UDC 517.54

O. V. Ivanov, cand. phys.-math. sci. (Inst. Appl. Math. and Mech. Ukrainian Acad. Sci., Donetsk)

STRUCTURE OF BANACH ALGEBRAS OF BOUNDED CONTINUOUS FUNCTIONS IN THE OPEN DISK, WHICH CONTAIN H™, HOFFMAN ALGEBRA, AND NONTANGENTIAL LIMITS

СТРУКТУРА БАНАХОВИХ АЛГЕБР ОБМЕЖЕНИХ НЕПЕРЕРВНИХ ФУНКЦІЙ У ВІДКРИТОМУ КРУЗІ, ЩО МІСТЯТЬ Н™, АЛГЕБРА ГОФМАНА ТА НЕДОТИЧНІ ГРАНИЦІ

Let \mathcal{H}_s^G be an algebra of bounded continuous functions in an open disk \mathbb{D} , of the form $\mathcal{H}_B\cap G$, where $G \stackrel{\mathrm{def}}{=} C(M(H^\bullet)) = \mathrm{alg}(H^\bullet, H^\infty)$ and \mathcal{H}_B is a closed subalgebra in C(D) which consists of all the functions which have nontangential limits a. e. on \mathbf{T} belonging to the Douglas algebra B. The goal of this paper is to describe the maximal ideal space $M(\mathcal{H}_s^G)$ of the algebra \mathcal{H}_s^G . We prove that $M(\mathcal{H}_s^G) = M(B) \cup M(\mathcal{H}_0^G)$, where \mathcal{H}_0^G is a closed ideal in G which consists of all the functions having nontangential limits a. e. on \mathbf{T} and these limits are equal to zero. We prove that $H^\infty[\overline{z}] \neq \mathcal{H}_{H^\infty+C}^G$ in the disk. We generalize Chang-Marshall theorem on Banach algebras \mathcal{H}_s^G and prove that $\mathcal{H}_s^G = \mathrm{alg}(\mathcal{H}_{H^\infty}^G, \overline{IB})$ for any Douglas algebra B, where $B = \{u_\alpha\}_B$ is a set of inner functions such that $\overline{u}_\alpha \in B$ on \mathbf{T} .

Нехай \mathcal{H}^G_s — алгебра обмежених неперервних функцій у відкритому крузі \mathbb{D} , зображена у вигляді $\mathcal{H}_B\cap G$, де $G\stackrel{\mathrm{def}}{=} C(M(H^*))=\mathrm{alg}(H^*,\overline{H^*})$ і \mathcal{H}_B — замкнена підалгебра у C(D), що складається з функцій, які мають недотичні границі, зокрема, на \mathbf{T} , що належать алгебрі Дугласа B. У статті наведено опис простору максимальних ідеалів $M(\mathcal{H}^G_s)$ алгебри \mathcal{H}^G_B . Доводиться, що $M(\mathcal{H}^G_s)=M(B)$ $\cup M(\mathcal{H}^G_0)$, де \mathcal{H}^G_0 — замкнений ідеал в G, який складається з функцій, що мають недотичні границі, зокрема, на \mathbf{T} , і ці границі рівні нулю. Крім того, доведено, що в крузі $H^\infty[\mathbb{Z}]\neq\mathcal{H}^G_{H^\infty+C}$. Узагальнюється теорема Чанга-Маршалла про банахові алгебри \mathcal{H}^G_B і доводиться, що \mathcal{H}^G_B = $\mathrm{alg}\,(\mathcal{H}^G_{H^\infty},\overline{IB})$ для будь-якої алгебри Дугласа B, де $IB=\{u_\alpha\}_B$ — внутрішні функції, такі, що $\overline{u}_\alpha\in B$ на \mathbf{T} .

