A. A. Butyrin, post-grad. stud. (Inst. math. National Acad. Sci. Ukraine, Kiev)

ON THE BEHAVIOR OF SOLUTIONS OF OPERATOR-DIFFERENTIAL EQUATIONS AT INFINITY

ПРО ПОВЕДІНКУ НА НЕСКІНЧЕННОСТІ РОЗВ'ЯЗКІВ пиференијально-операторних рівнянь

The existence of limits at the infinity, generalized in the Abel sense, is established for bounded solutions of the operator-differential equation y'(t) = Ay(t) in a reflexive Banach space.

У рефлексивному банаховому просторі встановлено існування узагальнених у розумінні Абеля границь на нескінченності для обмежених розв'язків операторно-диференціального рівняння y'(t) = Ay(t).

We consider a Cauchy problem

$$y'(t) = Ay(t), t \in \mathbb{R}_+, y(0) = y_0,$$
 (1)

in a Banach space B endowed with the norm $\|\cdot\|$. Here, A is a linear closed operator in \mathbb{B} and $\mathbb{R}_+ = [0, \infty)$. A function y(t) is said to be a solution of the Cauchy problem (1) if it satisfies both equalities in (1) and $y(t) \in C^1(\mathbb{R}_+, \mathcal{B})$. In the present paper, we are concerned with the behavior of solutions of the Cauchy

problem (1) at the infinity.

Definition. Let $\alpha > 0$ and let $y(t) \in C(\mathbb{R}_+, \mathcal{B})$. We define the Cesaro limit of v(t) of order α as

$$\left(C,\alpha\right)\lim_{t\to\infty}y(t)=\lim_{t\to\infty}\alpha t^{-\alpha}\int\limits_0^t\left(t-s\right)^{\alpha-1}y(s)\,ds,$$

whenever the latter exists.

Theorem 1 [1]. Let A be a generator of a strongly continuous semigroup T(t), $t \in \mathbb{R}_+$. Then

- a) if $x = x_0 + x_1 \in N(A) \oplus \overline{R(A)}$, then $(C, \alpha) \lim_{n \to \infty} T(t)x = x_0$;
- b) if there exists a sequence $\{t_j, j \in \mathbb{N}\}, t_j \to \infty$, such that sequence

$$\alpha t_j^{-\alpha} \int_0^{t_j} (t_j - s)^{\alpha - 1} y(s) ds$$

is weakly convergent, then $x \in N(A) \oplus \overline{R(A)}$:

c) if B is a reflexive space, then $B = N(A) \oplus \overline{R(A)}$ and the limit

$$(C, \alpha) \lim_{t \to \infty} T(t)x$$

Let y(t) be a bounded solution of the Cauchy problem (1). Then statement a) of Theorem 1, generally speaking, is not true. It is shown by the following example:

Example. We consider a space \mathfrak{M} of all bounded sequences $\{\beta_n \in \mathbb{C}, n \in \mathbb{C}\}$ $\in \mathbb{N} \cup \{0\}\}$ equipped with the norm $\|\{\beta_n\}\| = \sup |\beta_n|$. We set $A\{\beta_n\} = \sup |\beta_n|$ = $\{\gamma_n\}$, where $\gamma_0 = 0$, $\gamma_1 = \beta_0$, $\gamma_n = i\beta_n/n + \beta_0$, $n \ge 2$. Let $\mathfrak{M}_0 =$ $= \{ \{ \beta_n \} \in \mathfrak{M}, \beta_0 = 0 \}$. The restriction of A to \mathfrak{M}_0 (we denote it by A_0) 1.... $\} \in N(A_0) \oplus \overline{R(A_0)}$. We conclude from Theorem 1 that the (C, α) -limit of a bounded solution of the Cauchy problem (1), where $y(0) = \{0, 1, 1, 1, ...\}$, does not exist. But $y(0) = A\{1, 0, 0, ...\}$, concluding the example. Also it is shown at statement a) of Theorem 1 is not valid for bounded solutions of the Cauchy problem (1) when A generates an unbounded C_0 -semigroup.

Lemma 1. Let y(t) be a bounded solution of the Cauchy problem (1). Then statement b) of Theorem 1 holds true if we substitute y(t) for T(s)x and y(0) for x.

