Yu. A. Shkol'nikov, cand. phys.-math. sci. (Inst. Math. National Acad. Sci. Ukraine, Kiev)

HANDLE DECOMPOSITIONS OF SIMPLY-CONNECTED FIVE-MANIFOLDS. III*

We prove the existence of the exact handle decomposition of a simply-connected smooth or PL 5-manifold with a standard simply-connected boundary of signature 0, the triviality of a 5-dimensional h-cobordism with the ends of such type and the uniqueness, up to diffeomorphism (PL-isomorphism), of a smooth (or PL) h-cobordism between the given simply-connected 4-manifold and the corresponding standard manifold.

Доведено існування точного розкладу на ручки однозв'язного гладкого або кусково-лінійного п'ятивимірного многовида із стандартною однозв'язною границею сигнатури 0, тривіальність п'ятивимірного h-кобордизму з кінцями такого типу, а також єдиність гладкого (або кусково-лінійного h-кобордизму між заданим однозв'язним чотиривимірним многовидом і відповідним стандартним многовидом з точністю до диффеоморфізму (кусково-лінійного ізоморфіму).

A 1-connected 4-manifold is called standard if it is diffeomorphic to $kS^2 \times S^2 \# \# IS^2 \times S^2$.

The principal results of this paper are Theorems 2-4 and Corollary 3.

1. Some technical facts. Consider a finitely generated free \mathbb{Z} -module F of rank r and a nondegenerate integral symmetric bilinear form Φ on F; $\Phi(x, y)$ will be denoted by $x \cdot y$.

An element $y \in F$ is called basic if it generates a free summand of F. It is obvious that $y \in F$ is basic iff it is indivisible, i.e., it follows from $y = \alpha x$ that $|\alpha| = 1$.

Statement 1. Let $\{y, z_2, ..., z_r\}$ be a basis of F. Then there exist a basic element $x \in F$ such that $x \cdot y = 1, x \cdot z_i = 0, i = 2, ..., r$.

To prove Statement 1, we define a homomorphism $\varphi: F \to \mathbb{Z}$ as follows: $\varphi(y) = 1$, $\varphi(z_i) = 0$, i = 2, ..., r. Since the form Φ is nondegenerate, there is $x \in F$ such that $\varphi(z) = x \cdot z$ for every $z \in F$ [1]. Since $x \cdot y = 1$, we conclude that x is indivisible and, hence, basic.

Statement 2. Let a set $\{y_1, \ldots, y_m\}$ of independent basic elements of F with $m \le \lfloor r/2 \rfloor$ and $y_i \cdot y_j = 0$, $i, j = 1, \ldots, m$, be given. Then there exist an orthogonal decomposition $U \oplus U^{\perp}$ and a set $\{x_1, \ldots, x_m\} \subset U$ such that $\{x_1, y_1, \ldots, x_m, y_m\}$ is a basis of U, for which

$$\Phi|_{U} = k \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \oplus l \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ k+l = m. \tag{1}$$

If r = 2m, then U^{\perp} is trivial.

Proof. Let us construct an arbitrary basis of F containing $\{y_1, \ldots, y_m\}$. By Statement 1, there exist a basic element $x_1' \in F$ such that $x_1' \cdot y_1 = 1$ and $x_1' \cdot z = 0$ for each other element z of the basis. Then $x_1 = x_1' - [x_1'/2, x_1']y_1$ satisfies the same conditions as x_1' and $\alpha = x_1 \cdot x_1$ is either 0 or 1. The restriction of Φ to the submodule $\langle x_1, y_1 \rangle$ can be represented by the matrix

$$\begin{pmatrix} \alpha & 1 \\ 1 & 0 \end{pmatrix}$$
.

Since it is nondegenerate on the submodule $\langle x_1, y_1 \rangle$, we may consider an orthogonal decomposition $F = \langle x_1, y_1 \rangle \oplus F'$. Since $y_1 \cdot y_i = 0$, i = 2, ..., r, all elements

^{*} Supported in part by International Science Foundation, Grant No. U6F000.

