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TOPOLOGICAL ASPECTS OF DYNAMICAL SYSTEMS
ON MANIFOLDS

TONOJIOTHYECKHE ACIHEKTBI JTHHAMHYECKHX
CHCTEM HA MHOI'OOBPA3HAX

“The necessary and sufficient conditions for existence on manifolds of the dynamical systems having
non-wandering set consisting of disconnected union of 2-dimensional tori with hyperbolic structure are
given.

Jlano HeobxiaHi Ta JOCTAaTHI yMOBH iCHYBAHHA Ha MHOT'OBHIAX AHHAMIYHHX CHCTEM, Y AKHX MHOXHHa
HeOJIYKAIOUHX TOYOK CKJIA/Ia€TheA 3 HedB' A3HOro 06'eIHaHHA [BOBHMIPHHX TOpiB 3 rinepbosivyHoo

CTPYKTYpoio.
Let M" be a smooth closed manifold and X (M") be a set of C” vector fields
on M".

Let X be a vector field from X (M") having a finite number of singular points and
closed orbits. Suppose that the singular points and closed orbits have a hyperbolic

structure, Denote by V (M") € X (M") the set of vector fields on M" which satisfy
these conditions. Denote by N; (X) (N (X)) the number of singular points (closed

orbits) of index i, Consider vector fields X and Y from V (M"). We say that X>Y
(greater than) if: ’

)N; X)2N;(Y), N X)= N«Y) forall i
2) there exists an index i, such that N, X)2 N, (Y) or N, (X)2 N, (V).

Definition. A vector field X € V(M") will be called minimal if there exists no
vector field Y€ V(M"™) such that X>Y.

In general we may describe the set V (M") as a connected oriented graph K. A
vertex of K is a set of vector fields {X;c;} € V (M") such that N; (X;) =N; (X;)
and N;(X;)=N;(X;) forallindices i and jj,jp€ J.If X,Ye V(M")and X >Y
then the vertex [X] representing the field X and the vertex [Y] representing Y are
joined by an arc directed from X to Y: [X] — [Y].

Let denote by Q (M™) the number of minimal vector fields on M". It is known that
Q (M™) is finite. For any vector field from V (M") there exists a function of
distribution of critical elements:

x 2 {ﬁ-(X),
N.(X).

The general expression for this function for a minimal vector field from V (M") is
unknown. But for the minimal Morse-Smale vector field, the function of distribution

can be calculated. For example, if M" is simply-connected and n > 5 then for the
minimal Morse-Smale vector field without closed orbits, the function of distribution on

M" will be as follows
¥ Ni=b+q;+q;y,
_) P,
N" = 0 .
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where b;=rank H; (M", Q), q; = u(tors (H; (M", Z2))) (u(H) is the number of gen-

erators of the group H).
Let’s consider the case, when the minimal Morse-Smale vector field have only

closed orbits. Let x, (M")= Z}ﬂ (-1)* rankHj(M". @). We say that the dimension
of the manifold M" is singular if:
Xig M) =y, , M) =0, x,M") = k>0 and
H‘- (Mn, 2) = 226... o2 @2;‘ @D ... @Zk‘.
\____.T.___j 1
where k,l>0 and ki,- divides k’m'

Theorem 1. Ler M" be a closed manifold (n25), m,(M")=0. Let's consider

on M" the minimal Morse-Smale vector field X without singular points. Then the
Junction of distribution of X is as follows

. Ni(X)=0,
N.(X)=p(x;(M™)), if i is a nonsingular dimension,

and
(N:(X)=0,
Ni(X)=p(x;(M") forall j#i-1, i+l,
Do {2 ; 7
Ni((X) =p(Xi-(M7)) +1,
Nin(X) = pt 1 (M™),
or

(N,(X)=0,

N;(X)=p(x;(M")) forall j#i-1, i+,
| R X = plxia(M™),

Niat(X) =p(is1 (M™) +1,

if i is asingular dimension, where p(Ny= (N +|N|)/2,Ne2) [1].

.Let M" be a smooth compact manifold and X be a vector fieldon M”. Let Q(X)
be the set of non-wandering points. The field X admits a Lyapunov’s function if there

exists such a smooth function f: M" — R, that D (f), =0, where p € Q(X), X (f)>0
for p e M"\Q(X) Suppose (X) consists of a disjoint union of k-dimensional tori
(k=2) with the hyperbolic structure. The restriction of the tangent bundle of M" to
Q(X) can be represented as a continuous decomposition into subbundles E°*, E“,
T (M")/Q(X)=E' ® E". This decomposition is invariant under the action of the flow
X, of X. Moreover, there are Riemannian metric on M" and constants A € (0,1) and
C, for which [X,V)|<CA', ve E', 120; |X,W)|<CL", we E“, t>0. The number S
is called the index of a connected component €; € Q(X), Q(X) = U‘. Q; [2].

A function f: M" — R will be called the Morse-Bott function if its set of singular
points L (f) consists of a disjoint union of smooth submanifolds Z(f)= UJ- Z; and,
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for any arbitrary point p € X the restriction of f a small disk transversal to Z; in p,
is a Morse function, index of which will be called the index of Z;.

Theorem 2. Let M" (n>5) be a smooth compact manifold. The vector field X

on M" admits a Lyapunov function and has a set of non-wandering points consisting
of a disjoint union of 2-dimensional tori with a hyperbolic structure if X satisfies the

condition of absence of cycles on S(X) and ranks b; of homology groups of M"
satisfy the equations:

_): D)#*lib,; =0, Y (-1)i( ~Db,; = 1

i=1 i=2
For a Lyapunov function, we can choose a Morse-Bott function having indices of
critical 2-dimensional tori coinciding with indices of these tori considered as a
connected composition of £(X).
Denote by L2 (M") a set of vector fields on M" satisfying conditions of this

theorem and having a finite number of connected components of €(X). Let N (X)) -
the number of tori of index i. Let vector fields X and Y belong to Ly2 (M"). We say
that X>Y if N;(X)2N,(Y) and there exists an index i, such that
N X0 > 1\7,-0(}’). If, for the vector field X from Lyz (M") exist a vector field ¥ from
Ly2 (M") such that X >Y, we will say that X is a minimal vector field.

Theorem 3. Let M" (n=5) be a closed simply-connected manifold and
H, (M", 2) be afree group for any k. Then if

D D# G+ 1-b; 20
j=0

for all i, then there exists on M" a unique minimal vector field from L 12 (Mz}.

The number of 2-dimensional tori of index i from SUX) is equal to

Ni= Y D*@+1-j)b. b= rankH, (M", 2).
j=0
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