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NEW ASPECTS OF KREIN’S EXTENSION THEORY
JESIKI HOBI ACIIEKTH TEOPIi PO3IIMPEHH KPEMHA

The extension problem for closed symmetric operators with a gap is studied. A new kind of parametr-
ization of extensions (the so-called Krein model) is developed. The notion of a singular operator plays
the key role in our approach. We give the explicit description of extensions and establish the spectral
properties of extended operators.

JocAIKYETRCH 1TPOHICMA POIMIHPEHE 3AMKHEHHX CHMETPHYHHX ONEPATOPIB i3 LIIJIMHOKIO B CHEKTPI.
PoasuHyTO HOBHA cnioci napaMeTpH3allil poatMpets (Tak 3saHa mofenk Kpeitna). Kanovosy poss y
HAUIOMY NJIXO/1 B Pac NOHATTA CHHIY/IApHOT'O onepatopa. JlaHo ABHHA ONMC po3liMpeHb | BCTa-
HOBJICHI CHEK TPaIbHI BJIACTHBOCT] PO3IIHPEHHX ONEPaTOpIB.

1. Introduction. The phenomenon of the “extension of a closed symmetric operator™,
which appeared in the works of von Neumann [35] and Friedrichs [19] and later in the
famous papers of Krein [30, 31] and was completed by the papers of Birman [8] and
Vishik [45], has been transformed into an extensive theory with numerous modi-
fications, applications, and open problems. The above-mentioned works do not only
contain fundamental results; they also have generated a series of new questions and
problems and have led to a powerful wave of publications [40 —43, 6, 37, 23, 24, 33,
36, 39, 38, 34, 20, 17, 32, 18, 10— 15, 27]. Roughly speaking, one can survey all these
papers in the following three directions: various kinds of parametrization of the exten-
sions. the properties (in particular, spectral properties) of the extended operators, and
applications. Of course, the chosen type of parametrization determines the properties
of the extended operators and the range of applications one can envelop. The original
von Neumann approach is an abstract one. it has led to general theorems [1]. More
suitable for applications is Krein’s approach which has generated a lot of imitations
with deep results [8, 23, 20, 17, 10]. The most successful approach appeared in [8, 40,
23, 20] and was developed in [17, 18. 5].

In [10], a special kind of parametrization of symmetric and self-adjoint extensions
of a given symmetric operator, the so-called Krein model, was presented. In [10] and
[11]. this model was used when solving various operator theoretical problems. In Sec-
tion 2, we show how to introduce the Krein model in a simpler way by using the so-
called singular operators.

In Section 3. we present the parametrization of the self-adjoint extensions of a sym-
metric operator via the so-calted singular perturbations and singularly perturbed oper-
ators. The basic 1dea is very simple. Every extension of a closed symmetric operator
is given by somc abstract boundary condition. We consider this condition as the per-

turbation of a certain suitable extension (the Friedrichs or Krein extension). Note that
every boundary condition is zero on . Jdense set of vectors in the original Hilbert space.
This means that the boundary condition can be represented as a singular operator or as

a singular hilinear form. The explicit properties of singular objects imply the corres-
ponding properties (for example. the spectral properties) of the extended operator. The
efficiency ot this approach is verificd by applications (sec. for example, the remarkable
monographs [ 2. 3]).

In Section 4. we investigate the point spectrum of singularly perturbed operators
and show how 1o construct a singularly perturbed operator with a given point spectrum.
We refer to [12. 17], and [32] for the related results.

In Section 5, we examine the problem of determining which types of the spectrum
the self-adjoint extensions of A may possess within (a, b). Here, A is a symmetric
operator with the gap (a, b). In other words, we present the first steps towards the in-
verse spectral theory of self-adjoint extensions of a symmetric operator.
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*
Finally. in Scection ¢ wo piosent a detailed study of singular perturbations of the

operator =A+ 1 in [-i/& 71 Ounone hand, our results in this section can be regarded as
an illustration of the previous abstract results and. on the other hand. they are of indep-
endent interest for applications in mathematical physics.

2. Models. Let A be a densely defined closed symmetric operator with equal

[}

nonzero deficiency indices in a separable Hilbert space . In what follows. we use
the standard notation for domains, range. etc.

Assume that kerA = {0} and that the inverse operator L = A" is bounded. Its
domain D(L) = R(A) is aclosed subspace in M. which we denote by R : its rangc
R(L) = D(A) is dense in H, and we denote it by . Evidently, H = R @ N,
where N = R+ = kerA”. Let Py denote the orthogonal projector in 4 onto N
and let Py be the projector on K.

Lemma 1. The operator A :Pgp—>A@. @€ D is self-udjoint in K :
Ry = R. kerA, = {0},

Proof. The domain D(Ay) = PgD is dense in K. since D is dense in .
The operator A, is correctly defined. Indecd. if Pg@ = 0. then ¢ = 0 because N N
N D = {0}. This follows from the facts that kerA = {0] and N = kerA”. Evident-
ly. A, is symmetric in K. Actually. it is self-adjoint since R (A;) = K. Hence.
Ay = {0}

Lemma 2. The restriction Pg D isan invertible operator in H.

