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STRUCTURE OF BANACH ALGEBRAS OF BOUNDED
CONTINUOUS FUNCTIONS IN THE OPEN DISK WHICH
CONTAIN H", HOFFMAN ALGEBRA,

AND NONTANGENTIAL LIMITS

CTPYKTYPA BAHAXOBHX AJI'EGP OBMEZKEHHX
HEINIEPEPBHUX ®YHKIIIH ¥ BIJIKPUTOMY KP¥3I,
O MICTATH H~, AI'EBPA TO®OMAHA

TA HE[IOTHUYHI T'PAHHIII

Let #{; be an algebra of bounded continuous functions in an open disk D, of the form %{, (1 G, where
G % CM (M) = alg(If", H™) and % is a closed subalgebra in C(D) which consists of all the func-
tions which have nontangential limits a. e. on T belonging to the Douglas algebra B. The goal of this
paper is to describe the maximal ideal space M (#{;) of the algebra 2{;]. We prove that M(H}) =

=M(B) UM(H(), where 9(§ isaclosedidealin G which consists of all the functions having non-
44

= in the

tangential limits a. e. on T and these limits are equal to zero. We prove that H™[Z]# H
disk. We generalize Chang-Marshall theorem on Banach algebras %, and prove that #] =
= a]g(ﬂ(‘;, , IB) for any Douglas algebra B, where /B = {u_}, is a set of inner functions such that
T,e B on T.

Hexant 9{] —anre6pa ofMeKeHHX Henepepsuux pyHKUIA v BlakpuTomy Kpy3i D, s06paxena y Bi-
raan HyNG, ne G 34 CM (H7)) =alg(H™, H™ ) i ;- saMkHena niganredpa y C(D), wmo cknajga-
€THCA 3 (PYHKIUIA, AKI MAKTL HEMOTHYHI Tpatinil, 3okpema, na T, mo nanexate anredpi [lyrnaca B,
Y cTaTTi HABCACHO OIHC NMPOCTOPY MAKCHMANLHMX ineanis M(H, ) anrebpn H ;‘. HoBoauThC A, HIO
M) )= M(B) UM(_‘H'[(,; ), ne :H'ff — 3aMKHeHHA tean B G, AKHA cKaagaeTsed 3 (hyHKuif, mo ManTs
HeIOTHYHI rpanuil, 30kpesa, Ha T, 1 wi rpasnid pissi vysio.  Kpim toro, jjosejieHo, 1o B Kpy3i
H7[Z]= :h";;... Lo Ysaraaphoerses reopema Hanra-Mapuiania npo 6akaxosi anre6pn 9 :; i noso-
JIMTLCA, 1o ‘}{_;' = :ng(:if':_ . TB) nns 6yai-skol anredpu Iyrnaca B, ne /1B = {u,}; — suyTpimmi

dyukuii, Taki, mo 7, € # na T.

1. Introduction. The closed uniform Banach subalgebras of L=(T) containing

H™(T) are called the Douglas algebras. These algebras play an important role in the
theory of Hankel and Toeplitz operators. The Chang—Marshall theorem is one of the
most important results on subalgebras L7(T). It states that any closed subalgebra B
of L=(T) containing H~(T) is gencrated by H=(T) and the complex conjugates of
the interpolating Blaschke products invertible in 8 [1. Ch. IX]. Unfortunately. this

theorem has no generalization to the case of an open disk. The main reason is a very
complicated structure of these algebras. Our theorem 4 and remark 1 show that there
exist many algebras which are not gencrated by H™ and an arbitrary collection of

bounded harmonic functions in the open disk. The algebra G =alg(H/™. H™) is an

analog of the algebra L=(T) inthe disk. The algebra G is called a Hoffinan algeb-
ra. The goal of this paper is to study algebras of bounded continuous function