[©] YU. A. SHKOL'NIKOV, 1994 ISSN 0041-6053. Укр. мат. журн., 1994, т. 46, № 7

 y_2, \ldots, y_r are in F'. Since Φ' is nondegenerate on F', we can continue the process for $y_2 \in F'$ and so on. Thus, we have the desired decomposition. If r = 2m, then U = F and $U^{\perp} = 0$. Note that the basis $\{x_1, y_1, \ldots, x_m, y_m\}$ can be modified so that k be equal to 0 or 1. We do this as follows:

$$x_1' = x_1, y_1' = y_1 + \dots + y_m, x_j' = x_j - x_1 + y_1, y_j' = y_j, j = 2, \dots, m.$$

The set $\{y'_1, \dots, y'_m\}$, as we can easily see, satisfies the same conditions as $\{y_1, \dots, y_m\}$.

Consider a closed 1-connected 4-manifold M, which bounds a 1-connected 5-manifold W. Then $H_1(M) = H_3(M) = 0$, $H_2(M)$ is free of rank r = 2m and $\sigma(M) = 0$. The natural embedding $i: M \to W$ induces a homomorphism $i_*: H_2(M) \to H_2(W)$.

Theorem 1 [2, 3]. The following statements are valid:

- 1) Ker i_* is a free submodule of $H_2(M)$ of rank m = r/2;
- 2) for any y, z from ker i_* , it is true that $y \cdot z = 0$;
- 3) if $y \in \ker i_*$, then, for any $x \in H_2(M)$ with $x \cdot y \neq 0$, it is true that $i_*(x) \neq 0$.

Corollary 1. There exists a basis $\{x_1, y_1, \dots, x_m, y_m\}$ of $H_2(M)$, in which the intersection form Q(M) is represented by a matrix of form (1) with k = 0 or k = 1, $\ker i_* = \langle y_1, \dots, y_m \rangle$, and $i_* |_{G_x}$ is an embedding of $G_x = \langle x_1, \dots, x_m \rangle$ into $H_2(W)$ such that $i_*(G_x)$ is a free summand of $H_2(W)$.

Proof. Let $\{y_1, \ldots, y_m\}$ be a basis of $\ker i_*$. By statement 2) of Theorem 1, we have $y_i \cdot y_j = 0$, $i, j = 1, \ldots, m$. By Statement 2, there exists a basis $\{x_1, y_1, \ldots, x_m, y_m\}$, in which Q(M) is represented by a matrix of form (1). Let us modify this basis by analogy with the proof of Statement 2 to set k to be equal to 0 or 1. Since $\{y_1', \ldots, y_m'\}$ is a basis of $\ker i_*$, we may consider the basis $\{x_j, y_j, j = 1, \ldots, m\}$ replaced with $\{x_j', y_j'; j = 1, \ldots, m\}$. Then $H_2(M) = G_x \oplus G_y$ (not an orthogonal decomposition), where $G_x = \langle x_1, \ldots, x_m \rangle$ and $G_y = \langle y_1, \ldots, y_m \rangle$ and $i_*|_{G_x}$ is an embedding of G_x into $H_2(W)$. Since M is 1-connected, the end of the exact homo-

logical sequence of the pair (W, M) is $\dots \to H_2(M) \xrightarrow{i_*} H_2(W) \xrightarrow{j_*} H_2(W, M) \to 0$. Consider $T = \text{tors } H_2(W)$. By Poincaré duality, $T = \text{tors } H_2(W, M)$. Therefore,

$$H_2(W) \simeq FrH_2(W) \oplus T, \quad H_2(W,M) \simeq FrH_2(W,M) \oplus T.$$

Since j_* is an epimorphism and $\ker j_* = i_*(G_x) \subset FrH_2(W)$, $i_*|_T$ is an isomorphism and $i_*|_{Fr(H_2(W))}$ is an epimorphism of $FrH_2(W)$ onto $FrH_2(W, M)$. Thus, both the modules $i_*(G_x)$ and $FrH_2(W)/i_*(G_x)$ are free and we have $FrH_2(W) \cong i_*(G_x) \oplus FrH_2(W, M)$, which completes the proof.

2. Simply connected 5-manifolds with a standard boundary. We prove here the following theorem:

Theorem 2. Any 1-connected 5-manifold with a standard boundary admits an exact handle decomposition with geometric incidence indices.