Proof. We just have scen that P = 0. @ € D, implies ¢ =0.

Introduce the operator

F:=PyPg [ D', T:Pro—>Pye. ge D (1)
D) = D(Ay) = PgD.  R(I)CA.

Thus. I" maps & into N. Itis a densely defined operator in &_and its range is dense
in N.

Lemma 3. The operator U is singular in the following sense: For every y €
€ D(I') C R. there exists a sequence {y,} in D) such that y, — vy in K
and Ty, =0 in N.

Proof. Let ¢, € D, ¢, > ye R in H Then, clearly, Py, —»0 in N and
y, = Pge, -y in K. By the definition of I'. we have Iy, = Py @,. Hence,
My, —0 in N.

Remark 1. The operator [T is also singular in another equivalent sense [22, 29].
Forevery we D(IN). there exists a sequence { y’, } in D (") such that ] — 0
and My, — Dy

Indeed. we canset y;, = y—y,.

Lemma 4. The operator T is closed in the graph norm of A,,.

Proof. Let ¢, > ¢9€ R, ¢, € D). Agp, »he R. and T'9, -1 € N. Since
A, is self-adjoint, the vector @ isin D(Ag) and A,¢ = h. Further, since A is
hounded. we have A™'A49, =9, ®T¢, 9ATh=@®n. ic.9e DI) and T'e —n.
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Theorem 1 (Krein model). Every densely defined invertible closed symmetric
operator A in H with a bounded inverse is umquely determined by the following
three objects: .

(i) the resolution H= R ®N, N =kerA":
(i1) the self-adjoint operator Ay in R, kerAg= {0}, R(Ap) = &K

(iii) the singular operator T : R — N such that D) = D(Ay) and R() is
dense in N, which is closed in the graph norm of A,.

Proof. We have already shown that the original operator A defines R = K (A4),
N = kerA®, A, (see Lemma 1) with ker A, = {0}, and the operator I" (see (1)) with

the above stated properties. Conversely, let three objects (i)—(iii) be given. We must
show that

A:f=9@®Tp - A, ge DA @)

is an operator with the required properties. First, we prove that D(A) :={f € H|f =
=@®Ig, 0 D(Ap)) isdensein H Since I is singular, there exist f, =y, ® 'y,
such that f, -y @ 0 forany ye D(Ay). Remark 1 implies the existence of f,; =
=y, @y, suchthat f] - 0@ Ty forany y e D(Ay). However, D(Ay) is
dense in ®_and R () is dense in N. Therefore, D(A) is dense in H. Evidently, A
is closed. Indeed, let f, = @, ® '@, —f in H. This means that @, — ¢ in X for
some @. If, in addition. Af, = Ag@, - h, then ¢ € D(A) and Ay ¢ = h, since A,
is a self-adjoint operator. Hence, g = ¢ ®I'pe D(A) and Ag = Aj¢. We assert
that T, »T ¢ as ' isclosed in the graph norm of A, Thus, f=ge D(A),
Af = his closed. Further. A is symmetric, since

(Af.8) = A9, Vg = (9. Ag¥)g = (f,AQ) 3)

if f=9®T @ and g = y® Ty, ¢, ye DA,). Finally, kerA = {0} because
Af =0 implies that Ag@ =0 and @ = 0. since kerA; = {0}. Hence, f =0 as
well, Of course, if we construct R, N, A,, and T" starting from the operator A
obtained, then we return to objects (i) - (iii) given above, and vice versa.

Remark 2. 1f, for some a, be R' with @ < 0 < b. the operator A, satisfies the
condition a~! € Ay < b7, then the interval (a, b) isa gap for A

Remark 3. For the operator I', the following condition holds: RN MAg) =
= {0}.

Indeed, let (I'g, M)y = I, (@) be a linear continuous functional on ¢ € IXT") =
= D(Ap). In this case, we have I, @) = (¢ n*)g for some n* e R. Assume that
n* € D(Ay). Then we can take ¢ = n*. Owing to the singularity of " in &, there
exists a sequence \, — @ such that Ty, = 0. Then (I"y,, M}y — 0 and, therefore,
n* =0.

Thus, in the Krein model, each closed symmetric operator A, kerA =0, is given in
the Hilbert space H by the resolution H = R @ N, by the self-adjoint operator Ay in
R, and by the singular operator I': ® —N. In the next section, we show that every self-

adjoint extension A of A, ker A = 0, is fixed by another singular operator 7, which
acts in the rigged Hilbert space constructed by using the Friedrichs extension of A.
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3. Extension as a Singularly Perturbed Operator. Let A = A" 2 1 be a self-
adjoint unbounded operator in a separable complex Hilbert space H.

Definition 1. A self-adjoint operator A in H is called singularly perturbed
with respect to A if the linear set

D:={fe DANDA)|Af = Af) ‘ 4)

is dense in M. .

We write A e Ag (A) if. in addition, 0 € p{fi)‘ and A € ﬁl; (A) if A is posi-
tive definite. Here. p(-) denotes the set of regular points of the operator.

