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ON THE COORDINATED APPROXIMATION METHOD
FOR NONLINEAR ILL-POSED PROBLEMS

A generalization of the method of coordinated approximation suggested by Yu. Gaponenko [1] for the
space JL2 (0, 1) is developed for abstract Hilbert spaces. In particular, it is shown that, for L4 (0, 1),

some assumptions concerning an exact solution can be weaken.

Hapeneno ysarasibHenns Ha aberpakThuit npoctip IinpBepra y3romxeHol anpokcumallii, 3anponoHo-
panoi 0. JI. Tanonenkom ais npoctopy L, (0, 1). 3okpema, nokasano, o ans L, (0, 1) neski ymo-

BH BIJIHOCHO TOYHOI'O PO3B'A3KY MOXYTb Oy TH nociabsieHi.
1. Introduction. Consider the operator equation

A(u) = f, ()
where A is a possibly nonlinear operator over a real Hilbert space /. Suppose that,

for an exact right-hand member £, problem (1) has an exact solution u*, satisfying
the a priori estimate
la*]| € R. (2)
If the right-hand member f; € H differs from f at most by 8, ie., ||f5—FIl < &,
then we are interested in a regularization method for finding approximate solutions
us=R5(f5) such that the rate of convergence ugz— u* (8- 0) can be effectively
estimated.
The coordinated approximation method. For the case where H = L, [0, 1],

Gaponenko [1] suggested the method of coordinated approximation under the
hypothesis that the exact solution " (r) satisfies an a priori estimate

|u* (1) < R Vie [0, 1]. (3)

Gaponenko’s constructive method uses many special properties of L, [0, 1] and is
complicated enough, so even its extension to the multidimensional case L,(G), where

G € R", is rather difficult. Therefore, it may be interesting to describe a general
scheme of the method of coordinated approximation in abstract Hilbert spaces.

Besides, it will be shown that, when H = L,[0, 1], Gaponenko’s hypothesis (3) can

be replaced by the weaker assumption (2). Moreover, when " (¢) is smooth enough,
the convergence of regularized solutions can be improved.

2. Weak convergence in Hilbert spaces. Let (X,, X, H) be a triple of spaces,
where (X, l-ll;). (X, l-ll,) are real separable Banach spaces and H is a real
Hilbert space with a scalar product (-,-) and the corresponding norm || x| = (x,
x)1/2. Further, suppose that X, is densely, continuously, and compactly imbedded in
Xy. and X, is densely and continuously embedded in H, i.e.,

i) Vxe X, =xe X“‘ lxly < Cilixll;s Vxe Xy=x€ H, |lx|| £ Cyllxlly:
ii) Vxe X, I{x,}CX;: |lx,~x[ly >0, n oo
Vwe H3I{w,}CTX;: [lw,~wll; >0, n > e

iii) every set bonded in the norm of X, is relatively compact in X,
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We introduce in / a variational norm _
lxly = sup{(x,v): ve X;; lvll, < 1}, xe H. 4

The following theorem shows that the weak convergence in H can be described by
means of the variational norm (4);

Theorem 1. A sequence {x,}C H converges weakly to x€ H, x,—>x, if
and only if the following two conditions hold:

AR > 0: |lx, Il IxI SR VYn>1, 5)
lx,=x|ly =0, n—eo. (6)

Proof. 1) Suppose that (x, —x), n — . Then the sequence {x,} is bounded
by a constant R. Since ||x|| < lim||x,|| € R, condition (5) is satisfied. By definition
(4), we can choose {v,} €S, = {xe X;: |Ix|, <1} and €, —>+0 such that

lx,—xll, = sup {x,—x,v) < {x,—-x,v,) + €, ™

veS;
Since |{x,—x, v,)| < |[x,—x|lllv,]l € 2RC,C, ||v,]l; € 2RCyC,, the sequence
{{(x,—x,v,)} iscompact. Let ! be an arbitrary limit point of {x, —x,v,). Then there
exists a subsequence (x,,k—x, ”m) convergent to /. Since §; C X, is compact, we
can select a convergent subsequence v,,—ve€ X, Taking into account that

(x,,k,—x,v) — 0 because x,,,— x and
(X =20y, =) < |lx = x|llv,, -2l < 2RC|v,,,—v]ly— O,
we get (x,,—x.v,.) = (x,. - xv)+(x,.—xv,,-v) - 0. Thus, we have
l = li{n (xﬂk—x, vn‘> = likl’n (xnk,—-x. v,;‘,) = 0.

Since ! is an arbitrary limit point of {x,, —x, v,), it follows that {x, -x,v,)— 0 and
(7) implies (6).