H.H= C HC G, with the usual uniform norm in the disk.
We will need the properties of the maximal ideal space of /™(ID). denoted by
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M(H™), where D ={z:lzl< 1} is the unit open disk. The maximal ideal space is the

space of nonzero multiplicative linear functionai on H™(ID). We give M (H”) the we-
ak-star topology and with this topology it is a compact Hausdorff space. It is easy to
see that the open unit disk may be regarded as a subset of maximal ideal space. The

Corona theorem of Carleson tells us that M (M) is a compactification of the open disk
[1]. We identify a function in H” with its Gelfand transform. Doing this allows us to
regard H™ as a subset of continuous functions on the maximal ideal space, denoted by

s CM(H™)) = alg(H”, H_"‘). If fe G, then fip has a nontangential limit at al-
most every point of T. Recall that M(L™) € M(H*)\ D is the Shilov boundary of

H*. The theory of Douglas algebras is associated with the structure of maximal ideal
spaces of these algebras [1, Ch. IX].

S. Axler and A, Shields [13] proved that if fe C(ID) is a continuous function on

D UM(L™), then f has a nonangential limits at almost every point of dD. Our main
result in [6] was the following.

Theorem A [6]. Let f be a continuous function f: D — € 10 the Riemann
sphere and let f have nontangential limits at almost every point of dD. Then f |p
has a continuous extension f ‘D U ML™)— CT.

Remark Al. The condition that the function f is bounded is not necessary. C. Bi-
shop proves this result in case where f is bounded [5].

Remark A2. Note that there exists [17] a function f; € B (‘B is the Bloch class,

BEfsup [F I~z < o0}) and fye N, g, . H suchthat £, does not have a

continuous extension fy : M(H™) — T, where H" is the Hardy space. Thus, f, has
nomahgcmial limits a.e. on T and according to Theorem 1 f has a continuous
extension to M(L”™). Note that, by the Brown-Gauthier theorem [18], f, can be ex-
tended to a continuous function (with the values in € U {oo}) defined on a union of
all nontrivial Gleason parts of M (/™). Therefore, there exists a continuous extension
fo:DUMLDHUG —» T. where G is union of all nontrivial Gleason parts of
M(H™). Hence, f, does not have a continuous extension to the set MH=)\(D U
UML)V G).

We consider algebras H of continuous functions in the open disk which have non-
tangential limits on T belonging to the Douglas algebra B. Let #, be a closed
ideal in C(ID) which consists of all continuous functions in the disk having nontan-
gential limits a. e. on T and these limits are equal to zero. Similarly, let Hp be a
closed subalgebra in C(ID) which consists of all continuous functions in the disk which
have nontangential limits a. e. on T belonging to the Douglas algebra B.

Theorem B [11]. Let G =a]g(i—!w,§:)=C(M(H“)}‘ Then G C Hy= and
G # H;=. Moreover, .’hrﬂ d G for all Douglas algebras B.

Definition. The uniform algebra B is called a logmodular algebra on Y if
the set log |B™ | ' Llog If1: fe B} is everywhere dense in the space Re C(Y).

Since log|é¢/|=Ref. an arbitrary Dirichlet algebra is a logmodular algebra. For
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926 0. V. IVANOV

example, H™ is a logmodular algebra which is not a Dirichlet algebra.
Theorem C [11]. The algebra My~ is a logmodular algebra on the maximal

ideal space M(H;=) (Re Hy== close log|H~")).

Note that Hp/H, = B, where B is a Douglas algebra. The following Theorem
gives a formula for representing the maximal ideal space M(Hy) of the algebra H,
as the sum of M(B) and M(Hj).

Theorem D [11]. Let B be a Douglas algebra, ™ ¢ B < L™. Then M(Hy) =
=M@B)UM(H,) and M(B) N M(H,)=D. Moreover, M(B) N M(H-) = M(L”),
where M(Hp=) = M(H,) UML™).

We now consider M (H;~)\ (D U M(L™)). We use the following notation and de-
finition. Let BD be the Stone—Cech compactification of the open disk D. We denote
by 7 the continuous projection from BD onto M(H;-). ®(z) == forall z e D.