1. Introduction. The closed uniform Banach subalgebras of $L^{\infty}(\mathbb{T})$ containing $H^{\infty}(\mathbb{T})$ are called the *Douglas* algebras. These algebras play an important role in the theory of Hankel and Toeplitz operators. The Chang-Marshall theorem is one of the most important results on subalgebras $L^{\infty}(\mathbb{T})$. It states that any closed subalgebra B of $L^{\infty}(\mathbb{T})$ containing $H^{\infty}(\mathbb{T})$ is generated by $H^{\infty}(\mathbb{T})$ and the complex conjugates of the interpolating Blaschke products invertible in B [1, Ch. IX]. Unfortunately, this theorem has no generalization to the case of an open disk. The main reason is a very complicated structure of these algebras. Our theorem 4 and remark 1 show that there exist many algebras which are not generated by H^{∞} and an arbitrary collection of bounded harmonic functions in the open disk. The algebra $G = \text{alg}(H^{\infty}, H^{\infty})$ is an analog of the algebra $L^{\infty}(\mathbb{T})$ in the disk. The algebra G is called a Hoffman algebra. The goal of this paper is to study algebras of bounded continuous function $\mathcal{H}, H^{\infty} \subset \mathcal{H} \subseteq G$, with the usual uniform norm in the disk.

We will need the properties of the maximal ideal space of $H^{\infty}(\mathbb{D})$, denoted by

 $M(H^{\infty})$, where $\mathbb{D} = \{z : |z| < 1\}$ is the unit open disk. The maximal ideal space is the space of nonzero multiplicative linear functional on $H^{\infty}(\mathbb{D})$. We give $M(H^{\infty})$ the weak-star topology and with this topology it is a compact Hausdorff space. It is easy to see that the open unit disk may be regarded as a subset of maximal ideal space. The Corona theorem of Carleson tells us that $M(H^{\infty})$ is a compactification of the open disk [1]. We identify a function in H^{∞} with its Gelfand transform. Doing this allows us to regard H^{∞} as a subset of continuous functions on the maximal ideal space, denoted by $G \stackrel{\text{def}}{=} C(M(H^{\infty})) = \text{alg}(H^{\infty}, \overline{H^{\infty}})$. If $f \in G$, then $f|_{\mathbb{D}}$ has a nontangential limit at almost every point of \mathbb{T} . Recall that $M(L^{\infty}) \subset M(H^{\infty}) \setminus \mathbb{D}$ is the Shilov boundary of H^{∞} . The theory of Douglas algebras is associated with the structure of maximal ideal spaces of these algebras [1, Ch. IX].

S. Axler and A. Shields [13] proved that if $f \in C(\mathbb{D})$ is a continuous function on $\mathbb{D} \cup M(L^{\infty})$, then f has a nonangential limits at almost every point of $\partial \mathbb{D}$. Our main result in [6] was the following.

Theorem A [6]. Let f be a continuous function $f: \mathbb{D} \to \overline{\mathbb{C}}$ to the Riemann sphere and let f have nontangential limits at almost every point of $\partial \mathbb{D}$. Then $f|_{\mathbb{D}}$ has a continuous extension $\tilde{f}: \mathbb{D} \cup M(L^{\infty}) \to \overline{\mathbb{C}}$.

Remark A1. The condition that the function f is bounded is not necessary. C. Bishop proves this result in case where f is bounded [5].

Remark A2. Note that there exists [17] a function $f_0 \in \mathcal{B}$ (\mathcal{B} is the Bloch class, $\mathcal{B} \stackrel{\mathrm{def}}{=} \{f : \sup |f'(z)| (1-|z|^2) < \infty\}$) and $f_0 \in \bigcap_{1 \le p < \infty} H^p$ such that f_0 does not have a continuous extension $\tilde{f}_0 : M(H^\infty) \to \overline{\mathbb{C}}$, where H^p is the Hardy space. Thus, f_0 has nontangential limits a. e. on \mathbb{T} and according to Theorem 1 f has a continuous extension to $M(L^\infty)$. Note that, by the Brown–Gauthier theorem [18], f_0 can be extended to a continuous function (with the values in $\mathbb{C} \cup \{\infty\}$) defined on a union of all nontrivial Gleason parts of $M(H^\infty)$. Therefore, there exists a continuous extension $\tilde{f}_0 : \mathbb{D} \cup M(L^\infty) \cup G \to \overline{\mathbb{C}}$, where G is union of all nontrivial Gleason parts of $M(H^\infty)$. Hence, f_0 does not have a continuous extension to the set $M(H^\infty) \setminus (\mathbb{D} \cup M(L^\infty) \cup G)$.

