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GELFAND PAIR ASSOCIATED WITH A HOPH ALGEBRA AND
A COIDEAL*

ITAPA T'EJIB®@AH/JIA, SAKA ITIOB’SA3AHA

3 AJITEBPOIO XOII®A TA KOIAEAJIOM

A pair of a compact quantum group and a coideal in its dual Hopf *-algebra is considered. A notion of
a Gelfand pair and a strict Gelfand pair is introduced. For a strict Gelfand pair, two hypercomplex

systems dual to each other are constructed. As an example, the quantum analog of the pair (U(n),
SO(n)) is considered.

PoarnsaxyTo napy KoMnakTHOI KBAaHTOBOI FpYNH Ta Koifgeany y i ayaisHit *-anre6pi Xonda. Bso-
AHTBCA MOHATTA napH [Nesbdpanpa Ta crporoi napu Nenbcpanpa. [na crporoi napu Menbdpanna 6y-
JIYETHCA Napa rinepKoMIJIEKCHHX CHCTEM, AKi € AyaJIbHHMH O/IHa 10 ofHol. SK npHK/an po3rjiAHYTO
kBaHTOBHHA ananor napu (U(n), SO(n)).
Considering a pair of a locally compact group G and its compagt subgroup K, with
Haar measures v and vg, respectively, one can endow the algebra of functions on
G that are biinvariant with respect to the subgroup K with a natural hypergroup
structure [1] or a closely related structure of a hypercomplex system (see [2] and
survey [3]). A similar construction has been carried out for a pair of compact quantum
groups H,, H,, where the subgroup K was replaced by a Hopf algebra epimorphism
7 : Hy — H,, see [4, 5], and in the case of noncompact quantum groups, see [6] (for
related topics, see also (7, 8]). However, existence of such an epimorphism 7 seems
to be a rather restrictive condition. It is not evident whether such an epimorphism
exists, for example, in the case where H, = U,(n), K = §O4(n) [9]. In this paper,
we construct a pair of hypercomplex systems dual to each other for Hoph algebras,
which are in duality, and a coideal. Similarly to the classical case and to the case of a
pair of quantum groups with an epimorphism, we define a notion of a Gelfand pair and
a strict Gelfand pair. Some elements of this construction can be found in [10, 11]. As
an example, we consider the compact quantum group U,(n) and a coideal
corresponding to the quantum group SO,(n). In this case, the characters of the
constructed hypercomplex system, which are zonal spherical functions, correspond to
the Macdonald’s polynomials. This example was studied in depth in [11].

1 would like to express my gratitude to Dr. L. 1. Vainerman for interest and attention
to the work and many helpful discussions.

Let H=(H,d 1.A,¢5) and H = (/A.d.1.A.£,§) be Hopf algebras [12]
with the corresponding multiplication, unity, comultiplication, counit, and antipode.

Definition 1. We will say that the Hopf algebras H and H are in duality if

there exists a nondegenerate pairing (-,-): H x H — C such that:
(&d(f.2)) = (A%). f ®2).
(d(&m).f) = (E@n.A().
(L £) = e(f) ¢
(€ 1) = &&),
($(8).f) = (&.5(/)

forall £,m in H andall f,g in H.
In the sequel, instead of writing d(&, n), d(f, g) and (&, f). we will write

* This work was supported in part by the Fund for Fundamental Studies at the Science and Technology
State Commitee of Ukraine, project 1/238 “Operator”.
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1056 YU. CHAPOVSKY

§-m, f-g and E(f).

For every e H, we will define two linear mappings &' and & in End(H) as

follows:
g =(E®id)ea,
&= (id®E) oA
Lemma 1. The mappings & =& and & —E' are faithful representation and

antirepresentation, respectively, of the unital algebra H in End (H).
Proof. Indeed, let §,,E, € H and fe H. Then

& (82 () = &l (B2 ®id) o A(f)) = (§; ®id) o A((&; ®id) ° A(f)) =
= (§®id) o (& ®@id) o (id®A) o A(f) =
= (§® & ®id) o (A®id) o A(f) = ((§;-&) ®id) o A(f) =
= (& &) ().

