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A RELATION BETWEEN TWO RESULTS CONCERNING
ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

CHIBBIITHOIUEHHS MIZK IBOMA PE3YJIbTATAMH
PO W1 ®YHKIIT EKCIIOHEHIIAJIBHOTO THITY

It is shown that the Beurling — Malliavin multiplier theorem for the entire functions of exponential type
can be derived from certain estimates for polynomials on the complex plane.

n(‘le3-1“0 IO Teopesa B OPIIIHI a — Manasina npo 51)’JII'IIHI AiKa H)pll AR AKX ib\lil(ll]ﬂ CKCNO-
HEHIllaIbHOTO THITY MOXC 5} TH BHBEICHA 3 .1(‘5"(“1& OUIHOK MOJIHOMIR HI KOMILICKCHIA NAOUIHHI.

The sum Z_” log*| P(n)|/(1 + n*) may be regarded as a discrete analog of the in-

tegral jm (log*]P(fH/(] 4 .'3')) dr. Tt is well known that the size of a polynomial

P (=) is controlled on the whole complex plane by the fatter expression: it is thus not
oo serprising that, with suitable precautions. the former one can also be used for the
same purpose. The following theorem is indeed true:

Theorem. There exist numerical constants N o >0 and k such that, for any
polynomial P (z) with z:ﬁ log*|P(m)|/(1 + n*) =1 € N the relation | P(z)] <

< Cyn e ElL holds for all complex = with Cy depending on W but not on P.

This result can be found in [1, p. 520]. In this book. the restriction to small valucs
of n > 0 is indeed necessary, as is shown by examples. For even polynomials P (z)
with P(0) = I. atheorem of this sort was already published in 1966 (sce [2]), and the
main work is in the proof for this case. From there. the passage to general polynomials
is rather casy. Treatment of the special case is straightforward in principle, but made
intricate by various technical difficulties.

The establishment of the result was originally motivated by a desire to deduce from
it a new proof of the multiplier theorem due to Beurling and Malliavin [3]. However,
up to now, this project has not been realized. The purpose of the present article is to

- demonstrate the method of deduction. In passing. we shall obtain some auxiliary pro-
positions of independent interest.

[ thank Henrik Pedersen for having drawn my attention to some mistakes and ob-
scuritics in a preliminary version of this paper,

1. Extension of the Result to the Entire Functions of Small Exponential Type.
The idea of such an extension is proposed as Problem 24 in [1. p. 518]: there, the
reader is asked to imitate the proof of the result for polynomials. One can also, how-
ever, arrive at the extension directly.

Lemma. Let f(z) = nr (] - :3;‘?&.). where A >0, is of exponential type o
Pl Bt Mo b daanss 1 Bapsnss T
Then, for all sufficiently large integers N, fy(z) = nl,‘sN (1=2%/23) satisfies

+ Co + ofl).

o log’| fu(m)] < log"| f(n)]
Vil pEa bl S
0 n- 1 n-
Here, C is a numerical constant and the term o(1) tends to zero as N —» oo,
Proof. Let v(r) denote the number of Ay (counting multiplicities) in (0, 7] and
set vy(t) = vty =v(N) for 12N with vy (1) = 0 for 0<r<N. The last function

is. in fact. zero on an interval [0, N + g€), where €> 0.
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We have
1-x2/e2 td\'N{r)_

log| fy(m)| = log| f(x)| - [ log
N

Integration by parts converts the right-hand side to

T " Wy
log| f(x)| + J —5—3—-1_;—-&;!!
N = t
because V(1) is O(+) for large . Here, the integral — call it gy (x) — is positive
and increasing for 0 £ v <N, so
N-I ; N
S ’QN(;” < 4 J “‘N({l}d,\'.
X~

n
1 0

and

N-1 N-1 . 4 N
log* FAQIE log* | f(m)] en(x)
2 ——— 4 4 | 2. (n
j .\-— ‘

2= :
1 n | n

Since f(z) isof exponential type o the standard application of Jensen's formula
gives v(1)/t < ea+ o(l) for t = e (see [1.p. 5], problem 1). Thence