We consider algebras \mathcal{H} of continuous functions in the open disk which have non-tangential limits on \mathbb{T} belonging to the Douglas algebra B. Let \mathcal{H}_0 be a closed ideal in $C(\mathbb{D})$ which consists of all continuous functions in the disk having nontangential limits a. e. on \mathbb{T} and these limits are equal to zero. Similarly, let \mathcal{H}_B be a closed subalgebra in $C(\mathbb{D})$ which consists of all continuous functions in the disk which have nontangential limits a. e. on \mathbb{T} belonging to the Douglas algebra B.

Theorem B [11]. Let $G = \operatorname{alg}(H^{\infty}, \overline{H^{\infty}}) = C(M(H^{\infty}))$. Then $G \subseteq \mathcal{H}_{L^{\infty}}$ and $G \neq \mathcal{H}_{L^{\infty}}$. Moreover, $\mathcal{H}_{B} \not\subseteq G$ for all Douglas algebras B.

Definition. The uniform algebra B is called a logmodular algebra on Y if the set $\log |B^{-1}| \stackrel{\text{def}}{=} \{\log |f| : f \in B^{-1}\}$ is everywhere dense in the space Re C(Y).

Since $\log |e^f| = \operatorname{Re} f$, an arbitrary Dirichlet algebra is a logmodular algebra. For

926 O. V. IVANOV

example, H^{∞} is a logmodular algebra which is not a Dirichlet algebra.

Theorem C [11]. The algebra $\mathcal{H}_{H^{\infty}}$ is a logmodular algebra on the maximal ideal space $M(\mathcal{H}_{L^{\infty}})$ (Re $\mathcal{H}_{L^{\infty}} = close \log |\mathcal{H}_{H^{\infty}}^{-1}|$).

Note that $\mathcal{H}_B/\mathcal{H}_0 = B$, where B is a Douglas algebra. The following Theorem gives a formula for representing the maximal ideal space $M(\mathcal{H}_B)$ of the algebra \mathcal{H}_B as the sum of M(B) and $M(\mathcal{H}_0)$.

Theorem D [11]. Let B be a Douglas algebra, $H^{\infty} \subseteq B \subseteq L^{\infty}$. Then $M(\mathcal{H}_B) = M(B) \cup M(\mathcal{H}_0)$ and $M(B) \cap M(\mathcal{H}_0) = \emptyset$. Moreover, $M(B) \cap M(\mathcal{H}_{L^{\infty}}) = M(L^{\infty})$, where $M(\mathcal{H}_{L^{\infty}}) = M(\mathcal{H}_0) \cup M(L^{\infty})$.

We now consider $M(\mathcal{H}_{L^{\infty}}) \setminus (\mathbb{D} \cup M(L^{\infty}))$. We use the following notation and definition. Let $\beta \mathbb{D}$ be the Stone–Cech compactification of the open disk \mathbb{D} . We denote by π the continuous projection from $\beta \mathbb{D}$ onto $M(\mathcal{H}_{L^{\infty}})$, $\pi(z) = z$ for all $z \in \mathbb{D}$.

Theorem E [12]. We denote $\Gamma \stackrel{\text{def}}{=} M(\mathcal{H}_{L^{\infty}}) \setminus (\mathbb{D} \cup M(L^{\infty}))$. Then

$$\Gamma = \beta \mathbb{D} \setminus (\mathbb{D} \cup \pi^{-1} M(L^{\infty})),$$

that is any continuous bounded function in the open disk \mathbb{D} has a continuous extension at an arbitrary point $t \in \Gamma$.