Proof. Since A is closed, we conclude that

$$\alpha t^{-\alpha} \int_{0}^{t} (t-s)^{\alpha-1} y(s) ds \in D(A).$$

By letting $t \to \infty$, we get

$$A\left(\alpha t^{-\alpha} \int_{0}^{t} (t-s)^{\alpha-1} y(s) ds\right) = t$$

$$= \alpha t^{-\alpha} \int_{0}^{t-1} (t-s)^{\alpha-1} y'(s) ds + \alpha t^{-\alpha} \int_{t-1}^{t} (t-s)^{\alpha-1} y'(s) ds = t$$

$$= \alpha t^{-\alpha} \int_{t-1}^{t} (t-s)^{\alpha-1} y'(s) ds + \alpha t^{-\alpha} y(t-1) - \alpha t^{-1} y(0) + t$$

$$+ \alpha (\alpha-1) t^{-\alpha} \int_{0}^{t-1} (t-s)^{\alpha-2} y(s) ds \to 0$$

since ||y(t)|| is bounded. Since A is closed, we obtain $x_0 \in N(A)$. We set $z(t) = y(t) - x_0$. Then

$$\alpha t_j^{-\alpha} \int_0^{t_j} (t_j - s)^{\alpha - 1} z(s) ds \stackrel{w}{\to} 0, j \to \infty,$$

(here, $\stackrel{w}{\rightarrow}$ stands for the weak convergence in \mathfrak{B}). Integrating by parts, we get

$$z(0) = -A \left(t_j^{1-\alpha} \int_0^{t_j-1} (t_j - s)^{\alpha - 1} z(s) ds \right) + z(t-1)t^{1-\alpha} - (\alpha - 1) t_j^{1-\alpha} \int_0^{t_j-1} (t_j - s)^{\alpha - 2} z(s) ds.$$

When $j \to \infty$, the last two terms on the right-hand side of the above equality tend weakly to zero. Hence, $z(0) \in \overline{R(A)}$ and $y(0) \in N(A) \oplus \overline{R(A)}$.

Now we are going to generalize statement b) of Theorem 1.

Theorem 2. Let \mathcal{B} be a reflexive Banach space. We suppose that the Cauchy problem (1) admits at most one bounded solution for any $y_0 \in \mathcal{B}$ (i.e., if there exist few solutions for certain y_0 , only one of them is bounded). If y(t) is a solution of the Cauchy problem (1) such that $||y(t)|| \leq M$, then $\forall \alpha > 0$ there exists

$$(C, \alpha) \lim_{t \to \infty} y(t) = z, z \in N(A).$$

Proof. We denote by \mathbb{N}' the set of all $w \in \mathbb{B}$ such that there exists a bounded solution of Cauchy problem (1) with the initial value w. For any $w \in \mathbb{N}'$, we set $\|w\|_{\mathbb{N}} = \sup\{\|x(t)\|, t \ge 0\}$, where x(t) is the bounded solution of the Cauchy problem (1) corresponding to w by the definition of \mathbb{N}' . We denote by \mathbb{N} the completion of \mathbb{N}' in the norm $\|\cdot\|_{\mathbb{N}}$. We outline that $\forall w \in \mathbb{N}$ $\|w\|_{\mathbb{N}} \ge \|w\|_{\mathbb{N}}$.

Without loss of generality, we assume that $\mathfrak N$ is dense in $\mathfrak B$. If this is not the case, we consider the Cauchy problem (1) in the space $\mathfrak B_0:=\overline{\mathfrak N}$ (the bar denotes the closure in $\mathfrak B$). In $\mathfrak B_0$, all the assumptions of Theorem 2 hold. So, by using the continuity and denseness of the embedding $\mathfrak N \subset \mathfrak B$, we get $\mathfrak B^* \subset \mathfrak N^*$ with the continuous embedding.

We define a semigroup of operators T(t), $t \ge 0$, on \mathbb{N}' by the relation T(t)w = x(t), $t \ge 0$, where x(t) is the solution of the Cauchy problem (1) corresponding to w by the definition of \mathbb{N}' . It is easy to see that T(t) is a semigroup of contractions; this is why T(t) may be extended on \mathbb{N} by continuity.

We state that T(t) is a C_0 -semigroup on \mathbb{N} . To prove this, it is sufficient to show that T(t) is weakly continuous at zero ([3], IX.1). The latter condition holds if the functions T(t)w are weakly continuous at zero $\forall w \in \mathbb{N}'$. Otherwise,

$$\exists \ y_0^* \in \mathbb{N}^* \ \exists \ \varepsilon > 0 \ \exists \ y_1 \in \mathbb{N}' \ \exists \left\{ t_n, \ n \in \mathbb{N} \right\} \ \left(t_n \to 0, \ n \to \infty \right)$$
$$\left| \ y_0^* (T(t_n) y_1 - y_1) \ \right| > \varepsilon. \tag{2}$$

Obviously, y_0^* does not belong to the closure of \mathcal{B}^* in \mathfrak{N}^* .