Thus. the sclf-adjoint operator A in ‘4 belongs to the class Ag(A) if A7 exists
and is bounded and the pair A and A hasa common symmetric part. i.e.. '

A:=AlD=4l0D (5)

is a densely defined symmetric operator-in . It is closed and kerA = 0. Hence,

cach singularly perturbed operator A isa self-adjoint extension of some symmetric
restriction A of A.

Below. we show that each restriction A of A and each extension A of A are
uniquely determined by a certain singular perturbation of A.

We now introduce the precise definition of the concept “singular perturbation™. In
fact. it-arises from the concept of a singular operator or a singular bilinear form [22].

First. let us define by A the rigged Hilbert space (see [7])

H DHDMH, (6)
~ where H, = TXA) with respect to the inner product (-,-), = (A-.A-) and H_ is

the completion of # in the norm ||-|l_ = ||A™" || We denote the duality between
H_and H, by {-.-). Note that

@ W, = (De.¥) = (@D = D9.DVY).. ¢. ye A, @)
where D = A'A - . - % is a canonical unitary isomorphism (A<’ denotes the
closurcof A: H— H ).

Definition 2. A linear closéd operator T : H, — H_ is called a singular pertur-
bation of A if the linear set
Foq:=kerT 8)
is dense in H.
We write 7€ T¢(A) if T is self-adjoint and its range K (T') is a closed subspace
of H_ such that
R(TyN H = {0}). ; 9)
Recall that T: H, — #_ is self-adjoint if T = T, By definition, a vector y € H,
belongs to IXT™) if 1(¢) = (T@, y) is a linear continuous functional on 4. Then
there exists a unique ' € A such that /(@) = (@, y*). Weset 77y =y,
Thus. a self-adjoint operator T: H, — H_ belongs to the class g (A) if its re-
striction T:=T [ F. F = H, © ker T is boundedly invertible and (9) holds.
Note that each T e Tg(A) is a singular operator in H [22] and Yr(Q. V) :=
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:= (T ¢, y) is a singular bilinear form in % [28].

The following important result establishes the connection between singularly per-
turbed operators and singular perturbations for fixed A. The connection is based on
the Krein extension theory. It gives the parametrization of all self-adjoint extensions

Ace A (A) of the symmetric operator A from (5) in terms of the singular perturba-
tion T e Tg(A).

Theorem 2 [28]. There is a one to one correspondence between Ae Ag(A)
and T € ‘I (A). For each A, the operator T is defined as follows:

T = A%00BA, (10)
where B s fixed by the difference
Al_at' = B = {B_I N (an
0 on R. -
where
H=R®N, R=R(A). N = kerA" (12)

and A is the largest common symmetric part of A, A (see (5)). Conversely,
each T defines A by (11)if we set

R=AFy;. N=AF, H =F,®F. (13)
B=@AN'TA?, T=TIF (14)

Proof. Let A € A (A). Then both A" and A7 are bounded and self-adjoint.

Hence. their difference B™' is also bounded and self-adjoint in H. Morcover, it fol-
lows from X=AD= A D (D is defined by (4)) that B™' is zero on K. and
ker B! = ®. Clearly. N isreducedby B~!. Therefore, the restriction B~' of B
to N is a bounded self-adjoint invertible operator in N. Weset B = (B‘]}_l‘ It is ne-
cessary to show that T° defined by (10) belongs to the class Z¢(A). It is casy to sce
that T is self-adjoint and

kerT = Fopr = AR, (15)

R(T) = N_ = A'N N = R(B). (16)
The subspace Fy ¢ of H, = IXA) is dense in H because it coincides with 2 from
4 (D=A"'R= At R). By construction, the range K (B) is equal to N and,
therefore, N_ is a closed subspace in #H_ (A '. 95 3 is unitary). We obtain con-
dition (9) from (8) by virtue of Lemma 5 (presented below). Conversely, let T e
€ T5(A) be given. We set D = F;, 1 and define the restriction

A:=AlkerT. DA) = D (17)

This is a closed symmetric operator in H. Evidently, the range R(A) = K, and
N = ker A" is the deficiency subspace of A (see (13)). By construction (see (14)), B
is a self-adjoint operator in N such that K(B) = N. Hence, B! exists, is bounded
and self-adjoint in N. We denote its trivial extension onto &_ by B™'. We can now
define A™' = A™'+ B!, This s a self-adjoint bounded operator in . It coincides
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with A™' on R and. therefore, A is one of the self-adjoint cxiensions of A. Of
course. A~' is invertible because A”'h = 0 implies h = 0, since A" he D,
B'he N, and NN D = (0). Thus. A € A (A).

In the proof of Theorem 2. we have used the following lemma:

Lemma 5. For the rigged Hilbert space (6), let H,=Fy,® F and let T:H, —

— H._ be a self-adjoint operator such that Fy = kerT and N_ := R(T) is a
closed subspace of H_. Then
F, = He N.NH={0). (18)

where Fy denotes the closure of Fyy in H.

Proof. In #,. we consider the operator V := D' 7. where D is the canonical
isomorphism defined by (7). It is clear that the operator V' is self-adjoint. kerV = F,
and the range R (V) = D'N_=F. ie..

