Pham Ky Anh, doct. phys.-math. sci. (Univ. of Hanoi, Vietnam)

ON THE COORDINATED APPROXIMATION METHOD FOR NONLINEAR ILL-POSED PROBLEMS

A generalization of the method of coordinated approximation suggested by Yu. Gaponenko [1] for the space $L_2(0, 1)$ is developed for abstract Hilbert spaces. In particular, it is shown that, for $L_2(0, 1)$, some assumptions concerning an exact solution can be weaken.

Наведено узагальнення на абстрактний простір Гільберта узгодженої апроксимації, запропонованої Ю. Л. Гапоненком для простору $L_2(0,1)$. Зокрема, показано, що для $L_2(0,1)$ деякі умови відносно точного розв'язку можуть бути послаблені.

1. Introduction. Consider the operator equation

$$A(u) = f, (1)$$

where A is a possibly nonlinear operator over a real Hilbert space H. Suppose that, for an exact right-hand member f, problem (1) has an exact solution u^* , satisfying the a priori estimate

$$||u^*|| \le R. \tag{2}$$

If the right-hand member $f_{\delta} \in H$ differs from f at most by δ , i.e., $||f_{\delta} - f|| \le \delta$, then we are interested in a regularization method for finding approximate solutions $u_{\delta} = R_{\delta}(f_{\delta})$ such that the rate of convergence $u_{\delta} \to u^*$ $(\delta \to 0)$ can be effectively estimated.

The coordinated approximation method. For the case where $H = L_2[0, 1]$, Gaponenko [1] suggested the method of coordinated approximation under the hypothesis that the exact solution $u^*(t)$ satisfies an a priori estimate

$$|u^*(t)| \le R \quad \forall t \in [0, 1]. \tag{3}$$

Gaponenko's constructive method uses many special properties of $L_2[0, 1]$ and is complicated enough, so even its extension to the multidimensional case $L_2(G)$, where $G \subseteq \mathbb{R}^n$, is rather difficult. Therefore, it may be interesting to describe a general scheme of the method of coordinated approximation in abstract Hilbert spaces. Besides, it will be shown that, when $H = L_2[0, 1]$, Gaponenko's hypothesis (3) can be replaced by the weaker assumption (2). Moreover, when $u^*(t)$ is smooth enough,

- **2. Weak convergence in Hilbert spaces.** Let (X_1, X_0, H) be a triple of spaces, where $(X_1, \|\cdot\|_1)$, $(X_0, \|\cdot\|_0)$ are real separable Banach spaces and H is a real Hilbert space with a scalar product $\langle \cdot, \cdot \rangle$ and the corresponding norm $\|x\| = \langle x, x \rangle^{1/2}$. Further, suppose that X_1 is densely, continuously, and compactly imbedded in X_0 , and X_0 is densely and continuously embedded in H, i.e.,
 - i) $\forall x \in X_1 \Rightarrow x \in X_0$, $\|x\|_0 \le C_1 \|x\|_1$; $\forall x \in X_0 \Rightarrow x \in H$, $\|x\| \le C_0 \|x\|_0$;

ii)
$$\forall \ x \in X_0 \ \exists \ \{x_n\} \subset X_1 \colon \|x_n - x\|_0 \to 0, \ n \to \infty;$$

$$\forall \ w \in H \ \exists \ \{w_n\} \subset X_0 \colon \|w_n - w\|_0 \to 0, \ n \to \infty;$$

the convergence of regularized solutions can be improved.

iii) every set bonded in the norm of X_1 is relatively compact in X_0 .