Theorem E [12]. We denote T 2 M(Hp-)\(D U M(L™)). Then

I'= BD\(D U n-! M(L™)),
that is any continuous bounded function in the open disk D has a continuous exten-
sion at an arbitrary point t€ T,

Theorem E gives a complete description of the .compact set M (Hy=) (This com-
pact set is an analog of M (/7). In Theorems A-E. we obtained the description of the
maximal ideal space of the algebras . In this paper. we want to study the algebras

5 . G def s
of boundéd functions Hg = Hy N G.

In Section 2, we characterize a continuous function in the disk which has nontan-
gential limits belonging to the Douglas algebra on the circle T = {z:|z| = 1}, we also
describe the maximal ideal spaces of algebras of such functions. Our example, given
in Section 3, shows that there exist many algebras H, H™ C H C . in the disk such
that M(H)# M(H™). It is a new fact in case of the disk. This example raises the
question about an analog of the Chang-Marchall theorem for the disk. In Section 4,
we partially solve this problem.

I thank Vadim Tolokonnikov for his helpful comments and I am truly grateful to

Chris Bishop for the information about his recent works.
2. Subalgebras of Hoffman algebra and the maximal ideal spaces. We consider

the maximal ideal space M () of uniform Banach algebras #H, H™ C HC G. Let
H = {h,} denote any collection of complex valued bounded harmonic functions

ho = Re (hg) + i Im (hy). It is easy to see that every bounded harmonic function on D
can be uniquely extended 1o a continuous function on M (/™). Thus. we can also re-
gard Ay d*ﬁfalg (H™, H) as aclosed subalgebra of G. For example,

alg(H™, 7) = algH™, A) = H™ + C(D),

where A isa disk algebra and C(ID) is an algebra of all bounded continuous functions
on D [2].
We are interested in the following question. Can we represent any closed algebra

between H™ and G in the form of Ay? We give the negative answer, The follow-
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ing theorem is a generalization of the result in [2].

Theorem 1. The maximal ideal of the uniform Banach algebra Ay coincides
with M(H>) for any collection of harmonic functions H.

Proof. Since for any homomorphism ¢ € M(H”), @[~ is a homomorphism of
the algebra H*, there exists a continuous mapping 7 of the compact set M (Ay) into
the compact set M(H), n(¢) = @[y~ We state that (M (Ay))=M(HT). We only
need to verify that for any @, € M(HT), there exists y,€ M(Ay) satisfying the
following condition: m(y,) = ¢,. Let ¢, € M(H™). Since M(H™)=M(G), this im-
plies that ¢, can be uniquely extended to a homomorphism of the algebra G. Denote
this homomorphism by @. Then ;= gl is the required homomorphism for
which 7(y,) = @;. We only need to prove that 7 is a bijection. More precisely, it is

necessary to show that each homomorphism on H* has a unique extension to a homo-
morphism on Ay, and every homomorphism on Ay is obtained is this way. Since

linear combinations of the forms f"h)', fe H”, hq€ H are everywhere dense, we
only need to consider ¢(f"hy) forall ¢ e M(A,). Thus, for all n,m, we have, for
any homomorphism ¢ on Ay,
O(f'hy) = o(fH9ty) = o(f)ehy)]™.
To prove this theorem, we nced the following lemma which is due to Hoffman.
Lemma 1 (8, p.73]. Let u be a bounded real-valued harmonic function on D.

Then the function u defined on M(H™) by
w(@) = @(u) = log [p(e“*'@)| = log |ew X,
is an extension of u to a continuous function from M(H) to R, where i de-
notes the harmonic conjugate of u and i(0)=0.
Obviously, the function e“*i e H™. Thus, log|e¥*'@X®)| is a continuous func-
tionon M(H™). Let hy=u+ iv. Then

Q(hy) = Qu)+i@(v) = log |@(e“+@)| +ilog | @+ 7).
Since e« +ii, ev+iv e H™, we see that ¢(h,) is defined on H™. Then ¢(f"hy) is de-
fined on H™. too. Now it follows immediately that M(Ay)=M(HT).

