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ON THE BEHAVIOR OF SOLUTIONS
OF OPERATOR-DIFFERENTIAL EQUATIONS AT INFINITY

PO IMOBEATHKY HA HECKIHYEHHOCTI PO3B’A3KIB
JAHOEPEHUIAJIBHO-OIIEPATOPHHMX PIBHSAHB

The existence of limits at the infinity, gcnemﬁmd in the Abel sense, is established for bounded solutions
of the operator-differential equation y (7) = Ay(#) in a reflexive Banach space.

Y pechnexcupiomy GaHaxoBoMy NTPOCTOPI BCTAHOBJ/ICHO ICHYBAHHA Y3arajlbHEHHX Y po3yMiHHi AGesin
I'paHMIlL Ha HECKIHYCHHOCTI 114 ofMeXenHX po3s’A3KiB onepaTopHo-iHepeHIIaIbHOIO PIBHAHHA
y ()= Ay(). :

We consider a Cauchy problem

y'(1) = Ay@), te R, y(0) = y,, )]
in a Banach space B endowed with the norm ||-||. Here. A is a linear closed
operator in B and R, = [0,=). A function y(r) is said to be a solution of the
Cauchy problem (1) if it satisfies both equalities in (1) and y(r) € c'(R,, B).

In the present paper, we are concerned with the behavior of solutions of the Cauchy
problem (1) at the infinity.

Definition. Let o > 0 and let y(1)e C(R,,B). We define the Cesaro limit
of y(1) of order o. as

i
(C.a) lim y(t) = lim ar™® | a-9*"y)ds,
0

whenever the latter exists.
Theorem 1 [1]. Let A be a generator of a strongly continuous semigroup T (t),

te R,. Then
a) ifx=xy+ x,€ N(A)® R(A), then (C,a) ,li,m,., T()x = xp;

b) ifthere exists a sequence {tj. je N}, 1; = oo, such that sequence

I}
ar;® j (tj-*s)a']y(s)ds
0
is weakly convergent, then x€ N(A)® R(A):
¢) if B isareflexive space, then B = N(A)® R(A) and the limit
(C,a) ‘l_iam T(t)x
exists Vxe B.
Let y(r) be a bounded solution of the Cauchy problem (1). Then statement a) of

Theorem 1, generally speaking, is not true. It is shown by the following example:
Example. We consider a space Tl of all bounded sequences { B,e C.ne

N U {0}} equipped with the norm || {B,}|l = sup|B,|. We set A{B,} =
{v,}, where Y5=0, Yy =B, Ya=iB/n+By. n 2 2. Let M,=
{ {B.}teM, Bp=0 } The restriction of A to M, (we denote it by Ap)
generates a Cp-semigroup of contractions 7'(r) [2, p. 535], and the vector {0, 1, 1,
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l....} EN(Ay)® R(Ay). We conclude from Theorem 1 that the (C, a)-limit of a
boundeu solution of the Cauchy problem (1), where y(0) = {0,1,1.1.... }, does
not exist. But y(0) = A{1,0,0,... }. concluding the example. Also it is shown

at statement a) of Theorem 1 is not valid for bounded solutions of the Cauchy
problem (1) when A generates an unbounded Cj,-semigroup.

Lemma 1. Let y(t) bea bounded solution of the Cauchy problem (1). Then
statement b) of Theorem | holds true if we substitute y(t) for T(s)x and y(0)
for v

Proof. Since A is closed, we conclude that

i
m*“J (-9)%"y(s)dse D(A).
0

By letting + — oo, we get

!
A i
A ( ar™” j (r—s)u_l,\‘(.\'ld.s J =
1} :

=1 1
= o _[ (-5 y(s)ds + ™ f (t-)*""Vis)ds =
0 |

o
- r
= ot _[ {qu)“_!}"(.\')d.\' +at %y -1) - 0{;"'\-({)) +
-1
-1
+ala-1)" [ (=) 2ys)ds > 0
0

since || y(¢)]| is bounded. Since A is closed. we obtain xye N(A).
Weset z(1) = y(r) —xy. Then

[
1

t’x.f;u J-{.f_l—.'.')a—lz(s)d‘\‘ 50, j = oo,
0

w . . -t
(here. —> stands for the weak convergence in B). Integrating by parts. we get
t,~1

2(0) = —-A [ .':,-_“ j (.*J.—-—s)“'lz(.s‘)ds J +z(t=1)1"% -
0

t,~1
= ifere] ) ri‘“ J {i}-—s)a_zz(s)ds.
0
When j — oo, the last two terms on the right-hand side of the above equality tend
weakly to zero. Hence, z(0)e R(A) and y(0)e N(A)® R(A).