N_ = DF = A“AF. (19)
Assume that N_N H = {0]. Then, by virtue of (7). we have:
(W.Fg) = 0 = (y.Fp) = (D' y. Fy,. (20)

forany we H, y L Fy. ie.. D™'ye F and.again by (7). we N_. Hence, y = 0
and F isdensc in #. Conversely. assume that Fy, = . Then. by virtue of (7). for
any ye N.NH wehave D™ ye F and

(D'y.Fp, = 0 =(y.Fp) = (Y. Fy). 1)

re.. y L Fy and, therefore, y = 0.

Remark 4. In Theorem 2, we have used the operators B acting in the deficiency
subspace N = kerA®, as an intermediate step in the parametrization of self-adjoint
extensions of the symmetric operator A. This type of parametrization represents the
essential point of the so-called Birman—Krein—Vishik theory [5]. We work with a
singular operator T° (see (14)) instead of B. This is more suitable for applications.

Remark 5. Definitions 1 and 2 and Theorem 2 have a natural generalization to the
case where the original operator A is bounded from below or has a gap (a, b) inits
spectrum. Moreover, in the general case, all formulas (10) —(14) may be rewritten in
terms of resolvents.

Theorem 3 [28]. The domain D(A) of the operator Ae Ag(A) and its ac-
tion possess the following description:

MA) = {ge H|g = f+ B PyAf. feDA)}. (22)
Ag = Af. : (23)

Proof. For each Ae Ag(A), we have R(A)= H = ﬂ(,ui}. Hence. for any

he H, thereexist ge X A) and fe IXA) suchthat h = Ag = A f. Thus. by us-
ing (11), we obtain (22) and (23).

Theorem 4 [28]. The resolvent fc’, of the operator A € Ag(A) is expressed
by the following Krein's formula:

R. =R +B'. ze p(A)NpA), (24)
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where
o B:' in N.,N,=ker(A" -2)
ol R e = ‘ 25
: {0 on M,,M, = N} &
and
B]' = U, ,B-2G, o) Py. (26)

where U, o= AR, R, =(A-2)"", G, =P,(1-2A7"), and P, is the ortho-

gonal projector onto N, in H.

4. The Additional Point Spectrumof A4 € 4 s (4). First, we consider the case
where the original operator A is perturbed by T e Tg'(A), where n := rank T = 1.
Then T is fixed by a vector ®e H\H || o|_ = 1, and anumber Ae R":

Tw =T, ,¢:=AQ0)0, 9cH = IxXT). (2';_;)

For a singularly perturbed operator, we write A € A%¢(A) if dimN = n. Theorems 2
and 3 now have the following consequences:

Theorem 5. There is a one to one correspondence between the sets To (A) and
}'{}(A). Namely, for each T, o the operator A= A; o Is given by

Ay o8 = Af, (28)
DAy ) = (g€ H|g = f+ X (f.o, fe DA} (29)
Here, n := AN @. Conversely, each Ae ﬁ!}(A) defines 'I‘,L,;, by f.he vector
® := AYn, where neN, |In]l=1, N=(AD (30)
and by the number
A= (AT -Amm). 31

Proof. 1t follows from Definitions (28) and (29) that A,  is a densely defined

symmetric operator. Actually, it is self-adjoint because its range is the entire space .
In Lemma 5, we now take the subspace Fy = D,, where

Dy, = {fe DA [{f.w) = (Af,m) = 0}

Then ®e H_\H implies that F, is dense in . Therefore. A, ,€ Ai(A). Con-
versely, starting from A € ﬂ;-(A). we can introduce ® and A as in (30) and (31)
and deﬁn_e the operator T, ,, by (27). Theset D (see (4)) is dense in  H (clearly, it
coincides with D,) and (27) now implies that D = D, ='ker I, . Moreover, due
to Lemma 5, the vector o lies in % \ #{ This means that T, , € T (A).

A more detailed version of the proof of this theorem is given in [28] (Chapter 3,
Theorem 1.1). In what follows, we use Krein's resolvent formula for A € .ﬂé (A).

Inthe case of A = A,  Krein’s formula for resolvents (24) becomes Simpler. It

follows from (28) and (29) that, for each ge IXA; ), by using (f.®) = (Af,n),
we can write
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g=f+ ?L_]PnAf- f e IXA). (32)
where Py, is the projector onto N in H By virtue of (28). this yiclds
¢=Ah+ 37 Pyh

where h = Af = A, e. Hence. we obtain

AL, = A7 + AP, (33)

TR

A similar formula is true for any common real regular pointa € p = prAINp(A).
Theorem 6. Forany real 0 # a € p. the resolvents of the operatrs A = 5w
and A are connected by

ﬁ:: = Ry + x('zipt'v (3

where A = h=0Me ) No =N = AN 0. g 1= RS o and P, denotes
the orthogonal projector in *H onto the deficiency subspace N
Proof. First. we note that the subspaces N,. o € (=oo, 1), for the operator A
admit the following representation:
Ng = {e@A - 'ox ce C). (35
Indeed.
(A-0)D.Ny) =0 = (AD.Ny) - a(D.Ny) = (D.ANY-a(D.N,) =
= (DA -a)Ny) = (DDA —a)N,)._.