1°(f) = (1®id) o« A(f) = (e®id) = A(f) = f.
Since, €(&'(f)) = E(f), we see that &/ (f) = 0 for all f implies that E(f) = 0 for
all f and, because the pairing is nondegenerate, £ = 0. Similarly, one can show that
€' is a faithful representation.

Letnow M c H be some subsetof .
Definition 2. An element fe H will be called left-invariant (right-invariant)

with respectto M if for all E€ M, E'(f) = (&) f (E(f)= £(E)f). An element
fe H will be called biinvariant with respect to M if it is left- and right-invariant

with respectto M.
We will denote the set of all left-invariant (right-invariant) elements of H with

respectto M by M\H (H/M) and the set of all bi-invariant clements with respect
to A by M\H/M. Itisclearthat M\H/M = M\H (N H/M.

Definition 3. Let ﬁ:lo c H and let My\H be the subset of all left-invariant
elements of H. We will say that the set M2 ;’I:{g is maximal with respect to
Mo\H iffor every &€ H such that E'(f)= &(E)f for all fe My\H, we have
&e M. The notion of a maximal set with respect to H/M, and My\H /M, is
defined similarly.

Remark. 1t is clear that if M is maximal with respect to 1‘30\ H, then
M\H = My\H. A similar statement holds if M is maximal with respect to H / M,
or My\H /M.

Lemma 2. If the set M c H is maximal with respect to  My\H(H /M.
Mg\H/M,), then M isasubalgebraof H and 1€ M.

Proof. Let M be maximal with respect to M,\H, fe My\H, and €
£, € M. Then, by using Lemma 1, we have

(&-8) (= & (&) = &) & () = E@E) EE)f = (& &S
Hence, all fe My\H are left-invariant with respect to the element §, - &2, and since
M is maximal with respect to M, \ H, £, &€ M. Because 1'(f) = f = é(f)f.

it follows that 1e M. We prove the statement similarly if M is maximal with

.~

Moreover,
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GELFAND PAIR ASSOCIATED WITH A HOPH ALGEBRA ... 1057

respect o Mo\H or My\H/M,.

Lemma 3. Let M c H be an arbitrary linear subset-of H, which contains
1, and let M, be a set of all Ee M such that &(&) = 0. Then aj Mo\H =
= M\H; b) H/My = H/M; ¢) Mo\H/M, = M\H/M.

Proof. We will prove only (a), since the other statements can be proved similarly.
Because ﬁo © M, Myg\H > M\H. Let now fe A}o\H and Ee M. Consider
the element &— €(E)1e M,. Because fe Mo\H, it follows that (&—
~ &(E) 1)/ (f) = 0. But this means that &'(f) = £(&)f. Since Ee M is arbitrary,
fe M\H, andso My\H = M\H.

In what follows, we will assume that M, is a coideal.

Definition 4. Let _ﬁ be a Hopf algebra and A:IO C H be a linear subspace
of H such that '

A(My)c My®H + H®M,, [03)
g(My) =0, , (3)
then we say that My is a coideal in H .

Remark. For a pair of Hopf algebras H;, and H, and a Hopf algebra
epimorphism w:H, — H,, there is a Hopf algebra imbedding ﬁ::ﬁz 3 ﬁl in the
dual Hopf algebras. The subset of #t(H, ), on which &, equals to zero, is a coideal
in ﬁl and the definition of invariant elements in /| with respectto H, given in [4]
is the same as in Definition 2 if M, is assumed to be a coideal.

Lemma 4. Ler A:Ig c i be a coideal. Then A}(]\H, HM:fﬂ. and
MO \HKH{, are unital subalgebras of H.

Proof. Let f, ge My\H andlet A(f)=Y, A ®f A{g)=) ¢ ®gf
for some fi. fZ. g}, gf € H. Thenforall &€ M,, A(E) = Zm El ®E2, we
have

E(fg) = (E®@id) o A(f-g) = (§xid)(A() A(g) =
- o) T (Hef) (des))-cei)(Ta 4o )=

A

Il

=Y E(fi-a)f g AE)Aos) 8 =

- T3 a@EE) £ -7 - 3 (T hR) (T Be) -

= Y EL(f) - E2 (o).