1 J
QN{‘) _[ j , = vh“} dtdy =
£° 2_ 42
1] 0N
T val) t+N|dt _ w°
: log — < —(ea + o(l)). (2)
-[ ! " =N |1t 4 (e ‘

=

with the term o(1) tending to zero as N — oo, (We have used the relation

]’m(u \dt _ = )
i IJ 1 4
(Ing+|fN(n)|)I;:2. note that

N \_'2
log|fy () = _[u log 1_3

is increasing for v > N: hence, in [N, =), log|fy (x)| is 20 exactly on an interval of
the form [x,,. ). whére x, = N. Let M be the first integer > x,. Then, by virtue of

To estimate Z:
Hdv(r)

the fact that log | fy (x)| increases on [N, o),
= log'|fv(m] _ i log| fiy (m)] "

% ;;“ - M n-

T log| fy ()] i v dv
4 j e 1 s el 7 4j j log ['-,,- - 1]4\1:)-;,.
X~ & X

MO

<

M
The last expression, after doing its inner integral by parts, become
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M
The first term is

V2

2

4v(N) [ 1og [ﬁ;

4v(N) T
-'—'N— J log(§2 —1)?

ds

P. KOOSIS

< (dea + o(D) log(3 +2v2)

with o(1) tending to zero as N — o=. The second term is

N
V(1
4 _[ Tj log
0

M
—H'Mlﬁ < 4IEI0g
t—-M|1 5 t

T+

r+ M
t-M

di
14

l|dt

T —

7= = n(ea + o(1)),

where o(1) also tends to zero as N — = (because M =N and

_:[ log(

Thus,

i log*| fy(n)|

2
N n

1+ T
-1

dt n?
|5 =2

< (m% + 4log(3+2v2))(ea + o(1)).

Combining this with (2) and (1) yiclds the lemma.
Theorem. Let f(t) be an entire function of exponential type . Suppose that

log*| f(n)] _

oo

27

1+

n-

Provided that 0. and M are both less than a certain numerical constant ¢y, we

have, for all z,

Uf(‘-_-)} & Cmni’"‘:‘*““:l

with a numerical constant X and Cqy  depending on o and n but not on f.
Proof. First, let f(z) be even and have only real zeros and let f(0) = 1. Then

the condition in the hypothesis makes ZT (log*| f(n)|)/ n* < 21; so. by the lemma,

o0 +
Z lgg—L'gY—@-M < Ca+ 2n+ ey (withgy 50 as N > o)

1 n

[orthe polynomials fy (z) considered there. Thence,

o log*| fy(n)
Z | N F <

—oa

l+n

2Co + 4n + 2ep:
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hence, if 2Co +4mn is less than the number 1, appearing in the theorem cited in the
introduction, we have, by that result. for sufficiently large N,

IfN{:)I < Ke|2CC!+4I]+2€N}k|:[

with K depending only on 2Ca + 4n + 2ey. Letting N — co, we get an estimate of

the desired form f(z).
When f(z) is even and equal to one at the origin but with complex zeros, we can
construct the even function g(z) with real zeros having the same moduli as those of

f. and g(0) = 1. Then g(z) is of exponential type and, indeed, |f(z)| < |g(@i |z])].
whereas [g(x)| < |f(x)| on R. Therefore. the result just obtained implies that g(z)
and, hence, f(z) satisfy the required inequality when the hypothesis holds for f.

In the general case, we may take f(z) to be real on R since both f(z)+ f(Z)
and (f(z)— f(Z))/2i have that property. Then. for any 7 > 0. onc has a constant

M;, such that z:ﬁ (log u(n))/ (1 +n2) < 3n for u(z) equal either to

1+ 2(f(z) + f(=2)% /My orto 1+ (f(z) - f(=2))%/ My

whenever the hypothesis holds for f (for details. sec [1, p. 519 —522]). Both these
functions «(z) are entire, of exponential type < 2o, even, and equal to 1 at the ori-

gin. Consequently, when m and o are small enough. our estimate holds for them .
An estimate of the same form then holds for f(z). The thecorem is proved.

2. A Weak Multiplier Theorem. The principal result of this section is contained
in the following lemma:

Lemma. Let f(z) be an entire function of exponential type o with
[ Gogt 1 £/ (1 + 42 dx < .

If o is sufficiently small, then there exists an entire function ¢(z) £ 0 of expo-
nential type <m with |Q(x)| and |f(x)@(x)| bounded on R.