We introduce in H a variational norm

$$||x||_{V} = \sup \{\langle x, v \rangle : v \in X_{1}; ||v||_{1} \le 1\}, x \in H.$$
 (4)

The following theorem shows that the weak convergence in H can be described by means of the variational norm (4):

Theorem 1. A sequence $\{x_n\} \subset H$ converges weakly to $x \in H$, $x_n \to x$, if and only if the following two conditions hold:

$$\exists R > 0: ||x_n||, ||x|| \le R, \quad \forall n \ge 1,$$
 (5)

$$||x_n - x||_V \to 0, \quad n \to \infty.$$
 (6)

Proof. 1) Suppose that $(x_n \to x)$, $n \to \infty$. Then the sequence $\{x_n\}$ is bounded by a constant R. Since $||x|| \le \underline{\lim} ||x_n|| \le R$, condition (5) is satisfied. By definition (4), we can choose $\{v_n\} \subset S_1 = \{x \in X_1 : ||x||_1 \le 1\}$ and $\varepsilon_n \to +0$ such that

$$||x_n - x||_V = \sup_{v \in S_1} \langle x_n - x, v \rangle \le \langle x_n - x, v_n \rangle + \varepsilon_n.$$
 (7)

Since $|\langle x_n - x, v_n \rangle| \le ||x_n - x|| ||v_n|| \le 2RC_0C_1 ||v_n||_1 \le 2RC_0C_1$, the sequence $\{\langle x_n - x, v_n \rangle\}$ is compact. Let l be an arbitrary limit point of $\langle x_n - x, v_n \rangle$. Then there exists a subsequence $\langle x_{n_k} - x, v_{n_k} \rangle$ convergent to l. Since $S_1 \subset X_0$ is compact, we can select a convergent subsequence $v_{n_k} \to v \in X_0$. Taking into account that $\langle x_{n_k}, -x, v \rangle \to 0$ because $x_{n_k}, \to x$ and

$$\left\langle x_{n_{k'}} - x, v_{n_{k'}} - v \right\rangle \leq \left\| x_{n_{k'}} - x \right\| \left\| v_{n_{k'}} - v \right\| \leq 2RC_0 \left\| v_{n_{k'}} - v \right\|_0 \to 0,$$

we get $\langle x_{n_k}, -x, v_{n_k} \rangle = \langle x_{n_k}, -x, v \rangle + \langle x_{n_k}, -x, v_{n_k}, -v \rangle \to 0$. Thus, we have

$$l = \lim_{k} \langle x_{n_k} - x, v_{n_k} \rangle = \lim_{k'} \langle x_{n_{k'}} - x, v_{n_{k'}} \rangle = 0.$$

Since l is an arbitrary limit point of $\langle x_n - x, v_n \rangle$, it follows that $\langle x_n - x, v_n \rangle \to 0$ and (7) implies (6).

2) It is evident that X_1 is dense in H; hence, $\forall v \in H \exists \tilde{v} \in X_1 \ (\|\tilde{v}\|_1 = r)$: $\|v - \tilde{v}\| \le \delta(r)$, where $\delta(r) \to 0$, $r \to +\infty$. Suppose that $\|x_n - x\|_V \le \varepsilon_n$, where ε_n is a sequence decreasing monotonically to zero. For any fixed $v \in H$, we choose $v_n \in X_1$ such that $\|v_n\|_1 = \varepsilon_n^{-1/2}$ and $\|v_n - v\|_V \le \delta(\varepsilon_n^{-1/2})$. It follows from

$$\begin{split} \langle x_n - x, v \rangle &= \langle x_n - x, v_n \rangle + \langle x_n - x, v - v_n \rangle \leq \\ &\leq \varepsilon_n^{-1/2} \langle x_n - x, \varepsilon_n^{1/2} v_n \rangle + 2R\delta(\varepsilon_n^{-1/2}) \leq \\ &\leq \varepsilon_n^{-1/2} \| |x_n - x||_V + 2R\delta(\varepsilon_n^{-1/2}) \leq \varepsilon_n^{1/2} + 2R\delta(\varepsilon_n^{-1/2}) \to 0, \quad n \to \infty, \end{split}$$

that $x_n \to x$. Theorem 1 is proved.