This means that the one-dimensional subspace N_,=(A 4 _ a) Ny in H_ coincides
with {co: ¢ € C}. Therefore, (35) is true. Clearly. the operators (A~ o)™ and R,
coincide on H C H_. A simple calculation shows that, forany ®e 4. there exists
avector ¢ = (1 —aA™ A @ such that (A - o) g = . Thus. H == IX RS,
A" = R{f. and K(R&f} = H. Now (34) follows from (33) bv virtuc of the re-
solvent identity.

Of course. the analogous relation is truc forany z€ p = p(A) N p(A).

Thus. the difference R, -R, = S’g' is a rank-one operator. Therefore. the essen-

tial spectrum of A is the same as for A.
Let us now investigate the form of the additional point spectrum of A = A, .

Assume that ®e HN\H ||o]l_ = 1, isfixed and 0 # o€ p(A) = (—o, ). We
want o solve the following eigenvalue problem: '

Ay oV = O, (36)

forsome A = A(x) e R' and Yy € ':-D(Al‘ o) By using representation (32), we can
wrile

Vo = @y + l"'((pm.m)n. P € TXA).

It follows from (36) that
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oy, = 0@, + al"'((pa. o)n = AQ,
By changing the length of the vector ¢,. we can satisfy the condition
(@, @) = L. 37
Then Ag, = ag, +a A" . and we obtain
-1
9o = ARy
and
v, =@, + l"n = l"(aRa+ .
It tollows from the resolvent dentity that
alk,+ 1 = AR,
Henee,
W, = AAR = A RYAN = VRV @ = A e
Inorder o find A = A (o). we return 1o (37):
I = (@, ) = al"(Run.m) = ak"(na.n).

Thus, A(0t) = & (MNq N). and the following thcorem is proved:
Theorem 7. For every fived ®w € H\H. ||o|_ = 1. a point o € (—oo, 1)
belongs to the set ©,(Ay ) of the eigenvalues of the operator A, , if

A=A@=0aMen). =AY 0 Ne= R0 (38)
The corresponding eigenvector has the forim:
Y, = A nge N, C 39

Theorem 7 admits an immediate generalization to the case where T: H, — H_ s
a singular finite rank operator, i.e.. IXT) = H, and

n
Te= Y r{po)o. ¢eH,. (40)
i=1
where n < oo, all ®; belongto H \H and (0. ;) = §;.

Theorem 8. For uny set of vectors ®; € H_\NH. (o, W) = 5,-}-‘ i,j<n<eo,
which is linearly independent with respect to H, and for any set of nonzero numbers
Oy. ... .ONE (=20, 1), there exists an operator Ac AG(A) such that oy, ...
s O € Op ( A). This operator A= Ap is constructed in accordance with The-
orem 2 by the singular perturbation 1" of form (40), where

A= A(@) = 0;Mang) S

and

ol . (o

n= AN o, ng = Riw, i=1l...n (42)
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The corresponding eigenvectors have the form:
Vo, = A7'Ma, (43)

The multiplicities of the eigenvalues ., 1 < i < n, are equal 1o the number of o,
1 <j<n with a; =a,

Remark 6. In Theorems 7 and 8, all numbers A (o) and A (o) are nonzero. In-
deed. forany we H \H and 0 # o€ (-, 1), we have (n,m,) # 0. This can be
shown as follows: We set ® = (A" -a)g, ge A  Then (MM = ((1-
—aA Mg g) = lglP-a(g A g) # 0, since (g.A™'g) < 1.

Now consider the case where n = rank T = dim F = o; here, F = H, @ kerT.
Then the operator A (see (40)) has infinite deficiency indices. Consider the singularly

perturbed operator A. which corresponds to T due to Theorem 2. Let us study its
additional point spectrum. From the previous construction, one can easily conclude

that any sequence of nonzero numbers o, ..., @, ... € (-, 1) with arbitrary multi-
plicities may form the additional point spectrum of A. To demonstrate this, consider
the subspace N_ := A“AF,; C H \H, dimN_ = . We choose in N_ an ortho-
gonal basis {®;}_, and replace T by T’ = Z; A; < @, w; > o, where the coefg
ficients A; = A (a,) are determined by (41) and (42). Then the vectors Va, of form
(43) are the eigenvectors of A = Ap € A (A). Thus, we have the fE)IIowing theorem:

Theorem 9. For each closed subspace N_ C (H\H)U 0, dimN_ = o, and
any sequence of nonzero numbers Q.. ..., 0, ... € (-0, 1), there exists a singular-
ly perturbed operator A = Ap € Ag(A) such that o 4, ....Q ... € cp(;t). The

corresponding eigenvectors Y, € Ny = R;'j N_ admit representation (43).

