions of Theorem 1 are satisfied and, consequently,
| u}t'") - vﬁm) | € @(x"™)h), my =0,1,..., Ny,

where || < g, Now we obtain (13), (14) with y(h) = @(a, h), which completes
the proof.
Remark 3. If the assumptions of Theorem 2 hold with

o(x,m) = Lmax {In(t)|: 7€ [-7,, 0]}, LeR,,
(xm) € [0,a5] X C([- Ty, OL.R,).
i.e., the Lipschitz condition is satisfied,
lfxy,w, @)= f(x. 3. W, q)| < LlIw= llgpy on €,
then we have the estimations

= vy lbm, < BCH)exp [Lx™0)o(h)L™ [exp[Lx'"]-1] if L>0,

Il =V lhm, < BCR) +x"0a(h) if L =0,

where my = 0,1, ..., Np.
Remark 4. Suppose that 6, € C([0,4,]xR,,R,) and
o(x,n) = Sy(x. max{n(t): 1€ [, 0]}) for (x,m) € [0,ay) % C([-75, 01 R,)
then estimation (11) has the form
£y, W @)= F (2.3, W, @) < (x llw= llepy) on Q.
The comparison problem (10) is equivalent to
' (x) = oy(x,n(x), nO) =0,

in this case.
4. Examples. Inequality (12) is the main assumption in the theorem on the

convergence of the difference method (5). We give examples of operators Ay and A
and formulate the main assumption (12) for these A, and A.

Ifl1<j<n m=(m,.. ,m,), then we define
jm) = (mg, .o .mj_ymi+ 1, mjy, ... ,m,),

—jm) = (mg, ... mj_ym;—1,m .y, ... s M)

Example 3. Suppose that ¥ = (3;,....5,) is a fixed point in (=b,b).
Suppose that h; < min {b;— ¥;, ¥; + b;}, i = 1, ..., n. Consider method (5) with

Agz™ = hal[z(mo*l-"{)—z(m)],
A = B -] i Y™ 2 3,
Ad™ = B2 — Z-ieD] f ¥ g g i = Lot
Under these assumptions, condition (12) is equivalent to
D, f(P)sign(y;-%) 20, i=1...n P=(y.wqe (2D
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1- hﬂi W'D f(P)] 2 0, PeQ. )

Remark 5. Suppose that Assumption H,, and estimation (21) hold true. If (11) is
satisfied then the solution of (1) is unique and depends continuously on the initial-
boundary function ¢ € C(E”, R). This property of (1) can be proved by the method
of differential inequalities. We omit details.

Example 4. Consider method (5) with

Ayz™ Zmg+Ln') _ (o)1 i [z 4 (=it ]

£=I
A d™ = m) [N i) =1, 0.
Then condition (12) is equivalent to
1-nhoh | D f(P)| 20, i=1,...n PeQ

Now we consider a numerical example. We will use the following assertion:

Lemma 1. Suppose that = : E\” UE, >R and denote x = yg, x("0) = yimo)
. 1 1 1
i G). I ™= G5 ™,..... 00, D= o, A, D),
y("‘), y™D e E},O) UE,, then

y(m i}

| (o y)dxdy = 2,.—+r 1‘[ B Y 2, (23)

yim) i=0 s'es”

We omit a simple proof of Lemma 1.
Example 5. Let E = [0,1] x[-2,2]% [-2,2] and

Ey = (-1, 11X [-2.5,25] [-2.5. 25D\ (0, 1] X (-2, 2) X (=2, 2)).
We define y = (y,.¥,). s = (5,,5,) and

S y) = sin(x=1)[ 3203 -1 - 2] = =063 -D-

1
= Ex)’l(y% -1), (xy)€E,

X
gi(xy) = gyl(yf - 1),

1 2 .
8,(x,y) = g)’z()’z =1 [1-sin(x-1)],
@(x,y) = 12 + y, + y, + sinx + cosx, (x,y)€ E,,

11 ?
= : - ., 8 ——,=, =12 ;.
{(r,s) te [-1,0] SJE[ ) i } .
Consider the problem -

_sz(x,y) = - I z(x’),)(f, s)dtds + z(x-1,y) + gl(.vc.y)D),l z(x,y) +
D

+ &(x, YD z(x, y) + fo(x,y) (x,¥) € E,
z2(x,y) = @(x,y) for (x,y)€ Ey, (24)
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and the difference method

i+13H = %[z(i.j4-l.k)+z(i,j-l.k)+z(i‘.;',hl)+z{1'.j.£-l)]v_
- hy {j (Ty2) it $)dtds + (T, z,(X =1, 3P, y§) +

+ 130, ¥, 50y @by [0+ 10) - Gi10] 4

+ gz(x(i)' yi..") (*))(2}1 )- Z(l;k+l)_z(:;k——l)] +_f(x(" (J) (k))} (25)

where

iR = @Ui:® on E,
It is easy to see that, for h; = h,>5h,, method (25) satisfies condition (12). We
calculate the integral [ (T,,2); ; (1, 5)dtds using Lemma 1. We take hy = 1072,
hy = hy = 107", Ny = Ny = 100, and N, = N, = 25. Denote by u and v, sol-
utions of (24) and (25) respectively. Let §: {0, 1, ... ,N,} = R, be given by

8; = max {lu(x®, y{7, y§) = v, 6@, 37, 3§) 1/, k=0,£1, ..., £20},

i=01,..,100.

The values of X, v,(x?,0,0), §; are listed in the following table.

x® vy(x', 0,0) 5,
19 = 0.10 13.094199 0.000638
2 =020 13.177354 0.001382
+30 = 030 13.250857 0.002216
K49 = 040 13.307355 0.003125
%9 = 0.50 13.352920 0.004088
% = 0.60 13.384892 0.005086
79 =070 13.402962 0.006098
x%0 = 0.80 13.406964 0.007099
2% = 090 13.396870 0.008067
19 =10 13.372787 0.008976

Remark 6. The results of the paper can be easily extended to the initial-boundary-
value problems for weakly coupled systems of nonlinear equations.
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