Proof. We prove this lemma by using the Fourier analysis and duality. We first
reduce our situation to the case of an entire function ¢(z) with modulus =1 on R,
having all its zeros on 7z < 0. For this purpose. let G(z) = f(z) f(Z): this function is
entire, of exponential type <2a, and 21 (sic!) on R. We also have
Jm (log G(x)/ (1 +x2))dx <oo: thus, by the well-known Akhiezer theorem (see [1.
p.55-58: 4, p. 125, 132: 5. p. 567]). one can write G(z) = g(z)g(Z) with g(z) be-
ing an entire function of exponential type < o (the same on the upper and lower half
plancs, see [1, p.66]). and having all its zeros on 7 : <0. Since |g(x)] =

-Jl + |f( X)* on R, the lemma will follow if we can construct an entire function
¢(z) £ 0 of exponential type <7 with |@(x)g(x)| bounded on R.

We have _[j (log|g(x)]/(1 +x2))dx < =, whence, for 7-> 0,

logle()| ,

log ¢ ()] < afz + IJ|~—r|2

and, similarly, for x € R,
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1 7 log|e(t+i)
lo X)) €a+ — dt
glg ()l ﬂlu_” =
(see [1.p.38,47-52;4,p.92,93; 5, p. 311]). Substituting x = n into the second re-
lation, dividing by 1+ n2, and adding, we find, by using the first formula and the rela-

tion 3" 1/((t=n?+1)(n2+1) < const/(r2+1), that

oo

z lOglg(n” < oo, (3)
1+ n°

—

with log|g ()] =2 0 on R.

Denote the zeros of g(z) by A;: we have JA, <0 foreach k, and. without loss
of generality, the A, may be taken as distinct. Indeed. if this is not so, we may split
each multiple zero A, of g(z) into simple ones very close 1o it (by adding different
small negative imaginary quantities to A, without, however, altering the correspond-
ing exponential factors in the Hadamard factorization of g) and then, after multiplica-

tion by a suitable constant, the new function will have the modulus = lg(x)| on R
and still satisfy (3). This new function can then be used instead of g (z) in what fol-
lows.

I say that if o (the type of f(z)) is small enough, the e
in Ly(-m, ). Foreach A, the P has, on (-m. ®), the Fourier series

M cannot be complete

i (-1)" sinmA, 1 o

S n =N
Therefore, if the exponentials were complete in L (—m, 1), the functions of » equal
10 (=1)"/(A,—n) and, hence, those equal to 1/(A, —n) would, by Parseval’s the-
orem, be complete in 1,(2).

But this cannot be true when o is small. Otherwise. there would be a sequence of
finite sums s, (n), each of the form Zk a,/ (A —n). such that s, (n) —— &(n)
in I,(Z) (the Kronecker 8 isequalto 1for n = 0 andto O for n # 0). Each
s,(n) canbe expressed as g, (n)/g(n) with an entire function g, (z) of exponential
type <a; g,(z) is obtained by dividing g(z) by the factors A, —z corresponding to

the denominators in the sum s,(n) and then multiplying the quotient by the other lin-
ear factors, fewer in number. We thus have

Y (e (m)/ gm) = 8w)}> —— o.

This implies, firstly, that |g,(n)]| <const|g(n)| on Z and, secondly, by dominated
convergence, the definition of &(n), and (3), that

L] +
$ log'le,/sO] __,

5
1 + n° r

—on

For small a 2 0, this and the theorem in Section 1 imply that | g, (z)] =
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(B
aa
L

< Ky| g (0)]ex¥Izl when r is large. Here. K is a numerical constant, Y may be taken
to be any number >a. and K, depends only on y. A subsequence of g, (z) thus
tends to an entire function /(z) of exponential type < Ky with h(n) = 8(n)g(0) on
Z. This, however, is impossible for Xy < 1/e. since h(z)/g(0). although 1 at 0,
would vanish atevery n # 0 in Z (sec the proof of the lemma in Section 1). This
means that, for small o, the ¢ are not complete in Ly (—m, m), as claimed.