Theorem E gives a complete description of the compact set $M(\mathcal{H}_{H^{\infty}})$ (This compact set is an analog of $M(H^{\infty})$). In Theorems A–E, we obtained the description of the maximal ideal space of the algebras \mathcal{H}_B . In this paper, we want to study the algebras of bounded functions $\mathcal{H}_B^G \stackrel{\text{def}}{=} \mathcal{H}_B \cap G$.

In Section 2, we characterize a continuous function in the disk which has nontangential limits belonging to the Douglas algebra on the circle $\mathbb{T}=\{z:|z|=1\}$, we also describe the maximal ideal spaces of algebras of such functions. Our example, given in Section 3, shows that there exist many algebras \mathcal{H} , $H^{\infty} \subset \mathcal{H} \subset G$, in the disk such that $M(\mathcal{H}) \neq M(H^{\infty})$. It is a new fact in case of the disk. This example raises the question about an analog of the Chang-Marchall theorem for the disk. In Section 4, we partially solve this problem.

I thank Vadim Tolokonnikov for his helpful comments and I am truly grateful to Chris Bishop for the information about his recent works.

2. Subalgebras of Hoffman algebra and the maximal ideal spaces. We consider the maximal ideal space $M(\mathcal{H})$ of uniform Banach algebras \mathcal{H} , $H^{\infty} \subset \mathcal{H} \subset G$. Let $H = \{h_{\alpha}\}$ denote any collection of complex valued bounded harmonic functions $h_{\alpha} = \operatorname{Re}(h_{\alpha}) + i \operatorname{Im}(h_{\alpha})$. It is easy to see that every bounded harmonic function on \mathbb{D} can be uniquely extended to a continuous function on $M(H^{\infty})$. Thus, we can also regard $A_H \stackrel{\text{def}}{=} \operatorname{alg}(H^{\infty}, \overline{H})$ as a closed subalgebra of G. For example,

$$\operatorname{alg}(H^{\infty}, \overline{z}) = \operatorname{alg}(H^{\infty}, \overline{A}) = H^{\infty} + C(\mathbb{D}),$$

where A is a disk algebra and $C(\mathbb{D})$ is an algebra of all bounded continuous functions on $\overline{\mathbb{D}}$ [2].

We are interested in the following question. Can we represent any closed algebra between H^{∞} and G in the form of A_H ? We give the negative answer. The follow-

ing theorem is a generalization of the result in [2].

Theorem 1. The maximal ideal of the uniform Banach algebra A_H coincides with $M(H^{\infty})$ for any collection of harmonic functions H.

Proof. Since for any homomorphism $\varphi \in M(H^{\infty})$, $\varphi|_{H^{\infty}}$ is a homomorphism of the algebra H^{∞} , there exists a continuous mapping π of the compact set $M(A_H)$ into the compact set $M(H^{\infty})$, $\pi(\varphi) = \varphi|_{H^{\infty}}$. We state that $\pi(M(A_H)) = M(H^{\infty})$. We only need to verify that for any $\varphi_0 \in M(H^{\infty})$, there exists $\psi_0 \in M(A_H)$ satisfying the following condition: $\pi(\psi_0) = \varphi_0$. Let $\varphi_0 \in M(H^{\infty})$. Since $M(H^{\infty}) = M(G)$, this implies that φ_0 can be uniquely extended to a homomorphism of the algebra G. Denote this homomorphism by $\tilde{\varphi}_0$. Then $\psi_0 = \tilde{\psi}_0|_{A_H}$ is the required homomorphism for which $\pi(\psi_0) = \varphi_0$. We only need to prove that π is a bijection. More precisely, it is necessary to show that each homomorphism on H^{∞} has a unique extension to a homomorphism on H^{∞} , and every homomorphism on H^{∞} has a unique extension to a homomorphism on H^{∞} has a unique extension to a homomorphism on H^{∞} and every homomorphism on H^{∞} has a unique extension to a homomorphism of the forms H^{∞} and H^{∞} is obtained is this way. Since linear combinations of the forms H^{∞} for all H^{∞} , H^{∞} , H^{∞} are everywhere dense, we only need to consider H^{∞} for all H^{∞} . Thus, for all H^{∞} , we have, for any homomorphism H^{∞} on H^{∞}

$$\varphi(f^n h_{\alpha}^m) = \varphi(f^n) \varphi(h_{\alpha}^m) = \varphi(f^n) [\varphi(h_{\alpha})]^m.$$

To prove this theorem, we need the following lemma which is due to Hoffman.

