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THE CHARACTERISTICS OF THE SUM
OF A MULTIDIMENSIONAL SERIES
We study the relationship between the asymptotic behavior of coefficients of a multidimensional series

of exponents and the asymptotic behavior of its sum near a point on the boundary of the domain of
convergence. Growth characteristics, an order Py (a), and a type GQB(G) in an octant Q (a) are

determined.” The dependence of growth characteristics on the coordinates of points of the boundary of
the domain of convergence is established.

BHBYAETLCA 38" 430K ACHMITTOTHYHOI NOBEATHKH KoedpillieHTiB GaraTOBUMIPHOTO PA/ly €KCNOHCHT 3
ACHMITTOTHYHOIO MOBEIHKOW HOT0 CYMH N0G/M3Y TOUKH Ha MeXXi 36ixkHocTi. Buanaueni xapakTe-
PHCTHKH 3pOCTAHHA, NOPANOK pQ(a) Ta THI GQH(G} B okTaHTi (J(a). BeranossieHa sasie XHICTh Xa-

PAKTEPHCTHK 3pOCTaHHA B/l KOOPINHAT TOYOK MeKi 30iXKHOCTI.

Introduction. In this article, the growth of the »-dimensional sum of the series

Gl i) = ilflpcxp((lp.:)) (1)
o=

-

is investigated, where A, € €, &, = (A}, ..., A}"”) with positive numbers
{l;‘,“} CR,k=1,....n, and (:.lp} is a scalar product. It is known [1] that

series (1) is convergent in a tubular domain 7 = B + iR" € €", B C R", where B
is convex and octant-like.

I,|"llnp =0, where |},]| = 2:=1 ?\.(;]. Then the

domains of convergence and absolute convergence of series (1) coincide. Series (1)
converges uniformly on every compact set of the domain T and the function is
holomorphic in 7. The boundary of the basis B is of special interest in the
multidimensional case. The relationship between the asymptotic behavior of the sum
of the series and the asymptotic behavior of the coefficients is studied near the
boundary of the octants.

1. The order of growth in an octant. Let us take a point @ on the boundary 0B
and an open octant Q(a) with the vertex at a point Q so that Q(a) = {x€ B|
xy<a, k=1,....n}. Then Q(a)C B, and let us take an arbitrary point x €
€ BN Q(a) inside Q(a). The Euclidean distance between x and a is denoted by
d = d(x,a). We shall reach the point a in all possible ways inside Q(a) if the
distance d — 0+. Let

Assume that  lim |A
p— tee

M(G,x;,....x,) = sup {|.G(z],... 2l = a-x,>0,k=1,....n.
yeR" i

Definition 1. The value

— mInM(G,x, ...
pslas w g M Heparty)

d—» 0+ lnz:___,(l/“t}
is called the order of growth in the octant Q(a).
. -1 _ -
Theorem 1. Let {r!-'-)“lwln |A,lInlnp =0 and let E(a,p)=Inl|A,|+
+ {a, ?LF>. Then the order of growth pg(ay, ... ,a,) is given by

© V. Yu. MAKAROV, 1994
886 _ ISSN 0041-6053. ¥Yxp. mam. Kypn., 1994, m. 46, N° 7



THE CHARACTERISTICS OF THE SUM OF A MULTIDIMENSIONAL SERIES 887

pov= In|R, | Pola) + 1

Proof. Let G(z;,...,z,), while achieving the point a in the octant Q (a), have

the order pp(a)e R". Then, for all sufficiently small € >0, IBe R, B >p =
= pgp(a)+ €. Note that the functions

n n /B
S(up, o u,) =0 Y u;' and t(uy,....u,) = ln[ > lﬂ ]
k=1

k=1 W
are equivalent for d — 0+. Then, according to the definition of pg(a) for €> 0,

JUg(a): Vx € Ugs(a)NQ(a)C B and V 0 <d <d(g), the following inequality
holds:

n p/p
InM(G,xq,....x,) < { Z up® ] : (2)
k=1
In addition, for all xe B, the inequality
n plb n &
E(a,p) < [ z u;’ } + Z ukl(;,] 3)
k=1 k=]
holds V (x;.....x,)€ Ug(a)NQ(a) and V0 <d <d,.
Consider a point u"(u;, ..., u,) with the coordinates

g + (pet) [ < B/(B+1)
W <pHEI O S [a0]

}(p-u)mmn
=1

k=1,....n,

where B—p > 0. Itis easy to see that, for p — +eo, u; =0+, k =1,....n.
Therefore, the coordinates of the point «” satisfy (3)