. & . o 3
In this case, we have a nonzero W(r)e L,(-n. 1) with _[ Py WY(t)dt =0 at
P -

each A;. The function y(:z) = J"tK ¢“"\P(1)d1. entire. of exponential type < m, and

#£ 0. Thus. it vanishes at each zero of g(z). sotheratio @(z) = w(z)/g(z) is entire
and of exponential type by the Lindelof theorem [1.p.22]. On R, this ratio is boun-
ded (for w(x). thisis elearly true) and | g (v)]2 1. We can thence conclude that
¢(z) is.in fact, of exponential type < m (sec [4. p. 127: 5, p. 207 — 208. 315. 605]).
The product @(x)g(x) = y(x) is bounded for real x: therefore, in view of y(x) £ 0,
the theorem is proved.

Remark. The following observations (prompted by a question of Peter Jones)
really fall outside the scope of the present discussion but their inclusion here is perhaps
nevertheless worthwhile.

Given any W(n)21 such that me (log W(m /(1 +n2)) < e, there are c,, not

all zero, with E:., le, | Win) <ee (and, hence, in particular, |c,| <const/ W(n)).

such that Z:ﬂ ¢, ¢ vanishes on the interval —h <A < h, where h> 0.
Verification of this fact uses the idea from the proof presented above, There is no
1oss of generality in supposing that W(n) — e for n — *eo, since otherwise, one
may replace W(n) by (1 +n?)W(n) in what follows.
If h>0 is small enough, the finite lincar combinations of e /W (n) with —h <
< A< h cannot be uniformly dense in Cy(Z). Otherwise. there would be a sequence
of finite sums ¢, (). each of the form 2_ e

aye™ . with g _(n)/W(n) tending

hshsh

to 8(n) (the Kronecker 8-function) uniformly on 2 as r — oo. From this, one ar-
rives at a contradiction for small /1> 0 by arguing just as in the proof given above but
using the condition on log W(n) instcad of (3).

Since W(n)— o as n— too, the result just established gives us, by duality, a
sequence of b,,. not all zero, with Z: | b, ]| <eo and Z:., (e™{W(n)b, =0 for
—h <A < h. Our statement thus holds with ¢, =b,,/W(n).

Suppose now that we have this sequence {c¢,}. Let us construct a complex
measure |t on Z by setting pu({n}) =c¢,. Taking the convolution of gt with the func-
tion A(x) = max (I —4|x[.0). we obtain a nonzero u (x) in Ly(—eo, co), vanishing
on each interval n + } Sx<sa+ %. ne 2, and with | < const/W(n) if

o e
lx—n| < % for such n. The Fourier transform J ™y (x)dx also vanishes for

—h <A < h.
No regularity of W (n) is required for these results under the condition that

37 (logW(n)/ (1 +n?))dx < oo.
One can give a necessary and sufficient condition on W (n) 2 1 for the conclusion
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of the statement given above to ﬁold. This condition is not altogether explicit, and we
restrict our discussion to the functions W(n) tending to = as n — *eo in order to
save time.,

Givenany h >0, we let W,(z) denote. for each complex :z, the supremum of
|@(z)| for the entire functions @(z) of exponential type < h, bounded on the real
axis and with |@(n)/W(n)| <1 for ne 2.

Provided that W (n) 2 1 tends to o as n — too, a sequence of c¢,. not all
zero and with 2: lc,| W(n)<ee and z:’ c, e'" vanishing on an interval of
positive length, exists if and only if Z:., (log Wy, (n)/ (1 + n?)) < e for sufficiently
small values of h>0.

Proof of the sufficiency is similar to that of our first observation: it suffices to note
that the functions g (=) appearing therein actually satisfy (by definition!) the relation

|g,(n)| <constW,(n) for ne Z.

The necessity follows from classical results. If a sequence {c,} having the stipu-
lated properties exists, the function Z:.,Cﬂ e'na ¢ink yunder a suitable choice of the
parameter a, vanishes on the interval —h < A <h, h > 0; finite linear combinations
of ¢'»/W(n) with A from this interval are, therefore. not uniformly dense in  C(2).

A result of Mergelian [1, p. 174], thence, implies (a fortiori!) that r (log Wy, (x)/ (1 +

+ x2))dx < e, From this, one can easily derive, by using the argument similar to that
in [1, p. 523 —524], that Z: (logW,, (n)/ (1 + n*)) <eo. (Cf. the proof of (11) in
Section 4 below and the proof of (3).)