Since M, is a coideal, it follows from (2) that, for all m, either E! e M, or
&2  M,, which means that, for all m, either EL(f) = 0 or £2 (g) = 0 because
fe My\H. Thus, E'(f-g) = 0 and f- g€ My\H. Inthe same way, one can prove
that H /M, and M,\H /M, are subalgebras of H.

It follows from (1) that 1 is invariant with respect to any &€ H andso le
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1058 YU. CHAPOVSKY

€ My\H(H/M,, My\H/M,). The rest of the lemma is proved similarly.

Let now My\H (H/M,, My\H/M,) be a subalgebra of left-invariant (right-
invariant, biinvariant) elements of H with respect to a coideal M,. Let M > M, be
maximal with respect to My \H (H/M,, Mo\H/My).

Definition 5. An element M € H is called left-invariant with respect ta'_ﬁ if
forall €€ M, q -& = €(&)Nn. An element M is right-invariant with respect to
M if§-n=¢&)m VEe M, and we call it biinvariant if it is left- and right-
invariant with respect to M.

Denote the set of all left-invariant (right-invariant, biinvariant) elements of H
with respectto M by M\ H (H /M, M\ HM).

Lemma 5. The set M\ H (f;’ /M) is a left (right) ideal in H. The set
M\ H /M is a subalgebra of H. Moreover, if M contains elements other than
0 and i, then 1¢ M\H /M. _

Pl:oof. Let us prove, for cxaniaple, that M\ A is a left ideal in H. Indeed, let
e H,me M\ H, and E€ M. Then

(§-m)-&=¢-(n-&) = &)
It is also clear that 1-& = & # &(&)1 forany & different from O and 1.
Lemma 6. An element \ € H is left (right)-invariant with respect to M if
Im(n')c M\ H(Im(n") c H\ M).
Proof. Let 1 be left-invariant. ‘Then forall E€ M and fe H,

EM(H) = (n-8) = &) (f)

hence, 1/ (f)e M\H.

Conversely, suppose that Im (n/) ¢ M \H. Then forany fe H and E€ M,

(-8 (H = &M ) = &&)n' (/).

Since M — 7 is a faithful anti-representation, 1 - & = €(&)m, and so n € M\H.
A similar argument can be used to prove the other case.

Definition 6. An element vy is called an invariant integral with respect to M
if vpe MO M\H /M and é(vg) = 1.

Remark. .a). By the definition, vy -& =& vy = é(§) vy forall Ee M.

b). If M = H, then in virtue of a), we get the invariant integral on the Hopf algebra
i ‘

We assume that an invariant integral with respect to M exists and, in the sequel,
we prove its existence under an additional condition on the subalgebra M.

Lemma 7. Let Vy be an invariant integral with respect to M. Then a) vy
is an identity in the algebra M\ H /M; b) vj &1 IS unique.

Proof. a). Since vy € M and &(vg) = 1, it follows from the definition of
M\ H /M that Vne M\ H /M,

Vig N =M vy = g(vg)n = 1.

b). Since an identity in an algebra is unique, the statement is clear.
Remark. As an easy consequence of the definition of an invariant integral with

respect to M, Lemma 6, and Lemma 7, it follows that an element vy € H such
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GELFAND PAIR ASSOCIATED WITH A HOPH ALGEBRA ... 1059

that €(vy;) =1 isan invariant integral if and only if \I'I is a projection of H onto
M\H, v - is a projection of H onto H /M. These projections commute and their
product is a projection of H onto M\H /M.

By using the invariant integral v;;, we can obtain a description of the subalgebra
M\H /M. In fact, we have the following lemma:

Lemma 8. An element ne H belongs to the subalgebra M\H /M if and
only if there exists an element m € H such that n=Vi Mo Vir-

Proof. Indeed, if ne M\ H /M, then we recall that Vj; is an identity in the
algebra M\ H /M and set Mo =M.

Conversely, if M = vy ‘M- vy for some mye H, then it follows from the
definition of vy that, forall £e M, we have

N-E= vig-Mo-vir-§=&&)vy Mo vy = EE)m,

hence, ne M\ H. By usmg the same type of argument, we can show that 1 €
€ H/ M, andso T]E M\H/M.