E(a.p) = pV/®*V(p! + l){ Z [lﬂf’}ﬂfw”_)

}P(“ﬂ)!ﬂ('wl
k=1 ‘

Hence,

- In" E(a, '
i n (au;:)” _— ‘il.
= X A ’

It is easy to see that the values

n {
1 { JL(“ ﬂf(ﬂ'*”}
o 3 (a0

and In|A,| are equivalent for p — +eo; thus, (4) turns into

@)

Be1)/B

y+1 o= In|A,| T pyla)+e+1’

Y iim In"E(a,p) . _Pola) + € g€ > 0+ = yY< ppla).

Let us prove that ¥ > pg(a). Assume that (y+e+ l)_I (y+€)=t>0 and
Ve>0, 3p, =pi(e)e N: Vp2=p,. Weuse the equivalence between In|2,|

5 n B/(1+B) -
and InT®B+D/B, where T= )" [lg‘)] . Then |A,| < exp {T/®+1)/P} x
x e X or Vp
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and k=1, ..., j=l ..n, k#j. Then
- (2t) [1(B+1) - B] A H r-z;‘([ﬂl] Tn:(ﬁn);z 2
(B+1)" et
where
[1 - Tir0r P . . 1
A= 1 [1- Trerf/P*] . 1 :
| N v [1= Trwr O]

® = t(B+1) — B, consists of the units off the main diagonal. Finally, we get

= (1) @0)" (B+ 1) HBD22] () )

2 u;’ﬁ T,

k=1

X ( }_;2;‘(3”) HE ) [
) k=1
Thus, the determinant A, is alternating with respect to n. It is easy to see that, at

the stationary point r(o), we have R(h) < 0. We must show that the value &,(r(ﬂ])

is the largest in the closed octant R (0) = { (Pt TeZi0ik= Tisn on }

Let 7, =0, Since E(r) has a local maximum af the point "), the function

-l (p+n)/B ncl
Eal Py )i z[ §;rfﬂ“”:] = 3 rew

k=1 =1

has a local maximum at the point ( r;m’. iy r;l_ul’ )

E..l( r;(ﬂ)“._, :(ol;) _ [ z‘}‘ ] 1+€)/B ( 29 + 2 J‘y+e+1 1

¥ eI Y+E

n— i.

and, since &(0,...,0) = 0, the value of &,(71'?, ..., 729} is the largest at the
BRI

boundary dR(0) in view of the fact that

n—1

ul—ﬁ nl“ﬁ + ugﬁ S e S Z u;ﬂ
k=1

IA

under the condition u; < u, < ... < u,, which does not spoil the unity of proof.
Thus,

Z u;B < z u;B.
k= k=1
_and we conclude that the inequality &, (r1”, ..., ri¥) < &+, ..., r'”) implies
that, at the point »(+©. ... 7). the function E(ry, ....r,) reaches the absolute

maximum in R (0), and, by taking (7) into account, we get
400
MG 315X )5 B(e)exp{ max E(ry,- r,,)} Y exp [-T'®+D/B]
RO P
or

ISSN 0041-6053. Yxp. mam. xypn., 1994, m. 46, N° 7



890 V. Yu. MAKAROV

M(G,xl, [ ,I”) <

B(e) [ 2(Y +¢) ]""”” [ & }“"”” < «(B+1)/B
< u exp[-17 1. ®
y+ely+e+1 Z-'l g g

The series on the right-hand side of (8) converges if pl—i»"i,. In~! [Ap|Inlnp = 0.
Indeed, since In|A,| and InT are equivalent for p — +co, this implies that

Ve>0, Vp2p(e) [Inp] PP o pt@+DIB
If the number € > 0 is taken so that r(B+1)/p > 2¢, then V p 2 py(e)>

> D1
+oo +oo +oo
3. exp (-T'®+D/By o Y " < 4o, Zexp(—?"’(ﬁ"”m) <KeR
P2p2 PZp2 r

and (8) transforms into

" J(‘HZC}J’B

M(G,xq,...,x,) < A(e}cxp[ u;?
:]

k

V 0 <d<d(e), wheire A(g) = KB(g).
For V0 <d<d <d, (&), _the following inequality holds:

i (v+3¢)/p
M(G, x,...,x,) < cxp[ 2 u® J
k=1
or
i lnlnM(G,x],...,lx,,) < v+ 3e.
d— 0+ 1 n _ﬂ J"B
o[ X;.w ]
Since the functions s(u,, ...,u,) and #(u,, ...,u,) are equivalent for d — 0+,
we have

— InInM(G, x,,....x,
polay,....a,) = .fhﬂl ( {. ] )
In Zk=1]/“k

SY+3e, €950+ = pgla)sy

<

and the theorem is proved for py(a) € [0, +c0).