3. A Lemma on Poisson Integrals. Assume that, in the lemma in Section 2, one

can take the type a of f(z) to be arbitrarily large. This gives the Beurling — Mal-
liavin theorem on the multiplier. Such an extension is possible. For this purpose, we
need a result concerning the Poisson integral

J:zUW)

|z — ¢

dr

. |
U(:):;J'

—on

constructed, for Jz >0, from a positive function U (1) % 0 with [~ (U(1)/(1+

+12))dt < oo,
Forecach xe R and y >0, the ratio U(x + iy)/y is a strictly decreasing function

of y tending (by dominated convérgcncc) to 0 as y — oo. Given any fixed a >0,

there exists, hence, a definite Y(x) 20 suchthat U (x+iy)<ay for y > Y(x), while

U(x+iy)2ay for 0<y<Y(x) (it is possible that Y(x)=0 if U(r) vanishes at x ).
The set

D, = {(x,y) y>Y(x)}

is thus a domain on the upper half plane and Q, = {7z 20} ~ D, is a closed region
lying above and on the real axis, whose interior may consist of several components,

Concerning €2, we get the important lemma from [6].

Lemma (Beurling and Malliavin, 1967). For a >0, we have
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dxdy

For the reader’s convenience, we sketch the proof. Fixing a, consider the function
V(z) = aJz-U(z), harmonic and >0 in D, and zero on its boundary y =Y (x).
Fix any y,>0, for which V (iyy) > 0.

For each r > Y (0). there exists an open arc o(r) of the circle |z| = r lying enti-
rely in D, with endpoints on the curve y = Y (x) and on the opposite sides of the y-

axis. The union of these o(r) is a domain D < D, (perhaps properly). We set
Q = {7220} ~D. Then Q > Q, and we proceed to show that Hg dvdy/(1 + 1% +
+ y2) < oo, which implies the lemma.

If R >y, wedenote by D(R) the partof D lying within the arc o (R) making
Yo € D(R). The harmonic function V(z) is <aR on 6(R) and zero on the rest of
dD(R): thus, we have

V(iyp) € aRwgG(R). iy, 4

where ®g( , ) is a harmonic measure for D(R).

Writing r@(r) for the length of & (r)., we have, by the Ahlfors—Carleman rela-
tion 7, p. 102),

R
dr
W (G(R).iyy) < ste -T :
R (O(R).1yy) £ cons pr[ _[ rﬁ(r)]
Yo
The endpoints of every arc o (r) arc of the form rei®v) and re!®-v0D) with @ (r)
and y(r) both 20 and <m/2. Thence, 6(r) = T — @(r) — y(r), and we can usc

the relation 1/6(r) 2 1/1+ (@(r)+y(r))/n? when estimating the integral to the
right. In this way, we obtain

R
_ const y; 1y (o) + w(r))
5 el A it W s e P -
Wp (G(R).iyp) < — CXP[ % J p ar |

¥o

The integral here is just _U dedy [ (x2 + y2): so.if Hnd,rdy/{l +x2+

QN {yo<lzI<R}
+ y2) = oo, we must have Wp(G(R),iyy) = o(1/R) as R — . Substituting this into
(4), we get V(iyg) = 0, arriving at a contradiction. The lemma is proved.

4. Construction of Two Majorants. We now take any fixed entire function F(z)
of exponential type with |F(x)|=1 on R and -j“ (log | F(x)[/(1 + x2))dx < oo,
The function log|F (x)| is then continuously differentiable and, indeed, real analytic
at the points x € R. There is no loss of generality in supposing that all the zeros of
F(z) liecon Jz<0 [1,p.54:4, p.90], and this property is henceforth assumed.

We first show how to construct, for any h> 0, a majorant W(x) of |F(x)| with
[log W(x)—logW(x’)| < hjx—x’| on R and also j_” (log | W(x) /(1 + x2)) dx < oo,

Let us start by considering the open set

O = {xe R; log|F(&)| - log|F )| > h(E-x) forsome &> x}.
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outside of which dlog|F (v)|/dx is everywhere <h: O is a finite or countable union
of disjoint open intervals. All of these intervals must have finite length because, other-

wisc. there would be a sequence of &, tending 1o = with liP'u inf (log|[FE) /& = h.
iy

and this would contradict the well known fact that the functions F (=) under consider-
ation have zero exponential growth along the real axis [1, p. 174: 4, p. 97: 5. p. 315].