The proof will be performed according to the following scheme: Construct a closed 1-connected 5-manifold W from a given 5-manifold V by gluing a standard 5-manifold V' with the same boundary along $M = \partial V$. Consider a Barden handle decom-

position of W. Isotope V' into a 2-skeleton of W ambiently in W. Remove V' from W to obtain a 5-manifold diffeomorphic to V, preserving the exact handle decomposition.

So, consider a 1-connected 5-manifold V with a standard boundary M. Since, for $M = S^4$, there is nothing to prove, suppose in the sequel that $M \neq S^4$, i.e., $2m = rkH_2(M) > 0$. Let $i_{1*} \colon H_2(M) \to H_2(V)$ be a homomorphism induced by a natural embedding $i_1 \colon M \to V$. By Corollary 1, there exists a basis $\{x_1, y_1, \dots, x_m, y_m\}$ of $H_2(M)$ such that $i_{1*}(y_j) = 0$, $j = 1, \dots, m$, and $i_{1*}(G_x)$ is a direct summand of $H_2(V)$, where $G_x = \langle x_1, \dots, x_m \rangle$.

The standard 4-manifold M determines the standard 5-manifold V' with $\partial V' = M$. Consider an exact handle decomposition $V' = h^0 \cup h_1^2 \cup ... \cup h_m^2$ and the induced canonical handle decomposition of M with a canonical basis $\{a_1, b_1, ..., a_m, b_m\}$. Let $i'_{2*}: H_2(M) \to H_2(V')$ be a homomorphism induced by the natural embedding $i'_2: M \to V'$. Then $i'_{2*}(b_j) = 0$, j = 1, ..., m, and $i'_{2*}(G_a) = H_2(V')$, where $G_a = \langle a_1, ..., a_m \rangle$. Consider an automorphism ϕ_* of $H_2(M)$, which acts on the basis $\{a_1, b_1, ..., a_m, b_m\}$ as follows: $\phi_*(a_j) = x_j$, $\phi_*(b_j) = y_j$, j = 1, ..., m. By the Wall theorem [4], the homomorphism ϕ_* can be realized by a diffeomorphism ϕ of M. Consider a closed 1-connected 5-manifold $W = V \cup_{\phi} (-V')$. Let $v = v \in A$

Lemma 1. $H_3(W)$ is a free group of rank m + n.

Proof. Since the embedding of pairs $(V, M) \rightarrow (W, V')$ is cutting out and $W = V \cup (-V')$ with $\partial V' = M$, one can write out the Mayer-Vietoris sequence for $W = V \cup (-V')$. Since $H_3(M) = 0$ and $H_3(V') = 0$, this sequence is as follows:

$$0 \to H_3(V) \to H_3(W) \to H_2(M) \xrightarrow{i_*} H_2(V) \oplus H_2(V') \to H_2(W) \to 0. \tag{2}$$

The homomorphism i_* in sequence (2) is defined as a pair $(i_{1*}, -i_{2*})$, where $i_{2*} = i'_{2*} \varphi_*^{-1}$. From the definition of the basis $\{x_j, y_j^*; j = 1, ..., m\}$ of $H_2(M)$, we see that $H_2(M) = G_x \oplus G_y$ and $\ker i_{1*} = G_y$. Since

$$\varphi_*^{-1}\{x_j, y_j; j=1, \ldots, m\} = \{a_j, b_j; j=1, \ldots, m\}$$

and Ker $i'_{2*} = \langle b_1, \ldots, b_m \rangle$, we see also that $\ker i_{2*} = G_y$. As a result, we have a short exact sequence obtained from (2): $0 \to H_3(V) \to H_3(W) \to G_y \to 0$, where $H_3(V)$ is a free group of rank n and G_y is a free group of rank m. Thus, $H_3(W) = H_3(V) \oplus G_y$ is a free group of rank n+m and the lemma is proved.