2. The type in the octant Q(a).
Definition 2. The value

opplay, -...a,) = lim InM(G. xi,..., x,)

d— 0+ [ Z:_[ﬂ;ﬁ ]PQia}f'B

is called the type in the octant Q (a) for pola)e (0,+=), where ppla) <P <
< 400,
Theorem 2. Let pl—i;"}»m In~! |AplInlnp = 0. Then the type of growth

)]

Opp(ay. ... . a,) canbe calculated as follows:

GQﬂ(al, e ,ﬂ,,) =
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_ _lpp@]Pe® [E* @)
~ [pgtar+ [[EE400 g 1o aBR]RREREDT
{37 JapTARRY

Proof. Let the function G (z,...,z,) have the type Opg(a)e R" for

pola)e (0,+). Then, from Definition 2 and the Cauchy inequality, we find that
Ve>0, Vd<d(e)

" ~ Pg(d)fﬁ
E(a,p) < (oypa) + s)[ 2. uk”} +(u, 1), (10)
k=1
by setting in the inequality (10) the point coordinates u® (u‘lm. - uf,m )
- 1/ppla)+1
WO < [opgta)]'/Pe@*
k 1 1/(B+1)
(k)
(%3]

T(ZPQ{G}—[S)/(B{PQ(“]+I)} > 0’ k= l. ey N,

where

n (Po(a) +1)/(B+1)
1 = Logta 0| 3 2 )"

, 0= UQB(G) + E.
k=1

Note that V p = p,y(€) u® e Ue(a)N Q(a). We have

[E*(a,p)]'”" !

=] pola)+1
5@ ®+D/P < opp(a) [pg(a) +1] _

By passing to the limit as p — +oo and then as € — 0+, we see that

pola)+1
fim LCY) I DEJE S
P+ n ky1B/(B+1) | PelaXp
D )

k=1

< Opyp(a) pola) [P(_zl(a) + l]meH.

T e
= m -
! e et {ZH [ltk}][’“ﬂ*’l)}pe(a)(ﬂ‘r‘)!‘ﬁ
k=1 P

1+
Yo Po(a) [ bo(@

]pgra)-rl

< O'Qs(a) pQ(a) [ 1+ ba(@

Therefore, Yo < Opp(a). Let us prove that Y = Ggp(a). Assume that

Yo+t €=my >0, 1> p—p(ﬁ-(;% =t>0 1! m(‘;;{pe(am} = A.
(0] a

Hence, forany € > 0 and any p, the following inequality holds:

n . Wp+1)/B
|A,| < A(a)exp{A [ ;‘: [l(:)]”(B N } } 5 <a,lp).

where A(g) is a constant for fixed € > 0. Hence,
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Hee _ (pe1)/B
|G (21, 2,)| < Ae) Y, exp{2AT®+1/B — (u 3 )} AT . an
' P

Similarly, we can show (as in the case of Theorem 1) that the function

i n

n (B+1)/B
6 e ZA[ Y e } - Y wy,,
£=1

k=1

where v, 20, k = 1....,n, hasan absolute maximum at the unique stationary point
@

- Pola)/B .
A (v©.... s®) < [z w? [ [ogpta) + €]2% .

Thus, (11) can be written as

f n pQ{a)Ilﬂ _
M(G,xy,....x,) < A(E)cxpi [ 3wt } o 2ofelar! }x

kwl

oo i fp+1) /B
chxp{—A[ 2[15,”]"“'”} } (12)
P

Under the condition that _l_lP} InlnpIn”~! |A,| = 0, the series on the right-hand
{] o

side of (12) converges and V 0 < d'1) < g~

M(G, x|, ..., x,) < exp { (o + e)[ é"l ug ]pg(alﬂi }

lnM((_: Xiennna X )
[zn " ]Potal,fﬁ < Yo + 2¢,
L

or
.— IﬂM((J Xl )

[ ZA 3 1“1B ]Pata}jﬂ

S Yo+ 26, €0+ = oQﬂ(a) < Y-

opplar. ... ,a,) =

The theorem is proved for 0 < O'QB{a) < + oo, Obviously, Theorem 2 is also true for
Ggﬁ(a} = +oo,
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