Lemma 1 [8, p.73]. Let u be a bounded real-valued harmonic function on \mathbb{D} . Then the function u defined on $M(H^{\infty})$ by

$$u(\varphi) = \varphi(u) = \log |\varphi(e^{u+i\tilde{u}})| = \log |e^{(u+i\tilde{u})(\varphi)}|,$$

is an extension of u to a continuous function from $M(H^{\infty})$ to \mathbb{R} , where \tilde{u} denotes the harmonic conjugate of u and $\tilde{u}(0) = 0$.

Obviously, the function $e^{u+i\tilde{u}} \in H^{\infty}$. Thus, $\log |e^{(u+i\tilde{u})(\phi)}|$ is a continuous function on $M(H^{\infty})$. Let $h_{\alpha} = u + iv$. Then

$$\phi(h_\alpha) = \phi(u) + i\phi(v) = \log|\phi(e^{u+i\tilde{u}})| + i\log|\phi(e^{v+i\tilde{v}})|.$$

Since $e^{u+i\tilde{u}}$, $e^{v+i\tilde{v}} \in H^{\infty}$, we see that $\varphi(h_{\alpha})$ is defined on H^{∞} . Then $\varphi(f^n h_{\alpha}^m)$ is defined on H^{∞} , too. Now it follows immediately that $M(A_H) = M(H^{\infty})$.

Corollary 1. Let $A, A \subseteq A \subseteq H^{\infty}$, be an analytic subalgebra. Then the maximal ideal space of the algebra $A_{\overline{A}} = alg(H^{\infty}, \overline{A})$ coincides with $M(H^{\infty})$.

We consider the algebras $\mathcal H$ of continuous functions in the open disk which have nontangential limits on $\mathbb T$ belonging to the Douglas algebra B.

Let \mathcal{R}_0 be a closed ideal in $C(\mathbb{D})$, $\mathcal{R}_0 = \{f \in C(\mathbb{D}) : f|_{M(L^\infty)} = 0\}$. For $f \in C(\mathbb{D})$, $f|_{M(L^\infty)} = 0$ denotes that the function f has a continuous extension to $\mathbb{D} \cup M(L^\infty) \subset M(H^\infty)$ equal to zero on $M(L^\infty)$. Similarly, $\mathcal{R}_B = \{f \in C(\mathbb{D}) : f|_{M(L^\infty)} \in B|_{M(L^\infty)}\}$ is a uniform Banach algebra, where B is the Douglas algebra. For $f \in C(\mathbb{D})$, $f|_{M(L^\infty)} \in B|_{M(L^\infty)}$ denotes that the function f has a continuous extension to $\mathbb{D} \cup M(L^\infty) \subset B|_{M(L^\infty)}$

928 O. V. IVANOV

 $\subset M(H^{\infty})$ which belongs to the Douglas algebra B.

Let \mathcal{H}_0 be a closed ideal in $C(\mathbb{D})$ which consists of all continuous functions in the disk which have nontangential limits a. e. on \mathbb{T} and these limits are equal to zero. Similarly, \mathcal{H}_B is closed subalgebra in $C(\mathbb{D})$ which consists of all continuous functions in the disk having nontangential limits a. e. on \mathbb{T} belonging to the Douglas algebra B. The algebras \mathcal{H}_B were introduced by the author in [9] who proved an analog of the Corona theorem of Carleson for \mathcal{H}_B in [10–12]. In this work, we deal with the special case of subalgebras G, namely $\mathcal{R}_B^G = \mathcal{R}_B \cap G$, $\mathcal{H}_B^G = \mathcal{H}_B \cap G$ and the corresponding ideals $\mathcal{R}_B^G = \mathcal{R}_0 \cap G$, $\mathcal{H}_0^G = \mathcal{H}_0 \cap G$.

responding ideals $\mathcal{R}_0^G = \mathcal{R}_0 \cap G$, $\mathcal{H}_0^G = \mathcal{H}_0 \cap G$. **Theorem 2.** The equality $\mathcal{R}_0^G = \mathcal{H}_0^G$ holds. Moreover, $\mathcal{R}_B^G = \mathcal{H}_B^G$ for any Douglas algebra B.