Since V' is given with an exact handle decomposition $V' = h^0 \cup h_1^2 \cup ... \cup h_m^2$, we have $W = V \cup_{\varphi} (-V') = V \cup \overline{h_1^3} \cup ... \cup \overline{h_m^3} \cup \overline{h^5}$, where $\overline{h_j^k}(W) = h_j^{5-k}(V')$, $j = 1, ..., m, \ k = 3, 5$. By Lemma 1, each $\overline{h_i^3}$ determines a free generator of $H_3(W)$. Consider the dual decomposition $W \simeq -W = V' \cup_{\varphi} (-V) = h^0 \cup h_1^2 \cup ... \cup h_m^2 \cup_{\varphi} (-V)$, where each 2-handle h_j^2 , j = 1, ..., m, determines a free generator of $H_2(W)$. This defines naturally an embedding $\varphi' \colon V' \to W$ with $\overline{W \setminus \psi'(V)} \simeq V$. The induced homomorphism $\psi'_* \colon H_2(V') \to H_2(W)$ is an embedding, which maps isomorphically $H_2(V')$ with a basis $\{u'_1, ..., u'_m\}$ onto a summand of $FrH_2(W)$. For $M = kS^2 \times S^2 \# (m-k)S^2 \times S^2$ with k = 0, 1, we can prove the following lemma:

Lemma 2. If k = 1, then there exists a free generator $u \in H_2(W)$ with $w^2(u) \neq 0$. If k = 0, then there exist m free generators $\{u_1, \ldots, u_m\}$ of $H_2(W)$ with $w^2(u_i) = 0$, $j = 1, \ldots, m$.

Proof. If k=1, then, in the exact handle decomposition of V', there is a 2-handle attached along the embedding of its α -tube, which corresponds to the element $1 \in \pi_1(SO_3) \cong \mathbb{Z}_2 = \{0, 1\}$. The core of this handle determines a cycle $u' \in H_2(V')$, which is realized by a 2-sphere \tilde{u}' with a nontrivial normal bundle in V'. Then u' is a free generator of $H_2(V')$ with $w^2(u') \neq 0$. The embedding $\psi' \colon V' \to W$ defined above maps \tilde{u}' into 2-sphere $\tilde{u} \subseteq W$, which realizes a free generator u of $H_2(W)$. The tubular neighborhood of \tilde{u} can be chosen to be lying in $\psi'(V')$. Therefore, this neighborhood also is a nontrivial normal bundle in W and $w^2(\tilde{u}) \neq 0$. In the case where k=0, the proof is similar and can be omitted.

For a closed 1-connected 5-manifold W, consider a minimal w^2 -b-basis of $H_2(W)$ [5]. This basis can be chosen so that it contains all free generators $\{u_j = \psi_*'(u_j'); j = 1, \ldots, m\}$ of $H_2(W)$. The Barden decomposition theorem [5] determines an exact handle decomposition of W corresponding to a given minimal w^2 -b-basis. By Lemma 1, there are $m + n \ge m$ summands of type M_∞ or X_∞ in this decomposition. By Lemma 2, for k = 0, the number of summands M_∞ is not less than m and, for k = 1, there are the only summand X_∞ and not less than m - 1 summands M_∞ . Thus, W = W' # W'', where W' and W'' admit exact handle decompositions and W' is $X_\infty \# (m-1)M_\infty$ if k = 1 (i.e., $M = S^2 \times S^2 \# (m-1)S^2 \times S^2$) or mM_∞ if k = 0 (i.e., $M = mS^2 \times S^2$). It is easy to see that $W' = V_1' \cup_M (-V_2')$, where $V_1' \cong V_2' \cong V'$ and V_2' is glued to V_1' along a diffeomorphism of M. W' admits an exact handle decomposition with the 2-skeleton V_1' and dual 2-skeleton V_2' . $H_2(V_2') = (u_1, \ldots, u_m)$, where $u_j = \psi_*'(u_j')$; $j = 1, \ldots, m$, and $\{u_i', i = 1, \ldots, m\}$ are free generators of $H_2(V')$ determined by the exact handle decomposition of V'.