Now we are going to generalize statement b) of Theorem 1.

Theorem 2. Let B be a reflexive Banach space. We suppose that the Cauchy
problem (1) admits at most one bounded solution for any y,e B (i.e., if there
exist few solutions for certain  yqo, only one of them is bounded). If y(t) isa
solution of the Cauchy problem (1) such that || y(0)|| < M, then ¥ o.>0 there
exists

(C, o) ;l_i,mmy(r) =z, z€ N(A).

ISSN 0041-6053. Yip. mam. xypu., 1994, m. 46, N 7



ON THE BEHAVIOR OF SOLUTIONS OF OPERATOR-DIFFERENTIAL EQUATIONS. .. 811

Proof. We denote by TV the set of all we B such that there exists a bounded
solution of Cauchy problem (1) with the initial value w. For any w e T, we set
Iwlin = sup {|lx()|l, 120}, where x(r) is the bounded solution of the Cauchy
problem (1) corresponding to w by the definition of T’. We denote by M the
completion of M in the norm Il lln. Weoutline that Vwe N ||w ln = lwll.

Without loss of generality, we assume that T is dense in B . If this is not the
case, we consider the Cauchy problem (1) in the space B, := N (the bar denotes the
closure in B). In By, all the assumptions of Theorem 2 hold. So. by using the
continuity and denseness of the embedding M € B, we get B* € N*  with the
continuous embedding.

We define a semigroup of operators 7(1), ¢ = 0, on TV’ by the relation T(1)w =
= x(r), + 2 0, where x(r) is the solution of the Cauchy problem (1) corresponding to
w by the definition of V. Tt is easy to see that T'(t) is a semigroup of contractions:
this 1s why 7'(/) may be extended on TU by continuity.

We state that 7(1) isa Cg-semigroup on JU. To prove this, it is sufficient to
show that T'(r) is weakly continuous at zero ([3], IX.1). The latter condition holds if
the functions 7(f)w are weakly continuous at zero V w e TV, Otherwise,

FypeN* 3Je>0 3y,eN 3{1,. neN} (1, 20, n>)

| yo(T(t,)y — ») I > €. (2)

Obviously, y does not belong to the closure of B* in M*,

Now we are going to make some preliminary constructions. Given any =* e N*,
we define the Banach space X := (w* + az*, w* e B*, a € C) with the norm
Iw* + az"|[x = lw"]lg + |a|. Since B* and X /B* arc reflexive, X is
reflexive. too. We consider the function 7(r)y; bounded in X. There exist a
subsequence {s,, ne N} of the sequence {t,, ne N} and w,e X such that

T(s,)y; — wq in X as n— eo. Since B is weakly closed and B* is contained in
X. we conclude that wye B. With T'(t)y, being strongly continuous in B, we sce
that wy =y,. So. we get yo(T(s,)y, =») = 0, n— . It makes a
contradiction to (2). Therefore, T'(t) isa Cy-semigroupon M.

Let us prove that there exists a sequence {r,, ne N} (r, = 0, n— ) such
that

T(r)yg > w in M, n—oo. (3)
Assume the contrary. We set t, = n. The reflexivity of B implies the existence

of a subsequence {s,, ne N} of {r,} and ue B suchthat T(s,)yy — u in B.

Then there exist y, € N, asubsequence {r,, ne N} of {s,}, and € > 0 such
that

! yo(T(r,)yo — u) I > E. (4)

Obviously, y; does not belong to the closure of B* in T1*. We define the space
X in the same way as it was done after relation (2). Repeating this argument, we
arrive at the conclusion that there exist a subsequence { p,, n€ N} of the sequence
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{r.,} and we B satisfying the relation: y5(7(r,)yy) — u in X, n— . The
latter condition makes a contradiction to (4). Therefore, (4) is not true and J u e T

such that T(r,)y, — u in M, n — o ( we point out that ue N because

ue N(A) by Lemmal).
In view of (3), we need only to apply Theorem 1 to the semigroup 7'(¢) and Y.