We thus have O = U, /; with the disjoint finite intervals [, = (ay. b). Their con-
struction is best visualized by imagining the parallel rays of light. all of slope h. shin-
ing downwards upon the graph of log|F (v)| vs .v. Certain disjoint portions of this
graph will thus be cast in shadow, and the intervals 7, lic precisely under these.

From this observation. it is clear that. for cach I, = (a,. by). we have

log|F(b)| = log|F(ay)| + hib,—ap). (5

Let us now define a function ®, (x) by sctting

log| F(v)| for ve O,
o, (v) = ]

log| Flag)| + hx — ap) if ap < x <by.
Then o, (x) is continuous, piccewise smooth, and = log | F (v)] on R. All the dis-
continuitics of @/, (x) are at the left endpoints a, of the intervals of  O: elsewhere,
o, (x) existsand is € h. Atany «a;. both o) (q-) and ®©f (a;+) exist. with the
former equal to the derivative of log | F(x)| at a, and. hence. < h: the latter is
cqual to h.

In addition. we have the following lemma:

Lemma.

j Md_\' < oo,

1 + x~
—Cy

Proof. Since F (z) has all its zeros on 7z < 0. we may just as well assume
| F(x+iy)| tobean increasing function of y =0 for each rcal x: in any case. this
will be so if we replace F(z) by e “*F(z) with sufficiently large ¢ > 0. (This can
be verified by the logarithmic differentiation of the Hadamard product: sce [4, p. 226:
5.p.457].)

We have

_[ W, (x) s I log| F(x)] P

Hence, it is only necessary to show that

dy < oo,

_[ W, (x)

0I+,\

For this purposc. we apply the lemma in Section 3 to the function

o

= L
U(-}—n_[

J=log| F(1)|

|'*'f|2 dr,

harmonic and (without loss of generality) strictly positive in 7z > 0. Note that, for a
suitable choice of the number A >0, we have
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log|F(z)] = A9z + U(z) (6)
on the same half plane (see [1, p.47:4,p.92; 5, p.311].

Consider an arbitrary interval I = (a. b;). Since log|F (b, + iy)| increases for
y >0, we have

U(bk+ !'_)'k) > %IOglF(bi)! = A Yi

for
Y = ﬁlogl!’(bk)l (7
by (6). From (5). we get Ay, = h(b — a;)/2: hence, the Harnack theorem gives
us a constant ¢ dependingon h and A with
Ulx+iy) 2 cAy, for  a. <x < by
The rectangle of height y, with a base on the interval I, belongs, therefore. to the set

€, appearing in the lemma in Section 3 if a is taken equal to cA. By this lemma, we
thus have

%4 (hd)
2]}t e

When a; 20, the denominator in the corresponding integral appearing on the left

is, by virtue of (7), <1 + bf 4 {log|F(bk}|}z,MA2 < 1 + const bf. F(z) being of
exponential type. Referring again to (7). we sec that

(b — a;) 108|r(bk)1
8
GEU 1+ bA =

This and (5) imply, in particular, that z >0 (by—ap?/(1+ !)f) < eo, but then there
can only finitely many b, =21 with by > 2a;. Thence, by (8).

¥ (b - amogIF(b;)I
1 + ﬂk

b 21

Therefore, by the definition of ®, (x). we get

o, (x
b3 I—L)’rd-\' < oo,
= 1+ x°
L= A
The corresponding sum over the /;, with g, < —1 seems to be convergent. and the
remaining [, (if there arc any) lie on [-1, 1], where ®,(x) is certainly bounded.
Thus,

o, (x) 3 o, (x)
dx = —-i-d_)_ < oo
'[[ 1 + x? i 7 1 + x

k

The lemma is proved.
Our next step is to obtain a continuous piecewise smooth ®_(x) = log|F (x)|
with both ®”(x-) and ®”(x+), being not less than —h, by analogy with the con-
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struction of @, (x). We may obtain the function @_(x) even by applying the latter

procedure directly to log | F (—x)| instead of log|F (x)| and then changing the sign
of x. It is readily seen that

T o_(x)

7 dx < !
_“l+x

for this, it suffices to repeat the proof of the lemma with F(-Z) instead of F(z).
With ®,(x) and ®_(x) at hand. we finally take

w(y) = max (0, (x),w_(x))

and set W(x) = ¢®). Thus, we obtain the following statement:
Theorem. For the function W(x) just defined, we have

[F(x)] € W(x), xe R,

_[ log W(x) Wi
1 + x~

—o

and
| log W(x) — logW(x")| € h|x — x| on R.