Define an embedding $\psi''\colon V'\to W$ as follows: $\psi''(V')=V_1'\subset W'\subset W$. It induces an embedding $\psi_*''\colon H_2(V')\to H_2(W)$ such that $\psi_*''(H_2(V'))=H_2(V_1')$. The manifold W and, hence,

$$\overline{W \setminus \psi''(V')} = \overline{W \setminus V_1'} = \overline{(W'' \# W') \setminus V_1'} = V_2' \notin \overline{W'' \setminus D^5} \simeq V' \notin \overline{W'' \setminus D^5}$$

admits an exact handle decomposition with geometric incidence indices [6]. If we find a diffeomorphism θ of W such that $\psi'' = \theta \psi'$, the proof of Theorem 2 will be completed, because $V \cong \overline{W \setminus \psi'(V')} \cong \overline{W \setminus \psi''(V)}$.

Each of the manifolds V', V'_1 can be regarded as a tubular neighborhood in W of a boquet of m 2-spheres. By the Haefliger theorem [7], every two 2-spheres embedded into a closed 1-connected 5-manifold W are isotopic in W iff they are homotopic in W. Since

$$\psi'_*(H_2(V')) = \psi''_*(H_2(V')) = H_2(V'_1) = \langle u_1, \dots, u_m \rangle$$

and W is 1-connected, the boquets of m 2-spheres for V' and V'_1 are homotopic and, therefore, isotopic in W. Then V' and V'_1 are isotopic in W. Each isotopy of W in codimension ≥ 3 can be made ambient [8]. This provides the desired diffeomorphism θ of W. Thus, the proof of Theorem 2 is completed.

Corollary 2. Each 1-connected 5-manifold V with a standard boundary M

is diffeomorphic to the band connected sum of a closed 1-connected 5-manifold (without the standard D^5) and a standard 5-manifold. The second summand is determined by the boundary M and the first one is determined by the linking form

$$b: H_2(V) \times H_2(V, M) \to \mathbb{Q} / \mathbb{Z}.$$

Theorem 3. Every 1-connected 5-dimensional cobordism (V, M_0, M_1) with standard ends admits an exact handle decomposition with geometric incidence indices.

Proof. The natural embedding $i_1: M_1 \to V$ induces the homomorphism $i_{1*}: H_2(M_1) \to H_2(V, M_0)$. First, we prove that there is the decomposition $H_2(M_1) = G_x \oplus G_y$, the same as in the previous case, with

$$G_x = \langle x_1, \dots, x_{m_1} \rangle$$
 and $G_y = \langle y_1, \dots, y_{m_1} \rangle$

such that $i_{1*}(G_y) = 0$ and the intersection form $Q(M_1)$ in the basis $\langle x_1, y_1, \dots, x_{m_1}, y_{m_1} \rangle$ is

$$k \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \oplus l \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

where $k+l=m_1$ and k is either 0 or 1. To show this, consider a manifold $\hat{V}=$ = $V_0 \cup_{id_{M_0}} V$, where V_0 is a standard 5-manifold with the boundary M_0 . Using Corollary 1, we choose G_r , G_v for $H_2(M_1)$ and a homomorphism $\hat{i}_*: H_2(M_1) \to$ $\rightarrow H_2(\hat{V})$ induced by the embedding $\hat{i}: M_1 \rightarrow \hat{V}$. Since the embedding $(V, M_0) \rightarrow$ \rightarrow (\hat{V}, V_0) is cutting out, there is an isomorphism $\chi: H_2(V, M_0) \rightarrow H_2(\hat{V}, V_0)$. We have $i_{1*} = \chi^{-1} j \hat{i}_*$, where $j: H_2(\hat{V}) \to H_2(\hat{V}, V_0)$ is a homomorphism from the exact homological sequence of the pair (\hat{V}, V_0) . Therefore, we have $i_{1*}(G_v) = 0$. Thus, we can consider a manifold $\hat{W} = V \bigcup_{\Phi_1} (-V_1)$, where V_1 is a standard 5manifold with the boundary M_1 and the diffeomorphism φ_1 of M_1 is constructed in the same way as in the proof of Theorem 2. We have the embedding $\psi_1: V_1 \to \hat{W}$ determined by the construction of \hat{W} . By using M_1 instead of M and the pair (\hat{W}, \hat{W}) M_0) instead of W in the relative Mayer-Vietoris sequence (2), we can prove Lemma 1 for $H_3(\hat{W}, M_0)$. Assuming that $-\hat{W} \simeq \hat{W}$, we see that $\psi_1(V_1)$ determines a free summand of $H_2(-\hat{W})$. Since $-\hat{W}$ is a 1-connected 5-manifold with the standard boundary M_0 , by Theorem 2, it admits an exact handle decomposition. We choose a canonical embedding $\psi_1': V_1 \to \hat{W}$ such that $\psi_1'(V_1)$ determines the same free summand of $H_2(-\hat{W})$ as that determined by $\psi_1(V_1)$. By using the Haefliger theorem in the same way as in the proof of Theorem 2, we can prove that imbeddings ψ_1 and ψ'_1 are ambiently isotopic in \hat{W} . So, we can remove V_1 from preserving the exact handle decomposition. Thus, the proof is completed.