Corollary 1. Let A, A< Ac H™, be an analytic subalgebra. Then the maxi-

mal ideal space of the algebra Az =alg(H™, A) coincides with M(H").
We consider the algebras H of continuous functions in the open disk which have
nontangential limits on T belonging to the Douglas algebra B.

Let Ky be aclosed ideal in C(D), K= {fe C(D):fly~ = 0}. For fe C(D),
fla = = 0 denotes that the function f has a continuous extension to DUML™ C
C M(H™) equal to zeroon M (L™). Similarly, Rg = {fe C(D): fly =) € Blp~)}
is a uniform Banach algebra, where B is the Douglas algebra. For fe C(D), fly 1~ €

€ Bly -, denotes that the function f has a continuous extension to D U M(L™) C
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€ M(H™) which belongs to the Douglas algebra B.

Let Hy be a closed ideal in C(D) which consists of all continuous functions in
the disk which have nontangential limits a. ¢. on T and these limits are equal to zero.
Similarly, Hp is closed subalgebra in C(ID) which consists of all continuous func-
tions in the disk having nontangential limits a.¢. on T belonging to the Douglas alge-
bra B. The algebras Hg were introduced by the author in [9] who proved an analog
of the Corona theorem of Carleson for Hg in [10-12]. In this work. we deal with the
special case of subalgebras G.namely R = Rz N G, H§ = Hzg NG and the cor-
responding ideals RS = RoN G, HE = HyNG.

Theorem 2. The equality RS = H§ holds. Moreover, R,g =H f,’ for any
Douglas algebra B.

Proof. Let fe 9{}{ Then, according to S. Axler and A. Shields [13]. fe 3’-(;";".

Conversely. if fe JH'(," and f is not an extension of zero to M(L™). then there exists a
point x € M(L™) for which suplim__, |f() =0 >0. Consideraset Ug={z:]|fC)]|>

> /2}. Obviously. x isa limit point for U,. Therefore, [Uglys pr- N ML) 2 D.

For the proof of the theorem. we need the following brilliant fact that was proved
by Gamelin [14, p.23],

Lemma 2. Ler § i)e’ any subset of the disk D. Then Sy - NMLT)# D <=
& m(F(S)) >0, where m is the Lebesgue measure and F(S) Is a set of nontange-
ntial cluster points of §.

If there exists some angle ' and some sequence {z,} of points of § such that
{z,} €T and lim__,_ |5, — ol = 0. then the point zge § N T is called a nontangen-

tial cluster point of S.
By using Lemma 2, we obtain that the set of nontangential cluster points has a posi-

tive measure. According to the definition of the set Ug. this is impossible ( fe 1}{5; )
and so, f|y (== 0. Therefore, fe RS,
To prove the second statement of Theorem 2, we need the following result,
Lemma 3. Let B be a Douglas algebra and f be the Gelfand transform of
fe B. Then for an arbitrary point m € M(B).

fim) = lim j_ﬂ__ FOP.(dm(C).

where z is the net of points in D which converge tome M(H™). P_. (L) is the
Poisson kernel, and dm (L) is the normalized Lebesgue measure on T,

Proof of Lemma 3. Since the maximal ideal space M (B) of the Douglas algebra
B, according to Chang’s theorem [1. Th. IX.3.4]. is a unique definition of the algebra

B, the compact M(B) may be identified with the space of measure in which there
exists a weak compactness. By using Corona Theorem of Carleson, we find that for

any point m € M(B), there exists a net {zo} of points in D such that z, — m in
M(HT). Therefore, ., — M, in the weak topology of the space of measure. The
measure M., is induced by the Poisson integral

p) = | FQP. K dm().