2) Itisevident that X, isdensein H; hence, Yve H 3 be X, (|| o], =r):
[lv-9|| < 8(r), where 8(r)— 0. r — +oo. Suppose that ||x, —x|}, < €,, where
€ is a sequence decreasing monotonically to zero. For any fixed v € H, we choose

n
v, € X, suchthat ||v,]l, = e/ and v, =vlly < 8(e;"?). It follows from

(x,—x,v) = (x,—x,v,) + {x,—x,v—-v,) <
< €% (x,~-x. /%) + 2R8(e;"?) <
< £ | x, — x|} + 2R8(e;}?) < €Y% + 2R8(€M?) 50, n— oo,

that x, — x. Theorem 1 is proved.

3. Finite dimensional approximations. Suppose that X, and H possess a
common basis {e;}]" € X,,. Without loss of generality, we can assume that (e,
‘";'> = 5-1-, i,j 2 1. Consider a bounded linear projection Py : H— X, defined by

[}
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N
PNI - Z (x. e;)f.’:.

i=1
Since {e;} isacommon basis of X, and H, we have
VxeH ||(I-Pyx||-0, N-w, (8)
VxeX, |[-Pyx|l,—0, N— oo, ©)

where [ is the identity operator. Further,

N N 5
I Pyxllo < 2 IKx eplllelly < {Zle;IOJII-rII = Cyllxll

i=1 i=1
Thus,
| Pyxllo < Cylixll . (10)

Theorem 2. For any x € H, the following estimate holds:

N -Pyxlly < Coenllxll, (1)
where gy — 0, N — oo, '
Proof. Since
[(x=Pyx,v)| = [(x=Pyx, Pyo+v-Ppv)| = [{x,v-Pyv)| <

< il =pPy)vll < CollxIlI F=Py)wllo

forevery xe H and ve S, = {ve X;: ||[v|[; €1}, we have ||(/-Py)x]|ly <
< Coenllx|l, where

€y = sup ” U_PN)‘{“U'
PESI

Since || (/-Py)v|lp = 0 forevery v e X,, we have || U&PN)“X[,—*Xn < C by the
Banach-Steinhauss theorem. Further, because §; C X, is compact, for any €>0,
there exists an €(2C)™ '-finite net of S;, denote it by {v,,v,,v,}, such that

Vve §; v lv-vllp € £(2C)"'. On the other hand, there exists N = Ny(g)
such that

VN2N, [lI-Pyv;lle < % i=12...,m

By combining the last two inequalitics, we have

Vve S, VN2Ny |lU-Pyvlly <

< NI=Pyvillo + 1T -Py)@-v)llo <

| m

+ Ct‘,!ZC = E.
Thus, gy — 0 as N — oo. Theorem 2 is proved.
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In what follows, we suppose that {e;}” € X;. Then

N N
IPyxllo < 3. 1w edllielly = X e lollell [(x e:/tei)] <
i=1 i=1

N
< [z||e;|[,||e;||.}||x||v - cylixlh
i=1

Thus, we get the important inequality
VxeH |Pyxllo < Cyllxlly. (12)

Let S = {xe H: ||x||<R}. Since § is a bounded closed set in the Hilbert space H,
it is weakly compact. By Theorem 1, (S, || ||V) is a compact metric space. !
By setting

N
Sy = Py(S) = {XN = Z(x,e;)e,-: xES},

i=1
and

N

R L (NL-DR
sb = = <R; ¢ {0, e e g, tR} ;
N {x Y e llx]l € N N

i=1
we obtain the following result:

Lemma 1. S isa CGR(£N+C1L_1)-ﬁm're net for the compact set
(S, 11 ly)-

Proof. First, we note that, by Theorem 2, ||x—xy |}, = [[x—Pyx|l < CoRey.
Further, since |[(x, ¢;)| < || x| < R, we can choose C'¥ from the finite set {0,
+R/NL, ... ,+R} suchthat | CY’ —(x,¢;)l < R/NL and | CP| < [{x, e, i=1,
2,...,N. Now let :

N .
P = 3 oD,
llz]
A simple calculation shows that || x§” || < R, we have

Il 2§ —xnlly = ”2 (P —(x.e))e I <
v

i=1
N
< Yl <xe)|||e|!vS—ZIIe||v

i=1 i=1
Since (e, v) < |lgllllvll < Cyllvlly < CoCyllvlly € CoC; for any v e S, =
= {ve X;: |lv|l, <1}, we get |l¢lly < C,Cy; hence, || x4 —xylly < CoC,RL™"
It is clear that S”“) isa C{,R(eN+C,L_l)-ﬁnite net for (S, || |ly). Indeed, for any
xe S, there exists x’ € Sy such that

(L

I x§P —xlly < Il X —xnlly + llxy—xlly < CoR(ey+CiL™"). (13

ISSN 0041-6053. Yxp. mam. xypu., 1994, m. 46, N° 7



960 PHAM KY ANH

Definition. xg‘) is called a projection of x € § onto S}VL).

4. Coordinated approximation method. In this section, we suppose that the
nonlinear operator A: H — H satisfies the following hypotheses:

hl) A4 is a one-to-one and strongly continuous mapping (@.e., if xy—x, then
Axy > Ax); ’

h2) The modulus of continuity of 4 in the compact set (S, || |ly) is supposed to
be known, || A(v)) - A(vy)|l < o(|lv, —v,ily). Vv.v,€ S;

h3) The exact solution u* of problem (1) satisfies the a priori estimate (2).