3. Finite dimensional approximations. Suppose that X_0 and H possess a common basis $\{e_i\}_1^{\infty} \subset X_0$. Without loss of generality, we can assume that $\langle e_i, e_j \rangle = \delta_{ij}$, $i, j \geq 1$. Consider a bounded linear projection $P_N \colon H \to X_0$ defined by

$$P_N x = \sum_{i=1}^N \langle x, e_i \rangle e_i.$$

Since $\{e_i\}$ is a common basis of X_0 and H, we have

$$\forall x \in H \quad || (I - P_N)x || \to 0, \quad N \to \infty, \tag{8}$$

$$\forall x \in X_0 \quad \| (I - P_N)x \|_0 \to 0, \quad N \to \infty, \tag{9}$$

where I is the identity operator. Further,

$$||P_N x||_0 \le \sum_{i=1}^N |\langle x, e_i \rangle| ||e_i||_0 \le \left(\sum_{i=1}^N ||e_i||_0 \right) ||x|| = \tilde{C}_N ||x||.$$

Thus,

$$||P_N x||_0 \le \tilde{C}_N ||x||.$$
 (10)

Theorem 2. For any $x \in H$, the following estimate holds:

$$\|(I - P_N)x\|_V \le C_0 \varepsilon_N \|x\|, \tag{11}$$

where $\varepsilon_N \to 0$, $N \to \infty$.

Proof. Since

$$\begin{aligned} \left| \left\langle x - P_N x, v \right\rangle \right| &= \left| \left\langle x - P_N x, P_N v + v - P_N v \right\rangle \right| &= \left| \left\langle x, v - P_N v \right\rangle \right| \le \\ &\le \left\| x \right\| \left\| \left(I - P_N \right) v \right\| \le C_0 \left\| x \right\| \left\| \left(I - P_N \right) v \right\|_0 \end{aligned}$$

for every $x \in H$ and $v \in S_1 = \{v \in X_1 : ||v||_1 \le 1\}$, we have $||(I - P_N)x||_V \le C_0 \varepsilon_N ||x||$, where

$$\varepsilon_N = \sup_{v \in S_1} \| (I - P_N)v \|_0.$$

Since $\|(I-P_N)v\|_0 \to 0$ for every $v \in X_0$, we have $\|(I-P_N)\|_{X_0 \to X_0} \le C$ by the Banach-Steinhauss theorem. Further, because $S_1 \subset X_0$ is compact, for any $\varepsilon > 0$, there exists an $\varepsilon(2C)^{-1}$ -finite net of S_1 , denote it by $\{v_1, v_2, v_m\}$, such that $\forall v \in S_1 \exists v_i : \|v-v_i\|_0 \le \varepsilon(2C)^{-1}$. On the other hand, there exists $N = N_0(\varepsilon)$ such that

$$\forall \, N \geq N_0 \quad \left\| \, (I - P_N) v_i \, \right\|_0 \, < \, \frac{\varepsilon}{2}, \quad i \, = \, 1, \, 2, \, \ldots \, , \, m.$$

By combining the last two inequalities, we have

$$\begin{split} \forall \, v \in S_1, \ \forall \, N \geq N_0 \quad \big\| \, (I - P_N) v \, \big\|_0 \leq \\ \leq \, \big\| \, (I - P_N) v_i \, \big\|_0 \, + \, \big\| \, (I - P_N) (v - v_i) \big\|_0 \leq \frac{\varepsilon}{2} \, + \, C_{\varepsilon/2C} \, = \, \varepsilon. \end{split}$$

Thus, $\varepsilon_N \to 0$ as $N \to \infty$. Theorem 2 is proved.

In what follows, we suppose that $\{e_i\}_1^{\infty} \subset X_1$. Then

$$\begin{split} \|P_N x\|_0 & \leq \sum_{i=1}^N \|\langle x, e_i \rangle| \, \|e_i\|_0 \, = \, \sum_{i=1}^N \|e_i\|_0 \, \|e_i\|_1 \, \left| \left\langle x, \, e_i / \|e_i\|_1 \right\rangle \right| \, \leq \\ & \leq \, \left(\sum_{i=1}^N \|e_i\|_0 \|e_i\|_1 \, \right) \|x\|_V \, \equiv \, C_N \|x\|_V. \end{split}$$

Thus, we get the important inequality

$$\forall x \in H \quad \|P_N x\|_0 \le C_N \|x\|_V. \tag{12}$$

Let $S = \{x \in H : ||x|| \le R\}$. Since S is a bounded closed set in the Hilbert space H, it is weakly compact. By Theorem 1, $(S, ||\cdot||_V)$ is a compact metric space.