M(L™)
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where fe L™, If fe B, then
Fow = | fdw =timg | fdus, =timg Jp FQOP,©) dm(@),
M(L™) M(L™)
forany fe B and any m € M(B).

We now finish the proof of Theorem 2. If fe 9{3_. then f|p = g€ B. Thus, tak-
ing the harmonic extension H,(z) of g to the open disk D, we find that f-H, e 5‘{{?.
According to the first statement of Theorem 2, f-H, € 9'{};; and accdrding to Lem-
ma 3, H,=g on M(L"). Therefore, fly == &Iy =) and fly =) € B, fe RS.

Conversely. let fe Kf;’ Thus, taking the harmonic extension Hg(z) of g to the
open disk D, we obtain ( f—Hp)|y = =0. According to the first statement of The-
orem 2, f—Hye H . Therefore, fe H.

The immediate goal of this section is to describe the maximal ideal space M‘(KE)
of the algebra Tu({. According to Theorem 2, we may assume that 5{};3 lies inside
R § . and vice versa. Note that H§/H{ = B. Therefore, we claim that M(H§)=
=MB)U M(-”{(? ). The main result of this section is the following theorem.

Theorem 3. Let B be a Douglas algebra, H>c B¢ L™, Then M (ﬂf{):
=M®B)U M(HS) and MBYNM(HS)=B: here, M(B) and M (H§) are
subsets of M(H§). Moreover, M(H§ )= MH)\ML™).

Proof. Since H§/HE =B, then, according to [16. Th. 6.2],

M@B) = {me M(HE): m(HS) = 0}.

The following result is now necessary.
Lemma 4. If B is Douglas algebra, then

MHE) =R <& {me MCHS): m(HE) = 0}.

i o ; B% de
Proof of Lemma 4. Let us prove that the projection i: R —>M(.’i{5 ), i (m) -~
def ; ; . @
= ”?l.gr; is a homomorphism. Let mi.,{c =m,and forany m € M(:}{g ). we denote
“EL) i

m(f) & mife)m(g) (fe HE),

where ge 9{[?. m(g) #0 and is fixed. Obviously, m(f) is a homomorphism onto
HE§ and m(f) does not depend on g (otherwise, m( fg; )/ m(g,) # m(fe; )/ m(gy)
implies m( 2,85 )/(g,82)). Hence, i''(m)=m and i'': M(H§ ) — R. Let us prove
that i is a bijection. We take m;, my€ R and m, #m,. Assume that i(m,)=
= {(m5y). The equality 1 ,(fg )/ m(g)=rmy(fg)/ my(g) contradicts the assumption
that m, # m,. Therefore, i(m)# i(m,). Conversely, suppose that nm, # m,. Then
i\ ) # i"(#,). Hence, i isa bijection of R onto M(H{'). The continuity of i is
obvious. We now prove that i~! is a continuous transform. Let g — sy,
e M(HE), andlet {m,} be anetof pointsin M(HS). We take ge HS"
such that rmg(g) 2 8, > 0. Then riy(g) 2 §/2. Hence,

Fi(me)(f) = ma(f8)] me(8) = mo(f8) my(8) = i'(mg) (f).
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The last equality implies that i~! is a continuous mapping. Therefore, i is a homo-
morphism.

We now comlete the proof of Theorem 3. Since #§ is an algebra without 1. the
maximal ideal space M(H ) is locally compact [15, p. 236]. Denote B=L". Since
Hp.= G, M (H”)=M@G)=ML)UMHS), M LINMIHS) = D (here,
M(L™) and M(H§) are subsets of M(}(f_,}} as in the proof above. Therefore,
M(H§ )= MH™)/ M(L™). This completes the proof.

Corollary 2. The maximal ideal space M (ﬂg,.) is M (ﬂgw) =L UL,
where L, =L,=M(HT) and L, N L,=M(L").

3. Pathological algebras on the disk. Recall that Az =alg (H”, a), where 4 is
the analytic algebra, A < A < H™ (A is the disk algebra).