Remark 7. We emphasize that the eigenvectors , ~also satisfy the equations

Ba Wo, = 0. where the operators B are constructed by using 7 with the help of
(14) and (24). .
All our previous results can be generalized to the case where the original operator
A does not (necessarily) satisfy the condition A =1 but hasa gap (a,b), - < a <
< b < oo,
5. Inverse Spectral Theory for Self-Adjoint Extensions. In this section, A
. denotes a closed symmetric operator in a separable Hilbert space A with a gap (a, b).
We continue our discussion of the following problem: Whar rypes of spectrum can
the self-adjoint extensions of A have within the gap (a, b)?

Without loss of generality, we assume that 0 € (a, b). As in the previous sections,
we denote the range of A by K. the boundedly invertible self-adjoint operator in &
introduced in Lemma 1 is denoted by A, and the orthogonal complement of R in H
is denoted by N. We set

o ik zu -
Ki=PA? =P 0 &' = TH"

and regard K as an operator from the Hilbert space &_ to the Hilbert space N, Note
that P&is invertible on D(Ay). ;

First, let P be an arbitrary orthogonal projector in N. We have
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R

A ®

ATl = |(1-P)K|: R> L.

PK ) @

P
where £ and P denote the ranges of operators 1 — P and P. We set
R R
AL @-pPKy (PK)) @ ®
L :=|(-P)K C 0 |[: L - L.
PK 0 Q @ @
P Vi

where C and @ are arbitrary self-adjoint operators in the corresponding Hilbert space
(P.C. and Q are free parameters) and L is a sclf-adjoint operator in ‘H. We have
L A7 and, therefore, R(L) D R(A™") = D(A). Thus,

ker(L) = ker(L") = R(L)* = {0).

ie.. L isinvertible. A := L' isa self-adjoint extension of A.
For brevity, we introduce a self-adjoint operator

At oo [ A W-PKY
(1-P)K ¢
in the Hilbert space R ® L and st K := (PK 0). Then

i [“i(}l K] r
k0

Up to now, we did not impose any restrictions on the parameters P, C, and Q. In
what follows, we only assume that C is such that A[',l is invertible and (a, b) is a

gap of fig r= (,tilal)‘I and that Q is invertible. It is known that the operators C,
which satisfy these conditions, exist (cf., e.g., [10], Theorem 4.7 and Corollary 4.8).

We set
i [’?‘5’ ”].
0 ©Q
Then A := L' = :‘i@ @Q'] is self-adjoint and
o, (A)N(a,b) = (6, (A) Vo, @) N@b) =0, Q)N (ab),
6. (A)N(a,b) = 6,0 N(a,b).

(=31

Consider the parameter P. In what follows, we only assume that P is such that PX
is nuclear. Then :

A-*_,a-1=::_£=[‘3 ’3‘)
g 0
(A) = o._(A).

is also nuclear and, therefore, we have o, (A) = g, (A) and O, s
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Thus,
0,.(A)N(a b) = 6, Q") N (ab), (44)

0. (A)N(a,b) = 6. Q) N(a.b) (45)

[33 58

Clearly. these relations are useful only if P is infinite dimensional (recall that Q
is an operator in P thus. Oess(Q™') = 0 if of P is finite dimensional). Thus. we
arrive at the problem of examining the conditions under which P can be chosen so
that both PK is a nuclear operator and dim P = oo, This problem is solved complete-
ly answer by the following lemma:

Lemma 6. /n the notation introduced at the beginning of this section, the follow-
ing assertion holds: An orthogonal projector P in the Hilbert space N. such that
the operator PK is nuclear and dim P = o, exists if and only if the operator A
is significantly deficient in the following sense:

Definition 3. A closed symmetric operator A is significantly deficient if and
only if

P-D(A) # N. (46)
for all regular points = of A.

For the proof of Lemma 6, see [14]. Lemmas 3.1 and 3.2. A closed symmelric
boundedly invertible operator A is significantly deficient if it has infinite deficiency
indices and its inverse A~' is compact. Moreover. if (46) holds for one real regular
point. then it holds for all regular points and A is significantly deficient (cf. [13]. Sec-
tion 4; in [13]. the notion “significantly symmetric™ is used).

Proposition 1. Let A be a significantly deficient operator with a gap (a, b).
Let §,,CS.C R' be such that 'Sae s the support of an absolutely continuous

measure and S, is*closed. Then A has a self-adjoint extension A with the fol-
lowing properties:

(i) Ouis(A) N (a, b) = S.N (a, b):

(ii) O, (A) N (a,b) = S, N(a,b).

Proof. Since A. is significantly deficient, there exists an orthogonal projector P
in N such that PK is nuclear and the range of P is infinite-dimensional. We choosc
an invertible self-adjoint operator Q in the Hilbert space P such that

G (@) = S, and o0,.Q7") = §,.

By using the argument preceding the statement of Proposition 1, we conclude that A
has a self-adjoint extension A such that (44) and (45) hold. The proposition is proved.

’ Example. Let Q be a nonempty bounded domain in R , d 22 and
3 IXA") 1= Cy (), A'f := -Af, [e Cy(),

d 2 :
where A := Z_, D; and D, := d/dx. Theclosure A of A" is a closed symmetric operator and

7
the real line is covered by the gaps of A. Since o 2 2, the operator A has infinite deficiency indices.
Since £ is bounded, the iriverse A" is compact. Thus, A is significantly deficient and, by Proposi-
tion I, A has self-adjoint extensions with nonempty absolutely continuous spectrum despite the fact that
the domain £ is bounded!