Let (M\H/M)* denote the set of all linear functionals on M\H /M. The
description of the algebra M\ H /M is given by the following theorem:

Theorem 1. The linear spaces ( M\H/M)*N H and M\H/M are
isomorphic.

Proof. 1f we define a linear mapping T': (M\H/M)*N H — M\ H /M by
'(m) = Vg - Mo - Vi, it would follow from Lemma 8 that I” is an isomorphism.

Corollary. Suppose that fe M\H/M and m,,my,e (M\H/M)*N H.
Then

MM () = (M@ vy ®my) o (A®id) o A(f).

Proof. Let fe M\H/M. By using Lemma 8 and the remark to Lemma 7, we

have f = v;-’ ° vi?(f), and so

M-Mo(f) = Vi -Mi- Vig M- Vig(f) = my- vig -ma (Vi © Vi () =

= (M ®vy ®my) o (A®id) o A(f).

By using the isomorphism between M\ # /M and (M\H/M)*N H, we can
endow the latter with an algebra structure. This is equivalent to defining a new
comultiplication A on the algebra M\H /M. This comultiplication is given by

A= (id®vj; ®id)o (id®A) - A. 4
The properties of this comultiplication are summarized in the following theorem:
Theorem 2. Let a mapping A be defined by (4). Then
a) A maps M\H/M into M\H/M ® M\H/M;
b) A is coassociative, i.e.,
(id®A)o A = (A ®id)o A;
c) Vg isa couniton A?\HM'? with respect 1o A,
(viy®id)e A = (id® viz) o A = id;
d) if v is an invariant integral on H, then Vv is also an invariant integral with

respectto A,
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1060 YU. CHAPOVSKY

(v®id)o A(h) = (id®V)o A(h) = V(h)- 1.
Now, we introduce a notion of a Gelfand pair for a Hopf algebra and a coideal.
Definition 7. Let H and H be two Hoph algebras in duality, let A:fn be a
coideal in H, and let M be a maximal subalgebra of £l with respect to the
algebra of biinvariant elements My\H |M,. Then we say that the pair ( H, M)
is a Gelfand pair if the algebra M\ H |M is commutative. We will say that ( H,

A:!) is a strict Gelfand pair if it is a Gelfand pair and the algebra M\H/M is
commutative.

Now, we assume that H and H arc *-Hopf algebras. We will say that H and

H are in duality as *-Hopf algebras if for all £ € H and fe H,

& (f) = £(S(/)%), (5)
where the same symbol * denotes the involution in H and in H .

Lemma 9. Let 1\:!0 be a coideal in H and M be maximal with respect to
lﬁg\H!ﬂD. Then My\H/M, is a *-subalgebra of H if and only if
S (M*) c M.

Proof. Let fe My\H /M, and E€ M. We have

FU) = (§@id) o A(F7) = ((87) ®@id) o (+@%) o A(f) =

= (B ®id)o (*®id) o (§®id) o (*®*) o A(f) =
= (B eid)o (s'®%) - A(f) = (s (&) (5)

Similarly, &(f*)= (§~ (ﬁ‘)r (f))’ and so the statement is clear.

Now, we consider the case when H is a compact quantum group and H is the
*-Hopf algebra of all continuous linear functionals on H. We know [13] that H can
be represented as

d(t
H= Y Y Culj, ()
aelP i, j=1
where P is a discrete set, uﬁ‘j are matrix elements of d -dimensional unitary

corepresentation of H (d,<ee for all o), and there exists an invariant integral v

on H, which is a state and such that (6) defines an orthogonal decomposition in the
sense of the inner product given by

(f.8)=v(f &) %)

Lemma 10. Let H be a compact quantum group and let A:fu be a coideal in
H. Let M be maximal with respect to My\H/M,. Set M, = MNM" and

assume that ﬂ:fd\H ;’A}U = b}l \H H:!, . Then for each unitary corepresentation
Va— Vo ® H, there exists a basis in Vo, such that
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. . . de dg
M\H/M = Y ZCH,;. M\H = 3 3 > Cufj,
o

a ij=1 i=1 j=1
®)
. dy di
a i=lj=1

Proof. Consider a unitary representation V,— V, ® H with the matrix elements
[+

u; }f‘;:l. Let &€ M, and denote by Ag the matrix (Ag); = §(uf;). If
f= X myug, then E'(f) = AN and E(f) = NAg, where N is the matrix