Proof. The first two relations follow directly from the corresponding properties of

w, (x) and @_(x).
The last one is a geometrically evident consequence of the inequalities ®’(x) < h

and ®_(x)=-h and the definition of ®(x); let us, nevertheless, give a formal proof
in order that there be no doubt.

For any given x;, ® (xp) = max(®, (xy). ©_(xo)) is either equal to log|F (xy)|
or exceed this quantity. In the former case, ®_(xy) and ®, (xy) should be both equal
to log|F (xp)|: thus, x, lies outside the two open sets where any of the first two
functions is greater than the last one. This makes dlog|F (x)|/dx both <h and =—h

at x, (see the description of O above). At such point xp, ®©-(x+) has the same
value as the preceding derivative, while ®} (x+) is ar least as large, being, however,
< h. We see that o' (xg+) exists and lies between —h and A.

When ©(xy) > log|F (x)| and ®(x) coincides either with m, (x) or with ®_(x)
on a neighborhood of x,. ® (xy) exists and is either i or —h. The remaining possi-
bility here is that w(x) = ®_(x) for xy,—M<x<x, and ®(x)= w, (x) for yy<x<
<xp+M, where >0, Then ® (vy+) cxists and is equal to h.

The continuous function ®(x) thus has a right-hand derivative ®’(x+) at every
point x, with —h < @ (x+) < h. This implies that |®(x) —®(x")| £ h|x—x"] on R.
The theorem is proved.

The construction just carried out enables us to realize another one, interesting in its
own right.

Theorem. If F(z) is an entire function of exponential type with |F(x)| = 1

on R and jm (log F(x)/ (1 + x2))dx < oo, then there exist entire functions

H(z) of arbitrarily small exponential type with |H(x)| = |F(x)| on R and
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|~ QogH)/ (1 + x2)dy < .

Proof. Fixingany h> 0, we construct the majorant W(x) of |F (v)| having the
properties ensured by the preceding theorem and show how to obtain an entire function

H (=) of exponential type < 2k satisfying the condition imposed above on log | H (x)].
with |H (x)] = W (x) on R. The procedure has been uscd clsewhere [8, p. 302 -
303]. and we explain it here for the reader’s convenience.
We set
Q(x) = m(x2+ H(W (x)2

and then define M(zy) (for any complex =) as the supremum of |f(zy)| for the en-
tire functions f(z) of exponential type < 4. bounded on R. with

J (rm2raw)de < 1. 9)
For these f. we have [1.p.47-52:4.p.92-93:5,p.311]
og )1 < h1Jz1+ L f '—L@W (10)

hence. by (9) and the inequality between the arithmetic and geometric means, we get

. = LT Iz, (80
log £ ()| < h|Jz| + Eii:— : fog (=2 Jar.
provided that | 7z| = 1. Furthermore, we have

I 101¥|f(f+£}|
log|f(x)| <4 -

1—!)' +]

for v R. so, by the preceding relation and Fubini’s theorem,

: 1T log(Q()/m) ;
log| (0] <2k + — Jm gl YR

This holds for all f of the considered kind satisfying (9): hence, by the definition of M,

logM(x) < 2h + — | log (1 + W (1))*) ds

|
; (v —:f}2 + 4
on R and, thence,

[ 2BMD e < o, an

1 + x~

Substituting log| f(1)] < log M(f) on the right-hand side of (10). we sce, by the
last relation, that the collection of our entire functions f(z) satisfying (9) is a normal
family on the complex planc. This means that, to get the supremum M (zy). it is not
necessary to use the whole collection of the functions f; it suffices to take an arbit-
rary subset of it, dense therein in the norm
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One can now show that (M (x))2 coincides on R with an entire function of ex-
ponential type < 2h. Take any countable subset in our collection of functions f(z)
dense therein in the above-mentioned norm. By applying the Schmidt orthogonaliza-
tion process to this subset, we arrive at a complete sequence {p, (=)} of entire func-

tions of exponential type < h, bounded on R, and orthonormal for the inner product
L: (p (x)g(x) / Q(x)) dx. According to the observation just made. M (x) can be then

obtained as a supremum of finite linear combinations of p, (x) satisfying (9). From
this, a simple computation based on the Schwarz incquality shows that

M) =) |pa0)f. xe R.