Proposition 1 can be considerably extended:
Theorem 10. Let A be a significantly deficient symmetric operator with a gap

(a, b) in the separable complex Hilbert space H. Let F,. be the suppori of an ab-
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solutely continuous positive Radon measure on R" and let G, C R' be an open
set such that F, NG, = @D. Assume that € is a countable subset of (a, b) and
p:€—NU (e} isan arbitrary mapping. Then A has a self-adjoint extension A
with the following properties: .

(i) let A € (a,b). Then A € O'e”(;i) if and only if A € F,,UG,. or
Ae e and p(l} = oo or A = lim,_, A, for some sequence {A )}, cn in €\A):

(i) ©,(A)N(a,b) =F, N@,b):

(i) G, € 0,(A) N (a.b) € G, VU IF,. Inparticular, 5,.(A) N (a,b) =
= G, N(a,b) if F,. is countable.

(iv) every A € € is an eigenvalue of A whose multiplicity is at least p(L).
The multiplicity is finite if p(A) is finite.

(v) ©,(A)NFN(a,b)=eNFN(a b) and each A € €N F N (a,b) has the
multipiicity p(L). Here, F :=F,. U G,.. )
We postpone the {very long) proof of this theorem to the forthcoming paper [15].

6. Singular Perturbations of the Laplacian. In the applications to mathematical
physics. it proves to be quite intercsting to construct the self-adjoint extensions of the

operator —A r C(?(R“f\S) in the Hilbert space H := e (Rd) and to study their prop-
ertics. Here. S is a closed subset of R? with Lebesgue measure zero and the operator
—A in H is given by

D(-A) 1= WE(RY.

d
-Af := =Y D}f. feD-A),

i=1 :
where .
Wza(Rd) = {Flglge LR (1 +pH)% dp)

forecach a€ R'. (¢ and Fg denote the Fourier transform of g: g and F'¢ stand
for its inverse Fourier transform.)

In this section, we define the deficiency subspace of the operator A ¥ Cy (R aS).
where A := —A+ 1. Then the general results in Section 3 can be used when construct-

ing the self-adjoint extensions of the operator —A ¥ C(T(Rd\S). Furthermore, we dis-

cuss the spectral properties of certain singular perturbations of the operator  A. In this
way, we get, in particular, the results concerning the spectral properties of the certain

self-adjoint extensions of the operator —A r CS’(Rd\S). First, we give an explicit de-
scription of the objects introduced in Section 3 for the case where A = —A+ 1,
Since the space Lz(Rd, (1 +p3)'2 dp) is the completion of the space A in norm

Fo (] la+py™ fo)1%dp)'”>.
we get

H = Wy (RY.

(f. 8. = (f. )2, a+papy f-8€ 3.
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Note that, in general. the elements of ‘4 are distributions but not functions.  For in-
stance. the 8-distribution & belongs to #_ if the dimensionality d of R“ is at most
3 and even its derivative 8" isin H_if d = 1.

For - € C\(1.0). let G- be the convolution kernel of the operator (A— 57" in
H and G := Gg. Let p be a positive Radon measure on R e H_, then

A-"n=G.*p and AA-z'G*p = G.xp (47)
Il ne W{I(Rd). then.for 1 < j < d. wehave D€ H.,G.*ue W{(Rd}.

(A=27"D;w) = DG _*p). (48)
and
AA-27'D (G *p) = DI(G.*p). (49)
These assertions can be casily established by passing to the Fourier transforms.
Let 7'e T(A). let A e A (A) be the operator which corresponds to 7 in the

sense of Theorem 3, and let A be the common part of A and A. By Theorem 2,
N =A(H, OkerT). Here. N := Ny and N. :=ker(A* —z) foreach =€ C\(1. o).
Suppose that N is spanned by

(G *,lne J) U (DG * ) ne J).

where p,.n e J U are positive Radon measures on 2e, w, € H_ foreach ne J.
U, € lt-"{'(Rd}. and 1 € j, <d foreach ne J” (J and J’ are disjoint index sets).
Then, by relations (47). (48). and (49). the space N- is spanned by

{G.*xp, |ne J}ULD,; G, *p,) | ne J}
for cach = e €. since the operator A (A —=)~" is a bicontinuous bijection from N on-
1 N-.

Consider the special case where A = A; , for some real number A and some
me HNH with ||o]|_ = 1. where ® isa positive Radon measure on R or o =
= D;u for some 1 < j < d and a positive Radon measure pLe H’:"‘(R“r). By The-
orem 6 and relations (47). (48). and (49), we have

R.=R. +X'P. zep:=p@A)Np(A). (50)
where
A =A-:(G*w.G.*xm), :z€p.
il" o is a positive Radon measure and
A =r-:(D;G*0).D(G.*®). z€p. (51)

otherwisc.
It 15 well known that

O (A) = [l.) = G, (A).