(n;;). If f is left-invariant, then AN = €(E)N, ie., the vectors {n } _, are

eigenvectors of the matrix A with the eigenvalue €(§) forall j = 1, ...,d,. Since
A}l is closed with respect to the involution and  Ag. = AE there is an orthonormal
basisin V, such that the first dj vectors are the eigenvectors of the operators Ag
corresponding to the eigenvalue €(§) and A; = e(E) 14, ® A{ for some d, — dg-
dimensicnal operators Aé It is clear that in such a basis, we have decompositions (8).

Lemma 11. Let H be a compact quantum group, let 1\3’0 be an' arbitrary
coideal, and let M — an algebra maximal with respect to A:IU \H!A:In. Suppose
that, for }ﬁ'l =MNM* M\H/M = A}l \Hfb?!i. Then there exists an
invariant integral with respect to M. Moreover, it is a state.

Proof. Let m be a projection with respect to (8) of /H onto the linear subspace
M\H andlet vj = ¢gom. We will show that (e o n)’ isa projection onto M \ H.

Indeed, let f = z 2.; ; ufj. Then

o i, k=1

dy dy
(eom) (f) = (eon@:d)[z Y Negay ,k®ak,) =
j=1

dg,

L

”u,j e M\H.

Il M:a\

-2 5.5

e(ut) ot = 3

I Mg

i=1 j

In the same way, we show that (eom) is a projection onto H /M and, hence, by
the remark to Lemma 7, vy is an invariant integral with respect to M.

Since V(uU u,ﬂ;) =0 if i # j, ® is an orthogonal projection and, hence,
||l = 1. Since € is a homomorphism, ||e|| = 1, andso || vzl < lizllllell =
= 1. Consequently, || viz |l = vi(1) = 1 and it is a state.

Assume now that .Jﬁo is a coideal such that the algebra M\H/M is com-
mutative,

Let A be a completion of the algebra M\H/M with respect to the C*-norm
| -1 = sup, |p(-)|l. where o runs over the set of all irreducible representations of H.

We denote the spectrum of the commutative C*-algebra H by Spec( H ). We also
use A and v to denote the extensions of the corresponding mapping to H. Since
any p e Spec(H) can be identified with a continuous homomorphism p: # — C,

there is an involution v: Spec ( H ) — Spec ( H ) defined by
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P (f)=p(SFH) Vfed ©)
and, forany pe (H), there is a generalized shift operator LP: H — H given by
(f) = (p®id) o A(f) VfeH. (10)

Weuse H and v for GNS construction of a Hilbert space L,( /) and consider L?
as operators on this space.

Lemma 12, Ler the involution v and the generalized shift operators LY,
p € Spec( H), be given by (9) and (10). Then

a) L? is a bounded operator for all p € Spec(H) and the mapping p — LF
is strongly continuous;

b) e =€ and L7 (S(f)*)(p¥) = L7 (f)(q) forall pe Ly(H);
c) Lt = id;

d) for any positive fe L,(H), L (f) is positive for all p € Spec (H);
e) L(1)(f) = 1 forall p,qe Spec(H):

P (LP)Y* = I[P, where (LP)* is the operator adjoint to L in L,(H ).

Proof. a) 1t follows from the definition of L’ and the positivity property of A
that LF are bounded with ||L”|| < 1. Moreover, for any fe H, p — LF(f) =
=(p®id) o A(f) iscontinuous.

b) Since €08 c* =g, €’ = & To prove the second part, let f& H. Then
L7 (S()*)(p¥) = (goSo%® poSox)o (id® vy o m®id) o (A, ®id) o Ay(S(f)*) =
= (poSosoSox®goSoxoSon)o(id®vyon®id)o (A, ®id)o A(f) =
| = L"(f)(g):

Now we use part a).
¢) This is a direct consequence of part c) of Theorem 2.