Forevery N, Gy (z) = Z"‘:N Pa(z) p,(Z) is an entire function bounded on R

of exponential type < 2h. Morcover., Gy (x) < (M (x))2: thus, by an analog of (10),

log|Gy ()| < 2| J:] +

Ao

,[ | 9= Iogﬁffr)d'f (12)
& fg—af
for all N. This and (11) imply that Gy(z) form a normal family in the complex plane.

When N — e, they converge on R (1o (M (x ))3): hence. they tend everywhere to
an entire function G(z) also satisfying (12). and it can be thus readily verified that
G(z) isof exponential type € 2h. (To estimate the growth of G(:z) inside the sectors

of the form |argz| <& and |arg:z—m| <38, we first use (12) to get uniform estimates
for Gy (z) on the boundaries of these sectors and then apply Phragmén — Lindel6f

twoker to derive uniform estimates inside them.)
Since G(x) = (M(x))2, we have

[ (og Gx)/(1+x%)dy < o

by virtuc of (11).

Finally. it remains to show that a suitable multiple of (M(x))*> dominates W(x);
that is where we can use the property

[log W(x) - logW(x)| € h]x - x’]. (13)

Fixing any vy € R, we consider the test function

f(z) = Cnshm

with R, = (log W(xg)) /~2h. Since the Taylor series of cos w involves only even
powers of w, f,(z) is an entire function of exponential type h bounded on the real

axis. We have log fy(x,) < (log W(xg))/ V2. So. log|fy(x)] < logW(x) for |x—
—xgl| € Ry by (13). The same is true when |x x| > R, because then |f(v)[ <1<
< W(x). Thus. |f(x)| < W(x) on R: hence. by the definition of € (x). we get

[~ 1l 190)dx < 1.
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Thence,
1 3
M (xy) = f(){.l'(}) 2 E(W{X{)))”E

and, finally,

G(x) = M(x)? 2 i(wur))“’"-T

on R, making 4G(x) 2 W(x) 2 | F(x)| there since |F(x)| = 1. The theorem
follows if we take H(z) = 4G(z).

5. Theorem on the Multiplier.

Theorem (Beurling and Malliavin [3]). If f(z) is an entire function oferponen-

tial type and .L., (log* [£(x)|/ (1 + x2))dx <o, then, for any | >0, there exists

an entire function y(z) % 0 of exponential type <n with (1 + |f(x)|)¥(x)
bounded on R. )
Proof. Let G(z) =1 + f(z2) ﬁ: then G(z) is an entire function of exponé'm-

ial type, and G(x) =1+ |[f(x)]*>=1 on R. We also have Jm (log G(x)/(1 +

+ x2)) dx < oo. Therefore, the Akhiezer theorem, already used in Section 2, gives us an
entire function g(z) of exponential type with all its zeros on 7z <0, such that G (z) =
= g(z) g(Z). Given N >0, weset

Fid) = e(%)

F'(z) satisfies the hypothesis of the second theorem in Section 4; hence, forany h> 0,
there exists an entire function #(z) of exponential type <2h with |H (x)| 2 | F(x)]
on R and j_m (log | H (x)| /(1 + x2)) dx < oo,

Taking h >0 small ecnough, we get from the lemma in Section 2 an entire function
¢(z) £ 0 of exponential type <m with H(x)¢@(x) bounded on R. The product
F(x)@(x) is thus bounded on R and the desired conclusion holds with y(z) =
= @Mz/x). The theorem is proved. ‘

Remark. Beurling and Malliavin also proved in [3] that if W(x) > 1 has the last
two propertics enumerated in the first theorem of Section 4, then there are entire func-

tions y(z) #= 0 of arbitrarily small exponential type with W(x)wy(x) bounded on R.
At the end of [8], it was shown that this result follows from the theorem just proved;
for this purpose, the construction realized to establish the second theorem in Section 4
was used. By the first theorem in Section 4, we now see that the result just stated also
implies the theorem in the present section. These two results are thus equivalent.
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