By setting

$$S_N = P_N(S) = \left\{ x_N = \sum_{i=1}^N \langle x, e_i \rangle e_i \colon x \in S \right\},$$

and

$$S_N^{(L)} \ = \ \left\{ \, x \, = \, \sum_{i \, = \, 1}^N \, c_i e_i, \, ||x|| \, \leq \, R; \ c_i \, \in \, \left\{ \, \, 0, \, \, \pm \frac{R}{NL}, \, \, \dots \, \, , \, \pm \frac{(NL-1)R}{NL}, \, \, \pm \, R \, \, \right\} \, \right\},$$

we obtain the following result:

Lemma 1. $S_N^{(L)}$ is a $C_0R(\varepsilon_N + C_1L^{-1})$ -finite net for the compact set $(S, \|\cdot\|_V)$.

Proof. First, we note that, by Theorem 2, $||x-x_N||_V = ||x-P_Nx||_V \le C_0R\varepsilon_N$. Further, since $|\langle x,e_i\rangle| \le ||x|| \le R$, we can choose $C_i^{(L)}$ from the finite set $\{0,\pm R/NL,\ldots,\pm R\}$ such that $|C_i^{(L)}-\langle x,e_i\rangle| \le R/NL$ and $|C_i^{(L)}|<|\langle x,e_i\rangle|,\ i=1,2,\ldots,N$. Now let

$$x_N^{(L)} = \sum_{i=1}^N C_i^{(L)} e_i$$

A simple calculation shows that $||x_N^{(L)}|| \le R$, we have

$$\| x_N^{(L)} - x_N \|_V = \left\| \sum_{i=1}^N \left(C_i^{(L)} - \langle x, e_i \rangle \right) e_i \right\|_V \le$$

$$\le \sum_{i=1}^N \| C_i^{(L)} - \langle x, e_i \rangle \| \| e_i \|_V \le \frac{R}{NL} \sum_{i=1}^N \| e_i \|_V.$$

Since $\langle e_i, v \rangle \le ||e_i|| ||v|| \le C_0 ||v||_0 \le C_0 C_1 ||v||_1 \le C_0 C_1$ for any $v \in S_1 = \{v \in X_1 : ||v||_1 \le 1\}$, we get $||e_i||_V \le C_0 C_1$; hence, $||x_N^{(L)} - x_N||_V \le C_0 C_1 R L^{-1}$ It is clear that $S_N^{(L)}$ is a $C_0 R(\varepsilon_N + C_1 L^{-1})$ -finite net for $(S, ||\cdot||_V)$. Indeed, for any $x \in S$, there exists $x_N^{(L)} \in S_N^{(L)}$ such that

$$\| x_N^{(L)} - x \|_V \le \| x_N^{(L)} - x_N \|_V + \| x_N - x \|_V \le C_0 R(\varepsilon_N + C_1 L^{-1}). \tag{13}$$

Definition. $x_N^{(L)}$ is called a projection of $x \in S$ onto $S_N^{(L)}$.

- **4. Coordinated approximation method.** In this section, we suppose that the nonlinear operator $A: H \rightarrow H$ satisfies the following hypotheses:
- h1) \mathcal{A} is a one-to-one and strongly continuous mapping (i.e., if $x_N \to x$, then $\mathcal{A}x_N \to \mathcal{A}x$);
- h2) The modulus of continuity of \mathcal{A} in the compact set $(S, \|\cdot\|_V)$ is supposed to be known, $\|\mathcal{A}(v_1) \mathcal{A}(v_2)\| \le \omega(\|v_1 v_2\|_V)$, $\forall v_1, v_2 \in S$;
 - h3) The exact solution u^* of problem (1) satisfies the a priori estimate (2).

First, we choose the regularization parameters $N = N(\delta)$ and $L = L(\delta)$ from the conditions

$$\omega(C_0 R\left[\varepsilon_N + C_1/l\right]) > \delta \quad \text{ for } \quad n = 1, ..., N-1, \ l = 1, ..., L-1, \eqno(14)$$

$$\omega(C_0 R[\varepsilon_N + C_1/L]) \le \delta. \tag{15}$$

It is obvious that $N(\delta), L(\delta) \to +\infty$ as $\delta \to 0$.