d) Since A is positive, this follows from the fact that p is a homomorphism and
property a).

e) Since A(1) = 1®1 and p, ¢ are homomorphisms, L*(1)(q) = 1.

f) Itis sufficient to prove that <L” o g) = (f. L”vg) on H for all continuous

functionals p,q: H - C, f,ge H, L” considered as a lincar operator H — H,
and the involution v naturally extended over the space of continuous linear

functionals on H. Solet f= u® and g = P, be matrix elements of unitary

ij
corepresentations of /7. Then we have

(i) = (Z(pt&ld)(m@uh)um) > p(u}) (ufjo ) =

= 8op p(ul ) (o tinn
On the other hand,

(1501 (1)) = (153 (5" 010) (8 018, -
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= g‘ p“(uﬁd(u}lj,uf”) = 8up pv(uf:,-Kuf‘j,ug,).

Since [13] pY(u5;) = p(uf‘m) and (uﬁuf’,‘,) - (u,‘,‘,j.ufm). we see that the

equality holds. By restrictingto M \H /M and then extending to H, we prove (f).
It follows from Theorem 2.1 of [2] that if generalized shift operators satisfy the
properties listed in Lemma 12, then they generate a hypercomplex system on

Spec ( H ). So, we have following lemma:

Lemma 13. Let H be a commutative C* -algebra defined above with the
comultiplication A, count €, unit 1, antipode S, involution *, and the state V.
Then Spec ( H ) is a basis of a hypercomplex system.

Now we will be considering a strict Gelfand pair (ﬁ M ) with a complete set of

characters @ = {9, },co of the above mentioned commutative hypercomplex

system for some discrete set Q. Since the product of two characters is a positive
definite function, we can apply the general construction of [2] to find a hypercomplex
system dual to the above mentioned. This will be a hypercomplex system with a
discrete basis @ and, hence, it is a hypergroup [2].

For the basis ® = {@, },.e o, We have

Tk
@ P = Y, Clm P (11
keQ
where ¢}, are the Clebsch-Gordan coefficients in the decomposition into a sum of
irreducible corepresentations of the tensor product of irreducible corepresentation of

H.
Now by using the duality theorem from [2], we get the following theorem:
Theorem 3. Suppose that (1;' lff) is a strict Gelfand pair. Then there are two
structures dual to each other: a commutative hypercomplex system with compact
basis Spec ( H) and the discrete commutative hypergroup with the basis Q.
Here, @, are the characters of the hypercomplex system if considered as functions

on Spec(H) and they are the characters of the hypergroup if considered as

functions on Q.
Remark. A direct construction of the dual hypergroup is given in an informal note
by Koornwinder for a special case of a Gelfand pair, which is not necessarily strict.
Example. Consider the compact quantum group U,(n) and set H = Uq(n ). It

is known that [14]
Uq(ﬂ) = C(‘ij- i, l)/fR'
Here, C(1;;,1,1) isa free algebra generated by the elements of the matrix T = (1;)),

i,j=1,...,n, the elements ¢, 1, and I, is a two-sided ideal generated by the
relations '

t-det,(T) = det, (T)-1 = 1,
where T) = T® 1, T, =1 ®T, I is the identity matrix in R", the matrix R is
given by -

R = Z qa"f él-£®ej'j +(q—q—1) z e,'j®ej,,

I<i, jgn - 1i<jgn
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1064 YU. CHAPOVSKY

e;€ Mat (nxn) are matrix units,
: !
det,(T) = Y (-9)® tig, - tne, »
aes,

Sy is the permutation group of the set {1, ...,n}, /(o)fthe length of the permutation
o, and ge C.