Now we are going to make some preliminary constructions. Given any $z^* \in \mathbb{N}^*$, we define the Banach space $\mathfrak{X} := (w^* + \alpha z^*, w^* \in \mathbb{B}^*, \alpha \in \mathbb{C})$ with the norm $\|w^* + \alpha z^*\|_{\mathfrak{X}} = \|w^*\|_{\mathfrak{B}^*} + |\alpha|$. Since \mathfrak{B}^* and $\mathfrak{X}/\mathfrak{B}^*$ are reflexive, \mathfrak{X} is reflexive, too. We consider the function $T(t)y_1$ bounded in \mathfrak{X} . There exist a subsequence $\{s_n, n \in \mathbb{N}\}$ of the sequence $\{t_n, n \in \mathbb{N}\}$ and $w_0 \in \mathfrak{X}$ such that $T(s_n)y_1 \stackrel{w}{\to} w_0$ in \mathfrak{X} as $n \to \infty$. Since \mathfrak{B} is weakly closed and \mathfrak{B}^* is contained in \mathfrak{X} , we conclude that $w_0 \in \mathfrak{B}$. With $T(t)y_1$ being strongly continuous in \mathfrak{B} , we see that $w_0 = y_1$. So, we get $y_0^*(T(s_n)y_1 - y_1) \to 0$, $n \to \infty$. It makes a contradiction to (2). Therefore, T(t) is a C_0 -semigroup on \mathfrak{N} .

Let us prove that there exists a sequence $\{r_n, n \in \mathbb{N}\}\ (r_n \to 0, n \to \infty)$ such that

$$T(r_n)y_0 \stackrel{w}{\to} w \text{ in } \mathfrak{N}, n \to \infty.$$
 (3)

Assume the contrary. We set $t_n = n$. The reflexivity of \mathcal{B} implies the existence of a subsequence $\{s_n, n \in \mathbb{N}\}$ of $\{t_n\}$ and $u \in \mathcal{B}$ such that $T(s_n)y_0 \xrightarrow{w} u$ in \mathcal{B} . Then there exist $y_0^* \in \mathbb{N}^*$, a subsequence $\{r_n, n \in \mathbb{N}\}$ of $\{s_n\}$, and $\varepsilon > 0$ such that

$$\left| y_0^*(T(r_n)y_0 - u) \right| > \varepsilon. \tag{4}$$

Obviously, y_0^* does not belong to the closure of \mathbb{B}^* in \mathbb{N}^* . We define the space X in the same way as it was done after relation (2). Repeating this argument, we arrive at the conclusion that there exist a subsequence $\{p_n, n \in \mathbb{N}\}$ of the sequence

 $\{r_n\}$ and $w \in \mathbb{B}$ satisfying the relation $y_0^*(T(r_n)y_0) \xrightarrow{w} u$ in \mathfrak{X} , $n \to \infty$. The latter condition makes a contradiction to (4). Therefore, (4) is not true and $\exists u \in \mathbb{N}$ such that $T(r_n)y_0 \xrightarrow{w} u$ in \mathbb{N} , $n \to \infty$ (we point out that $u \in \mathbb{N}$ because $u \in N(A)$ by Lemma 1).

In view of (3), we need only to apply Theorem 1 to the semigroup T(t) and y_0 . From part b) of the theorem, we deduce that $y_0 \in N(B) \oplus \overline{R(B)}$ (B is a generator of T(t)). Part a) states that there exists

$$(C,\alpha)\lim_{t\to\infty}T(t)y_0=u.$$

Thus, Theorem 2 is proved.

Corollary 1. If the open right-side halfplane $\{\lambda \in \mathbb{C}, \text{Re } \lambda > 0\}$ is not contained in the point spectrum $\sigma_p(A)$, then the statement of Theorem 2 holds true.

Proof is immediately obtained from the proof of Theorem 23.7.1 [2].

Theorem 3. Let \mathcal{B} be a reflexive Banach space. We suppose that $\exists \lambda_1, \lambda_2 \in \mathbb{C}$, $(\operatorname{Re} \lambda_1 > 0, \operatorname{Re} \lambda_2 > 0)$ such that there exist projection operators P_1 and P_2 onto the subspaces $N_1 = \{x \in \mathcal{B}, Ax = \lambda_1 x\}$, $N_2 = \{x \in \mathcal{B}, Ax > \lambda_2 x\}$ respectively. If y(t) is a solution of the Cauchy problem (1) such that $||y(t)|| \le M$, then $\forall \alpha > 0$ there exists

$$(C,\alpha)\lim_{t\to\infty}y(t)=z,$$

and $z \in N(A)$.

Proof. We set $P_3 = I - P_2 - P_1$; $N_3 = P_3 \mathcal{B}$. We denote $y_i(t) := P_i y(t)$, $i \in \{1, 2, 3\}$. By applying the operator $P_2 + P_3$ to (1), we get

$$y_2'(t) + y_3'(t) = (P_2 + P_3)A(y_2(t) + y_3(t)).$$

This is why the function $y_2(t) + y_3(t)$ is a bounded solution of the equation $z'(t) = (P_2 + P_3)Az(t)$, $t \ge 0$.