Proof. Let $f \in \mathcal{R}_0^G$. Then, according to S. Axler and A. Shields [13], $f \in \mathcal{H}_0^G$. Conversely, if $f \in \mathcal{H}_0^G$ and f is not an extension of zero to $M(L^\infty)$, then there exists a point $x \in M(L^\infty)$ for which $\sup \lim_{z \to x} |f(z)| = \alpha > 0$. Consider a set $U_\alpha = \{z : |f(z)| > \alpha/2\}$. Obviously, x is a limit point for U_α . Therefore, $[U_\alpha]_{M(H^\infty)} \cap M(L^\infty) \neq \emptyset$.

For the proof of the theorem, we need the following brilliant fact that was proved by Gamelin [14, p.23],

Lemma 2. Let S be any subset of the disk \mathbb{D} . Then $[S]_{M(H^{\infty})} \cap M(L^{\infty}) \neq \emptyset \Leftrightarrow m(F(S)) > 0$, where m is the Lebesgue measure and F(S) is a set of nontangential cluster points of S.

If there exists some angle Γ and some sequence $\{z_n\}$ of points of S such that $\{z_n\} \subset \Gamma$ and $\lim_{n \to \infty} |z_n - z_0| = 0$, then the point $z_0 \in \overline{S} \cap \mathbb{T}$ is called a nontangential cluster point of S.

By using Lemma 2, we obtain that the set of nontangential cluster points has a positive measure. According to the definition of the set U_{α} , this is impossible $(f \in \mathcal{H}_0^G)$, and so, $f|_{\mathcal{M}(L^{\infty})} = 0$. Therefore, $f \in \mathcal{R}_0^G$.

To prove the second statement of Theorem 2, we need the following result.

Lemma 3. Let B be a Douglas algebra and \hat{f} be the Gelfand transform of $f \in B$. Then for an arbitrary point $m \in M(B)$,

$$\hat{f}(m) = \lim_{\alpha} \int_{\mathbb{T}} f(\zeta) P_{z_{\alpha}}(\zeta) dm(\zeta),$$

where z_{α} is the net of points in D which converge to $m \in M(H^{\infty})$, $P_{z_{\alpha}}(\zeta)$ is the Poisson kernel, and $dm(\zeta)$ is the normalized Lebesgue measure on \mathbb{T} .

Proof of Lemma 3. Since the maximal ideal space M(B) of the Douglas algebra B, according to Chang's theorem [1, Th. IX.3.4], is a unique definition of the algebra B, the compact M(B) may be identified with the space of measure in which there exists a weak compactness. By using Corona Theorem of Carleson, we find that for any point $m \in M(B)$, there exists a net $\{z_{\alpha}\}$ of points in $\mathbb D$ such that $z_{\alpha} \to m$ in $M(H^{\infty})$. Therefore, $\mu_{z_{\alpha}} \to \mu_m$ in the weak topology of the space of measure. The measure $\mu_{z_{\alpha}}$ is induced by the Poisson integral

$$\mu_{z_{\alpha}}(f) = \int_{M(L^{\infty})} f(\zeta) P_{z_{\alpha}}(\zeta) \ dm(\zeta),$$

where $f \in L^{\infty}$. If $f \in B$, then

$$\hat{f}(m) = \int\limits_{M(L^{\infty})} f \, d\mu_m = \lim_{\alpha} \int\limits_{M(L^{\infty})} f \, d\mu_{z_{\alpha}} = \lim_{\alpha} \int_{\mathbb{T}} f(\zeta) P_{z_{\alpha}}(\zeta) \, dm(\zeta),$$

for any $f \in B$ and any $m \in M(B)$.