For ge R and |gq| < 1, the structure of a *-Hopf algebra is defined on the
generators and is given by

n
A(f‘vj)= Eri'-k@tkj‘ A(f)=!®t‘
k=1

£(t,-j) =4, ¢e(t)=
S(t;) = (—q)™’ o " Moty 5(0) = dety(T),

where m;”: is a quantum minor defined to be the quantum determinant of the

matrix (7,,) with the indices r and s belonging to the sets {1,...,i-1,i+1,...,n}
and {1,...,j-1,j+1,...,n}, rcspcctwely, and the involution * is defined by
= S(r S FE

The dual *-Hopf algcbra uq(n ), is defined as the algebra [14]

Ug(n) = C (15, 15, 1) Ipe,

where the free algebra C (I, 17, 1) is generated by the elements [}, 17,1, i, j =

=1, ..., n, and the two-sided ideal I+ is generated by the relations

RGE = BLR,

R = LR
where Lf =L*®1, L5 =I1®L[* R*=PRP(P(,®1L)=1®]I). The
coalgebra structure is given by

n
+
A(l) = Y eI,
k=1
and a nondegenerate pairing is defined to be

(57 ... 1 & o RE,

where

T,=10..0TQ®..01,
\__..VI_J’

R =R, and R" actsas R* onthe 0™ and ™ component of the tensor product
(Rn )@(& +1).

Let P be a free Z-module with the basis {e } > 1e, P= E:;‘ZE;, and let
P* < P be such that

Pra {A =y x,-e;:xlzxzz...aa,,}.
i=1
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It is known [15] that

U= ® W(A),
AEeP

where W(A) is an invariant finite-dimensional u,(n)-submodule such that
1o (u(A)) = ql"u(A)
and the module W(A) is generated by the element u(A). We say that elements of
W(A) have the weight A. _
Let J = Z:;l ¢"'e; andlet M, be a coideal generated by the matrix
elements b;; of
B = BY = IS(CYY I,
ATheorem 4 [11]. For every A € P*, the set of biinvariant elements,
(M\Uq(n)r‘i\:f ) equals to one if and only if
A —Ayy € 22, 1< k<n-Ll. (12)

Let A, = 2:;1 g;. Thenevery A € P* satisfying (12) can be represented as
n-1
A=Y 2mA, +IA,,

i=1

where m,, I € Z,. Letalso

0(2A,) = 5 (0f 7 ) &t ...a]' g ...q;,, (13)
<<, j1 <oy

where ©' /" is a quantum minor of the matrix 7" and g, = ¢"*.

Theorem 5 [11]. The subalgebra of biinvariant elements H\Uq(n)f M is
commutative. It is generated by the elements @(2A,), r = 1, ..., n. The involution
on ©(2A,) is given by

¢(2A)" = 0(2A,, - 2A,). (14)

Moreover, one-dimensional subspaces ( M \U,(n)/ M), are generated by the
elements

P(A) = 9(2A)™ ... 0(2A,)™" 9(A,). A€ P, (15)

Corollary. It follows from Theorem 4 and Theorem 5 that ( ug(n), M) is a
strict Gelfand pair.

Let now H denote the completion of the commutative algebra A:I\Uq(n);“ﬂ:f
with respect to the C*-algebra nor |- || = sup, [lp(-)|l, where p runs over the set of
all irreducible representations of U, (n). Then the spectrum of H, Spec (), can be
identified with T" = {(x;, ... , x,) € C":|x| = ... = |x,| =1} — the n-
dimensional torus (see [11]). Hence, we can identify H with the algebra of all
continuous functions on the compact space T". The invariant integral v on this
algebra is given as follows [11]:

For a holomorphic function in the neighborhood of T, let [ F(x)], denote the
constant term the Laurent series expansion of F(x) and define the meromorphlc
function on T", ©(x; q, 1),by
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. (x/x:a), (xi/%9).
i lsgsn (ex/x0), (12 /xiq),

E}

where (a;q), = 1_[::0 (1 - aqk ) Then, for a func}ion @€ H, which can be
identified with a symmetric polynomial on T", we set

_ [9o(xq".a*),
v(e) = o(xq'.q%)

(16)

Since Mo =q™® Myq°, where p =" (n—k)g. the conditions of
Lemma 11 hold and Theorem 3 gives in this particular case the following:

Theorem 6. For the strict Gelfand pair (uq(n), A:f) there is a commutative
hypercomplex system with the compact basis T", the invariant integral given by (16)
and the discrete commutative hypergroup with the basis P*. They are dual to each
other and their characters given by (15) and considered as functions on T" are the
Macdonald’ s symmetric polynomials.
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