Theorem 4. For all analytic algebras A and all Douglas algebras B (B#L™)
the maximal ideal spaces M (Az)and M (Hg) are different. Moreover, A 3 #
* HE = R§.

Proof. The last statement holds since M(Az) and M(.‘?{E) are different. Ac-
cording to Corollary 1, M(Az)=M(H”), and according to Theorem 3, M(H‘B")z

=M(B)U MHT)\M(L™)). Hence,if B#L”, then M(Az) # M(%E).

Remark 1. Obviously, the analog of Theorem 4 holds for the case of an arbitrary
collection H of bounded complex harmonic functions.

Example. Let A be the disk algebra A. According to [2].

Az = algH™, A) = H7[Z] = H™ + UCD).

def . — & :
where UC(D) 4 C(D)lp. Clearly, AEIT = H '+ C. Therefore, we consider the alge-

bra }{ﬁ,+ ¢~ According to Theorem 3, M(%gmﬂ__) =MH"+C)U MHI\ML™)).

Then, by using Corollary 1, we get M(Az)=M(H"). Hence, Az =H [Z]= H +
+UCD) ¢ .‘}{ﬁerC. This example is a good illustration of Theorem 4.

Remark 2. Algebras Ay and 9{6,,%, are subalgebras of the Hoffman algebra

G and H" C Az, H™ C .‘}{;H Moreover, according to Theorem 2, Az |y =) =

eyclmam = H™+C.
This is an unexpected result. Therefore, a natural analog of the Chang—Marshall
theorem in a disk is a difficult problem [2. 3, 5].
4. Description of certain Banach subalgebras of the Hoffman algebra. The
most famous theorem on the Douglas algebras is the Chang—Marshall theorem on the

description of Banach algebras B suchthat H* C B C L™ on T. Later, this result
was generalized in various ways: one version is presented in this section. We gener-

alize the Chang—Marshall theorem on Banach algebras }(E Note that Ay # 3{5 for

all Douglas algebras B (B # L™). Therefore, we shall replace Banach algebras H™ by
the Banach algebra }{‘f;,, Let {ugy}p=1IB be inner functions such that u , € B.

Theorem 5. For any Douglas algebra B. ‘H g = alg(H ;; - IR).
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4G TR ; N
Proof. Let fe alg{}{;;,,. IB). Thus, for any €>0. by taking f, = Z.‘=| &,
g€ .‘l{gm u;€ IB, we obtain that || f-fllcp)<e. Since g. W € G, we have
N ,
fly= = (ZH &)y (1= € B. According to Theorem 2, f,e H§. By using the
completeness of H§ , we can see that fe #§. Hence. alg (9{;’;,. IB) c H§.
Conversely, let fe .’F{g. By using Theorem 2. .we see that fly, ;- € B. Therefore,

forany €> 0, by the Chang-Marshall theorem, we find {gJ}JN e H” and {;.f,-}f\r € IB
such that

N
WA )= (X &% )=l < & (1)
i=]

Consider the function W, -] Z.ta giit; on D. Define the function ¥, =f-W, on

D. Note that ||l || <& by (1). The harmonic extension of the function ¥ g to
the unit disk D is defined by P(W¢l). According to Maximal Principle for a harmo-

nic function, ||P(Wl)llcp, < €. Define the function Ré’:t dér‘PE ~P(¥lpre HE.

Obviously, W, + Rgf € alg (J{f!_ IB). We claim that the function W, + R(fr is the
required one. Indeed,
G
lf=We+ Roplle) = [I'We =¥+ P(YelDllepy = IP(¥elpllcip) <&
Since the algebra alg{%ﬁ, .IB) isclosedand € >0 is arbitrary, H§ < alg (.'H'gm

IB). This completes the proof.

Remark 3. The theorem which characterizes exactly when a function g on the
disk is in alg(H~, f) and which replaces the Chang-Marshall theorem for these algeb-
ras may be found in [5].
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