Since $\lambda_1 \equiv \sigma_p((P_2 + P_3)A)$, we may apply Corollary 1 to the present setting. So,

$$\exists \ (C,\alpha) \lim_{t \to \infty} (y_2(t) + y_3(t)) = w, \ w \in N((P_2 + P_3)A). \tag{5}$$

Here, $w \in N(A)$ because

$$\alpha t^{-\alpha} \int_{0}^{t} (t-s)^{\alpha-1} y_{i}(s) ds \in N_{i}, \quad i = 1, 2, 3,$$

and $N((P_2 + P_3)A) = N(A) + N_1$.

In a similar way, we can obtain

$$\exists \ (C,\alpha) \lim_{t\to\infty} y_3(t) = v, \ v \in N(P_3A), \tag{6}$$

$$\exists \ (C,\alpha) \lim_{t \to \infty} (y_1(t) + y_3(t)) = u, \ u \in N((P_1 + P_3)A)$$
 (7)

by applying to (1) the operators P_3 and $P_1 + P_3$, respectively. From (5), (6), and (7), we deduce the statement of Theorem 3.

Corollary 2. Let \mathcal{B} be a reflexive Banach space. If there exist $\lambda \in \mathbb{C}$ (Re $\lambda > 0$) and a projection operator P onto the subspaces $\mathcal{X} = \{x \in \mathcal{B}, Ax = \lambda x\}$ such that A is invariant on $(I - P)\mathcal{B}$, then the statement of Theorem 3 holds true.

Corollary 3. If B is a Hilbert space, then the statement of Theorem 3 remains valid.

Corollary 4. If there exist $\lambda_1, \lambda_2 \in \mathbb{C}$, $\operatorname{Re} \lambda_1 > 0$, $\operatorname{Re} \lambda_2 > 0$, such that the subspaces N_1 , N_2 , defined in Theorem 3 are finite-dimensional, then the statement of Theorem 3 holds true.

When A satisfies some additional assumptions, we can reformulate Theorem 1 in a more precise way:

Theorem 4 [1]. If A is a generator of a bounded analytic semigroup, then we can replace (C, α) -limits in Theorem 1 by the strong ones.

Theorem 5. Let the assumptions of Theorems 2 or 3 hold. If y(t) is a solution of the Cauchy problem (1), which admits a bounded analytic extension to the sector $S_{\phi} := \{\lambda \in \mathbb{C}, |\arg \lambda| < \phi\}$ for some $\phi \in (0, \pi/2)$, then there exist

$$\lim_{t\to\infty}y(t)=z \quad and \quad z\in N(A).$$

The proof of Theorem 5 repeats the argument used to prove Theorem 2 (or Theorem 3, respectively). We need only to redefine \mathfrak{N}' to be a set of all $w \in \mathfrak{B}$ such that there exists bounded solution y(t), analytic in S_{φ} , of the Cauchy problem (1) with the initial value w. Then $\|w\|_{\mathfrak{D}} = \{\|x(t)\|, t \in S_{\varphi}\}$.

Corollary 5. If the assumptions of one of Corollaries 2-4 hold, then the statement of Theorem 5 remains valid.

Theorem 6. In the statements of Theorems 2 and 3, we can replace (C, α) -limit by the Abel limit (for the definition of the A-limit, see [1, 4]).

Proof is an immediate consequence of Theorems 2 and 3 and the lemma in [4, p. 92].

From Lemma 1, we can deduce the following corollary.

Corollary 6. Let \mathfrak{B} be a reflexive Banach space. If $N(A) \cap R(A) = \{0\}$, then

$$\alpha t^{-\alpha} \int_{0}^{t} (t-s)^{\alpha-1} y(s) ds \xrightarrow{w} z, t \to \infty, z \in N(A).$$

This fact is a generalization of Theorem 3 [5].

This work was partially supported by the Fund for fundamental research of the Ukrainian State Committee on science and technology.

- Komatsu H. Fractional powers of operators. III. Negative powers // J. Math. Soc. Japan. 1969. 21, Nº 2. – P. 205 – 220.
- 2. Хилле Э., Филлипс П. Функциональный анализ и полугруппы. М.: Изд-во иностр. лит., $1962.-826\,\mathrm{c}.$
- Иосида К. Функциональный анализ. М.: Мир, 1967. 624 с.
- Голдстейн Дж. Полугруппы линейных операторов и применения. Киев: Вища шк., 1989. 347 с.
- Маркия М. В. О поведении на бесконечности ограниченных решений дифференциальных уравнений в банаховом пространстве // Граничные задачи для дифференциально-операторных уравнений. – Киев: Ин-т математики АН УССР, 1991. – С. 56 – 63.

Received 20.02.92