First, we choose the regularization parameters N = N(8) and L = L(3) from the
conditions

o(CoR[ey+C/1]) >8 for n=1..,N-1LI=1..,L-1, (14)
m(CnRIEN+Cl!L]) < 8. (15)
It is obvious that N(8),L(8) = + o0 as 8 — 0.
Let W(3) = {ve S\': | A()~f5ll<28}, where N =N(8) and L =L(3)
are the regularization parameters defined above.

Lemma 2. The set W(8) is nonempty and W(8) —0 as & — 0.

Proof. Denote by uf”"'} a projection of u* € § onto S}VL}. It follows from (13)

and (15) that
| AuE) ~f51 < 1 AE) =A@ + If-£;ll <
< o(CyR[ey+C,/L]) + 8 < 23.

Thus, u,’v‘") € W(8). Since A: (S, |-lly) = A(S) is a one-to-one and continuous
mapping on the compact set (S, ||-]ly), by the Tikhonov’s lemma [3], the inverse
operator a'. A(S)— (S, |1 lly) is continuous. Let @ (¢) be the modulus of
continuity of 47", i.e., ||ﬂrl(f|)—ﬂ'l{f2)|!v <o (lf,-£1D, fi.fr€ A
where @W(#1) = ®(t, R) >0 as +t—>0 and R is fixed. Since ||[A()-A@D)] <
| A)—fsll+ 11 A@®)—f;ll < 48 forany v, D e W(8). we have [J[v-D]ly <

® (48). Thus, diamW(8) < @ (48)—> 0, § = 0.
Now we are ready to prove the main theorems.
Theorem 3. Suppose that all hypotheses h1)-h3) are satisfied. Then, for every

wde W(8), the following estimate holds:

A IA

lw®—u*|ly < diam W(8) + CyR (eye +C,/L(8)) = (S, R).

Proof. Forany w®e W(8), we have ||w®- ufvm |ly < diam W(3). It follows
from Lemma 2, estimate (13), and the last inequality that
Iw?—ully < Wl =l lly + Il uff?” =" lly <
< diam W(8) + COR(EN(8)+CIIL(8)) <
< ©(48) + CyR(ey +C /L(B)) >0, 3-0.
Let wf‘ =P, w® and u} = P,u* be the finite dimensional approximations of w

and u*, respectively.
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Theorem 3 and estimate (12) lead us to the following practically useful relation:
& * 4
Il we = uillo < cellw®=ully < e diamW(8)+ C,R [en@ +C  /L(3)]}.
Theorem 4. [ n addition to hypotheses h1)-h3), assume that u* € Xy. Then
| u®—u*]lg >0, 80, where u®=P,w®, and K=K(8) satisfies the relations

Ci(8,R) < 1/k, k=T1k, Cu@BR)>1/k k=K+1.

Proof. Ttis clear that K = K(8) > as 8 — 0. By letting ug =Pgu*, we
have

5
ul=ully < |lu®=Pxutlly + Il Pxu* —u* llo.
Since u* — X, we have || Pgu*—u*|[o = 0, 8 > 0. Further, by (12),

| u®=Pgutlly = | Pxw®—u”)|| < Cxllw®—ully < Cp5)u(8,R) < 1/K(3).
Thus,
Nub=ullo < 1/k@) + | Pegyu"~u*llo > 0. 8-0.

Now let us return to the case H = L,[0, 1]. Define X, = Hy'[0, 1] to be a

m-1

subspace consisting of all functions u(t) in Cm_l[O, 1] with &™ 7" {z) absolutely

continuous on [0, 1], ™ e L,[0, 1], and u20) = u(1), i=0,m—1. Then X
is a Banach space with the norm

m—1 1 " 1/2
- . 0} (m) e "
= E m D] + N dr .
"H”n = Us:igllu ( )I [.”H ()I }

Further, denote by X, the space Cﬂ [0, 1] of /-times continuously differentiable

functions satisfying the boundary conditions: u”(O) = u')(l) i=0,1. Let
Il = 2 max a0

Suppose that /= m + 1. Then X, is continuously and compactly imbedded in X, and
X, is continuously imbedded in H. By using well-known facts on Fourier series [2],
we can prove that the common basis of X, and H consists of trigonometric functions,
which also belong to X, ,

le.}o_o = {1 VZsin2mnt, V2 cos2mnt}.

Hence, X, isdensein X, and X, is dense in H. By applying Theorems 3 and 4 we
come to the following conclusions:

1. The method of coordinated approximation is still convergent if estimate (3) is
replaced by the weaker assumption (2).

2. 1If the exact solution u*(r) is smooth enough, i.e., u* € Hy'[0, 1], then the

5

regularized solutions x#° converge to «* in the norm of H{'[0, 1].
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