Corollary 3. Every 5-dimensional h-cobordism with standard ends is trivial. Corollary 3 immediately follows from Theorem 3.

This gives a series of smooth h-cobordisms between 1-connected smooth 4-manifolds satisfying the h-cobordism conjecture. In general, as was proved by Donaldson

[9], this conjecture for smooth 1-connected 4-manifolds is not true.

3. An example of applications.

Lemma 3 [8]. Every 1-connected cobordism (W, M_0, M_1) of dimension $n \ge 5$ is invertible. The inverse cobordism is $(-W, M_1, M_0)$, i.e., $(-W) \bigcup_{id_{W_0}} W \cong M_1 \times$ \times [0, 1].

Let M be an arbitrary 1-connected 4-manifold of signature 0. There is a standard 4-manifold M' with the same intersection form. By the Wall theorem [10], there is an h-cobordism (W, M', M).

Theorem 4. The h-cobordism (W, M', M) between a 1-connected 4-manifold M of signature 0 and the corresponding standard 4-manifold M' is unique

up to a diffeomorphism.

Proof. Let (W_1, M', M) and (W_2, M', M) be h-cobordisms between M and M'. Consider the h-cobordism $V = W_2 \bigcup_{id_M} (-W_1) \bigcup_{id_M} W_1$. By Lemma 3, $(-W_1) \cup_{id_{M'}} W_1 \simeq M \times [0, 1]$, therefore, we have $V \simeq W_2$. On the other hand, V' == $W_2 \cup_{id_M} (-W_1)$ is an h-cobordism with standard ends diffeomorphic to M'. By using Corollary 3, we obtain $V' = M' \times [0, 1]$. Hence, $V = W_1$ and, thus, $W_2 = W_1$.

Fig. 1.

- Husemoller D., Milnor J. Symmetric bilinear forms // Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin etc.: Springer Verlag, 1973. Band. 73. P. 1–147.
- 2. Hirzebruh F. Topological methods in algebraic geometry. - New York: Springer Verlag, 1966. -267 p.

3. Kirby R. The topology of 4-manifolds // Lect. Notes Math. - 1989. - 1374. - 108 p.

Wall C. T. C. Diffeomorphisms of 4-manifolds // J. London Math. Soc. - 1964. - 39. - P. 131-140. 4.

Barden D. Simply-connected five-manifolds // Ann. Math. - 1965. - 82. - P. 365-385.

- *Shkol' nikov Yu. A.* On handle decomposition of 1-connected 5-manifolds. I, II // Укр. мат. журн. 1993. **45**, \mathbb{N}° 8. C. 1151–1156; \mathbb{N}° 9. C. 1282–1288.
- Haefliger A. Plongements differentiables de varietes dans varietes // Comment. Math. Helv. 1961. 36, № 2. P. 47–82.
- Rourke C. P., Sanderson B. J. Introduction to piecewise linear topology // Ergebnisse der Mathematik und ihrer Grenzgebiete. – Berlin etc.: Springer Verlag, 1972. – Band. 69. – 306 p. 9. Donaldson S. Irrationality and h-cobordism conjecture // J. Diff. Geom. – 1987. – 26. – P. 141–168. 10. Wall C. T. C. On simply connected 4-manifolds // J. London Math. Soc. – 1964. –39. – P.
- 141-149.

Received 12.06.92 Revised 16.02.94