Let $W(\delta) = \{v \in S_N^{(L)}: ||\mathcal{A}(v) - f_{\delta}|| \le 2\delta\}$, where $N = N(\delta)$ and $L = L(\delta)$ are the regularization parameters defined above.

Lemma 2. The set $W(\delta)$ is nonempty and $W(\delta) \to 0$ as $\delta \to 0$.

Proof. Denote by $u_N^{(L)}$ a projection of $u^* \in S$ onto $S_N^{(L)}$. It follows from (13) and (15) that

$$\begin{split} \|\, \mathcal{A}(u_N^{(L)}) - f_\delta \| & \leq \|\, \mathcal{A}(u_N^{(L)}) - \mathcal{A}(u^*) \| \, + \, \|f - f_\delta \| \, \leq \\ & \leq \, \omega \big(C_0 R \left[\varepsilon_N + C_1 / L \right] \big) \, + \, \delta \, \leq \, 2\delta. \end{split}$$

Thus, $u_N^{(L)} \in W(\delta)$. Since $\mathcal{A}: (S, \|\cdot\|_V) \to \mathcal{A}(S)$ is a one-to-one and continuous mapping on the compact set $(S, \|\cdot\|_V)$, by the Tikhonov's lemma [3], the inverse operator $\mathcal{A}^{-1}: \mathcal{A}(S) \to (S, \|\cdot\|_V)$ is continuous. Let $\overline{\omega}(t)$ be the modulus of continuity of \mathcal{A}^{-1} , i.e., $\|\cdot\|_{\mathcal{A}^{-1}}(f_1) - \mathcal{A}^{-1}(f_2)\|_V \le \overline{\omega}(\|f_1 - f_2\|)$, $f_1, f_2 \in \mathcal{A}(S)$, where $\overline{\omega}(t) = \overline{\omega}(t, R) \to 0$ as $t \to 0$ and R is fixed. Since $\|\mathcal{A}(v) - \mathcal{A}(\tilde{v})\| \le \|\mathcal{A}(v) - f_\delta\| + \|\mathcal{A}(\tilde{v}) - f_\delta\| \le 4\delta$ for any $v, \tilde{v} \in W(\delta)$, we have $\|v - \tilde{v}\|_V \le \overline{\omega}(4\delta)$. Thus, diam $W(\delta) \le \overline{\omega}(4\delta) \to 0$, $\delta \to 0$.

Now we are ready to prove the main theorems.

Theorem 3. Suppose that all hypotheses h1)-h3) are satisfied. Then, for every $w^{\delta} \in W(\delta)$, the following estimate holds:

$$||w^{\delta} - u^*||_V \leq \operatorname{diam} W(\delta) + C_0 R \left(\varepsilon_{N(\delta)} + C_1 / L(\delta)\right) \equiv \mu(\delta, R).$$

Proof. For any $w^{\delta} \in W(\delta)$, we have $\|w^{\delta} - u_N^{(L)}\|_V \le \text{diam } W(\delta)$. It follows from Lemma 2, estimate (13), and the last inequality that

$$\begin{split} \parallel w^{\delta} - u^{\star} \parallel_{V} &\leq \parallel w^{\delta} - u_{N}^{(L)} \parallel_{V} + \parallel u_{N}^{(L)} - u^{\star} \parallel_{V} \leq \\ &\leq \operatorname{diam} W(\delta) + C_{0} R\left(\varepsilon_{N(\delta)} + C_{1} / L(\delta)\right) \leq \\ &\leq \overline{\omega} \left(4\delta\right) + C_{0} R\left(\varepsilon_{N(\delta)} + C_{1} / L(\delta)\right) \rightarrow 0, \quad \delta \rightarrow 0. \end{split}$$

Let $w_k^{\delta} = P_k w^{\delta}$ and $u_k^* = P_k u^*$ be the finite dimensional approximations of w^{δ} and u^* , respectively.