From part b) of the thecorem, we deduce that y, € N(B)@® R(B) (B is a generator of
T(1)). Part a) states that there exists

(C,a) ,ll,mm T(t)yy = u.

Thus, Theorem 2 is proved.

Corollary 1. If the open right-side halfplane {Ae €, Re X > 0} is not
contained in the point spectrum © 5 (A), then the statement of Theorem 2 holds
true.

Proof is immediately obtained from the proof of Theorem 23.7.1 [2].

Theorem 3. Let B be a reflexive Banach space. We suppose that 3k, h, €
€ €, (ReX; > 0. Rek, > 0) such that there exist projection operators Py and
P, onto the subspaces N, = {xe B, Ax =A,x}, Ny = {xe B, Ax >Ayx}
respectively. If y(t) is a solution of the Cauchy problem (1) such that || y(1)|| <
< M, then ¥V o.>0 there exists

(C,a) .tl_i+mm y(1) = z,
and ze N(A).

Proof. We set Py=1-P,-P;; N3 =Py B. Wedenote y;(t) := P;y().
i € 1,2,3. By applying the operator P, + P; to (1), we get

y3(1) + y3(1) = (P + P3)A(y2(1) + ys3(1)).

This is why the function y,(f) + y;(¢) is a bounded solution of the equation 2 () =
= (Py + P3)Az(1), t 2 0.

Since A, € 6,((P, + P3)A), we may apply Corollary 1 to the present setting.
So,

3 (C, o) lli)mm (y2(t) + y3(1)) = w, we N((P, + Py)A). (5)
Here, we N(A) because
!
ar™@ _[ (f—s)“_l}‘;(s)ds EN; I=1,2,3
D

and N((Pz i P3)A) = N(A) + Nj.
In a similar way, we can obtain

3 (C,a) 'leu y3(1) = v, ve N(P3A), (6)
3 (C,a) l‘Ii’mm (3 (1) + y3(1)) = u, ue N((P, + Py)A) (7)

.by applying to (1) the operators Py and P; + P3, respectively. From (5), (6), and
(7). we deduce the statement of Theorem 3.
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Corollary 2. Let B be a reflexive Banach space. If there exist A € €
(ReX > 0) and a projection operator P onto the subspaces X = {xe B,Ax =
= Ax} such that A is invariant on (I — P)B, then the statement of Theorem 3
holds true.

Corollary 3. If B is a Hilbert space, then the statement of Theorem 3 remains
valid.

Corollary 4. If there exist Ly, h,e €, Red; >0, Reky > 0, such that the
subspaces N | . N, , defined in Theorem 3 are finite-dimensional, then the
statement of Theorem 3 holds true.

When A satisfics some additional assumptions, we can reformulate Theorem 1 in a
more precise way:

Theorem 4 [1]. If A is a generator of a bounded analytic semigroup, then w e
can replace (C, o.)-limits in Theorem 1 by the strong ones.

Theorem 5. Let the assumptions of Theorems 2 or 3 hold. If y(t) is a so-
lution of the Cauchy problem (1), which admits a bounded analytic extension to the
sector Sy 1= {Le.C, |argh| < @} for some ¢ (0,m/2), then there exist

lim y(1) =z and ze N(A).

The proof of Theorem 5 repeats the argument used to prove Theorem 2 (or
Theorem 3. respectively). We need only to redefine T’ tobeasetofall we B such
that there exists bounded solution y(f), analytic in Sy, of the Cauchy problem (1)

with the initial value w. Then ||wlin = {llx()]l,1€ S,}.

Corollary 5. If the assumptions of one of Corollaries 2—4 hold, then the
statement of Theorem 5 remains valid.

Theorem 6. In the statements of Theorems 2 and 3, we can replace (C,a)-
It

limit by the Abel limit ( for the definition of the A-limit, see [1,4]).

Proof is an immediate consequence of Theorems 2 and 3 and the lemma in [4,
p.92].

From Lemma 1, we can deduce the following corollary.

Corollary 6. Let B be a reflexive Banach space. If N (A)NR(A) = {0},
then

{
ar® [ (1-5)*"y(s)ds Bz, t >, ze N(A).
0

This fact is a generalization of Theorem 3 [5].
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