€55

Morcover, by Krein's formula, A~'— A7" has a finite rank if the operator Ae A (4)
corresponds to a singular perturbation 7" with finite rank. Thus, in this case, we have
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O (A) = [lio0) = 0,.(A).
Under weak additional assumptions. one can show that the singular continuous spec-
trum of A isempty.

Theorem 11.
(i)  Assume that @ € HN\H is a positive Radon measure with compact support
i ; , .
and |[n|l- = 1. Let A€ R". Then the singular continuous spectrum of Ay o is
empry.

(i) Suppose, in addition, thar N € W{](Rd). Let 1 £j<d and ® :=D;pu
Then the singular continuous spectrum of A, _, is empty.

Proof. 1t suffices to show that there exists an open domain U in € containing
the set (1.eo) and an analytic function s: U — C suchthat s(z) = A. forall ze U

with Im (=) > 0. In fact, the set S of zeros of s is discrete and s(-)™" is analytic on
UN\S. since the analytic function s is not identically cqual to zero. Let | < a <b <

< oo be such that [a,b]N S = @. Then we can choosec an € >0 suchthat VNS =
=@ and V C V. where

V:i={x+iylasx<bh 0< y < e}

and V' denotes the closure of V. Since V' is a compact subset of U\S, we have

sup [s()7'| = sup [ AT'] < o, (52)
zeV eV
sup ||IP_|| € 1 (53)
reV )

because the operators P. are orthogonal projectors. Moreover, it is well known (and
can be easily shown) that

sup |(R.f. f)l <. fe CT(RY. (54)

zeV
By Krein's resolvent formula (50) and relations (52). (53), and (54), we obtain

sup |[(R.f. )l < . fe CFRY.

zeV
Here. f{. i=(A-2"and A := Ay p (respectively. A= Ay ) Since C[T(Rd}
is dense in Lz(Rd). the limiting absorption principle gives that.

o,.(A)N(ab) = D.

Since O, (A) N G (A) = [1, o). this implics that ¢,.(A) € S. Since S is count-

able, we get 0, (A) = @. It remains to prove the existence of an analytic function
with the required properties. We give the proof of existence under the hypothesis of
assertion (ii). The proof in the other case is virtually the same and even somewhat
shorter. We set

C™":={ze C|Rez) > 1, Im(z) > 0}.
U:={ze C|Re(z) > 1, Im(:'"?) < 1/4},

where
' (re®\? = _p1Pe®2 50, —m < @<
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We set
G. ) 1= Gy P a6 = DN K (G- D))
xeRY v20. zeU.
where K, denotes the modified Bessel function of the second kind. Then G. = G.
for =€ C*™* (but G. ¢ L7 (RY). inparticular. G. # G. if ze U\NC™). We sct

d

D) :=D;Gx) and D.(x):=D, G.0. xeR% x#0. ze U

The function =+ D.(v) is analyticon U forecach ve R, v = 0. Let V' bea non-
. R - 4 |
L'Ill['l[\' set such that its closure V' is a compact subsct of U and B = {ve R ||x| €
al forsome 0 < g < oo, Terc exist strictly positive finite constants ¢ and C
such that

sup (| D] + —}Dn} +|DW|) < Clx|™ on B (55)
cel dz
and
sup (| DD | + ‘5—JD:(.1',\D( n') < e on RYNB. (56)
tel - :

Let / be the function on L'(RY) satisfying
Py =a+py"" e
Since pe lt;{"{h’dl. we have
J + pe L7 (RY. (57)
It is known (cf. [44]. Chapter V.3) that
Jx) 20 ae. and  J(v) 2 (“’I.t'|1‘“r ac. on B (58)

lor some strietly positive constant C*. It easily follows from (55) —(57) and (58) that
the functions

(Vv V) D=y D=y | + _;—]D:(_r =¥)D(x = ) I
= o i

wyveR! zev.
admit a }L“r@p ® p-integrable majorant (A4 denotes the Lebesgue measure) and
s =DG+p) and D+ p= DG A rlae (59)

for cach = e C** (in the last cquality. we have used the fact that G- = G. A -ac.).
Thus. the function s : U — C.

sy i=h -z [D.v—ymudy [ DE-y)p@y)ds.
R-.f Ru‘ Rd

is defined and analytic .md by (51)and (59). s(z) = A- forcach - e C" Thus. the
thcorem is proved.

Remark 8. Theorem 11 can be casily extended to the case where the singular per-
turbation 7" has a finite rank and the underlying Radon measures are not necessarily
positive.
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The deficiency subspace of the operator A [ C(T(R":\S) is given by the following
thcorem (cf. [9]).

Theorem 12. Let S be a closed subset of RY. Then the deficiencv subspaée of'
A T C3(RINS) is the closed span of

d
{G+pulpe My®IVU JID,G + wlpne M)}
]

Here, M, (S) denotes the set of positive Radon measures |\ € Wz'j{R J) with com-
pact .\‘up;mr.f m 8 g = L2

We refer to [2]. Chapter 6. [24]. and [9] for the related results in the extension the-
ory in L"-spaccs and its generalizations. .
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