Theorem 3 and estimate (12) lead us to the following practically useful relation:

$$||w_k^{\delta} - u_k^*||_0 \le c_k ||w^{\delta} - u^*||_V \le c_k \{ \operatorname{diam} W(\delta) + C_0 R [\varepsilon_{N(\delta)} + C_1 / L(\delta)] \}.$$

Theorem 4. In addition to hypotheses h1)-h3), assume that $u^* \in X_0$. Then $||u^{\delta}-u^{*}||_{0} \to 0, \ \delta \to 0, \ \text{where} \ u^{\delta}=P_{k}w^{\delta}, \ \text{and} \ K=K(\delta) \ \text{satisfies the relations}$

$$C_k \mu(\delta,R) \leq 1/k, \quad k = \overline{1,k}, \quad C_k \mu(\delta,R) > 1/k, \quad k = K+1.$$

Proof. It is clear that $K = K(\delta) \to \infty$ as $\delta \to 0$. By letting $u_K^* = P_K u^*$, we have

$$||u^{\delta} - u^*||_0 \le ||u^{\delta} - P_K u^*||_0 + ||P_K u^* - u^*||_0.$$

Since $u^* \to X_0$, we have $||P_K u^* - u^*||_0 \to 0$, $\delta \to 0$. Further, by (12),

 $\|\,u^{\delta} - P_K u^*\|_0 \, = \, \|\,P_K(w^{\delta} - u^*)\,\| \, \leq \, C_K \|\,w^{\delta} - u^*\,\|_V \, \leq \, C_{k(\delta)} \mu(\delta,R) \, \leq \, 1 \, / \, K(\delta).$ Thus.

$$||\; u^{\delta} - u^* \,||_0 \, \leq \, 1 \, / \, k(\delta) \, + \, ||\, P_{k(\delta)} u^* - u^* \,||_0 \to 0, \quad \delta \to 0.$$

Now let us return to the case $H = L_2[0, 1]$. Define $X_0 = H_0^m[0, 1]$ to be a subspace consisting of all functions u(t) in $C^{m-1}[0,1]$ with $u^{m-1}(t)$ absolutely continuous on [0, 1], $u^{(m)} \in L_2[0, 1]$, and $u^{(i)}(0) = u^{(i)}(1)$, $i = \overline{0, m-1}$. Then X_0 is a Banach space with the norm

$$||u||_0 = \sum_{i=0}^{m-1} \max_{0 \le t \le 1} |u^{(i)}(t)| + \left(\int_0^1 |u^{(m)}(t)|^2 dt\right)^{1/2}.$$

Further, denote by X_1 the space $C_0^l[0, 1]$ of *l*-times continuously differentiable functions satisfying the boundary conditions: $u^{(i)}(0) = u^{(i)}(1)$, $i = \overline{0, l}$. Let

$$||u||_1 = \sum_{i=0}^{l} \max_{0 \le t \le 1} |u^{(i)}(t)|.$$

Suppose that $l \ge m + 1$. Then X_1 is continuously and compactly imbedded in X_0 and X_0 is continuously imbedded in H. By using well-known facts on Fourier series [2], we can prove that the common basis of X_0 and H consists of trigonometric functions, which also belong to X_1 ,

$$\{e_n\}_{n=0}^{\infty} = \{1, \sqrt{2} \sin 2\pi nt, \sqrt{2} \cos 2\pi nt\}.$$

Hence, X_1 is dense in X_0 and X_0 is dense in H. By applying Theorems 3 and 4 we come to the following conclusions:

- 1. The method of coordinated approximation is still convergent if estimate (3) is replaced by the weaker assumption (2).
- 2. If the exact solution $u^*(t)$ is smooth enough, i.e., $u^* \in H_0^m[0, 1]$, then the regularized solutions u^{δ} converge to u^{*} in the norm of $H_{0}^{m}[0,1]$.
- Gaponenko Yu. L. Ill-posed problems on weakly compact sets. Moscow: Moscow Univ., 1989. Kolmogorov A. N., Fomin S. V. Elements of the theory of functions and functional analysis. -Moscow: Nauka, 1972.
- Tikhonov A. N., Arsenin V. Y. Solutions of ill-posed problems. Washington: Winston-Willey,

Received 02.12.92