We now finish the proof of Theorem 2. If $f \in \mathcal{H}_B^G$, then $f|_{\mathbb{T}} = g \in B$. Thus, taking the harmonic extension $H_g(z)$ of g to the open disk \mathbb{D} , we find that $f - H_g \in \mathcal{H}_0^G$. According to the first statement of Theorem 2, $f - H_g \in \mathcal{R}_0^G$, and according to Lemma 3, $H_g = \hat{g}$ on $M(L^{\infty})$. Therefore, $f|_{M(L^{\infty})} = \hat{g}|_{M(L^{\infty})}$ and $f|_{M(L^{\infty})} \in B$, $f \in \mathcal{R}_B^G$.

Conversely, let $f \in \mathcal{R}_B^G$. Thus, taking the harmonic extension $H_g(z)$ of g to the open disk \mathbb{D} , we obtain $(f - H_g)|_{M(L^\infty)} = 0$. According to the first statement of Theorem 2, $f - H_g \in \mathcal{H}_0^G$. Therefore, $f \in \mathcal{H}_B^G$.

The immediate goal of this section is to describe the maximal ideal space $M(\mathcal{R}_B^G)$ of the algebra \mathcal{R}_B^G . According to Theorem 2, we may assume that \mathcal{H}_B^G lies inside \mathcal{R}_B^G , and vice versa. Note that $\mathcal{H}_B^G/\mathcal{H}_0^G=B$. Therefore, we claim that $M(\mathcal{H}_B^G)=M(B)\cup M(\mathcal{H}_0^G)$. The main result of this section is the following theorem.

Theorem 3. Let B be a Douglas algebra, $H^{\infty} \subseteq B \subseteq L^{\infty}$. Then $M(\mathcal{H}_{B}^{G}) = M(B) \cup M(\mathcal{H}_{0}^{G})$ and $M(B) \cap M(\mathcal{H}_{0}^{G}) = \emptyset$; here, M(B) and $M(\mathcal{H}_{0}^{G})$ are subsets of $M(\mathcal{H}_{B}^{G})$. Moreover, $M(\mathcal{H}_{0}^{G}) = M(H^{\infty}) \setminus M(L^{\infty})$.

Proof. Since $\mathcal{H}_B^G/\mathcal{H}_0^G = B$, then, according to [16, Th. 6.2],

$$M(B) = \{ m \in M(\mathcal{H}_B^G) : m(\mathcal{H}_0^G) = 0 \}.$$

The following result is now necessary.

Lemma 4. If B is Douglas algebra, then

$$M(\mathcal{H}_0^G) = R \stackrel{\text{def}}{=} \{ m \in M(\mathcal{H}_R^G) : m(\mathcal{H}_0^G) \neq 0 \}.$$

Proof of Lemma 4. Let us prove that the projection $i: R \to M(\mathcal{H}_0^G)$, $i(m) \stackrel{\text{def}}{=} m|_{\mathcal{H}_0^G}$ is a homomorphism. Let $m|_{\mathcal{H}_0^G} = \tilde{m}$, and for any $\tilde{m} \in M(\mathcal{H}_0^G)$, we denote

$$m(f) \stackrel{\text{def}}{=} \tilde{m}(fg)/\tilde{m}(g) \quad (f \in \mathcal{H}_B^G),$$

where $g \in \mathcal{H}_0^G$, $\tilde{m}(g) \neq 0$ and is fixed. Obviously, m(f) is a homomorphism onto \mathcal{H}_B^G and m(f) does not depend on g (otherwise, $\tilde{m}(fg_1)/\tilde{m}(g_1) \neq \tilde{m}(fg_2)/\tilde{m}(g_2)$ implies $\tilde{m}(fg_1g_2)/(g_1g_2)$). Hence, $i^{-1}(\tilde{m}) = m$ and $i^{-1}: M(\mathcal{H}_0^G) \to R$. Let us prove that i is a bijection. We take $m_1, m_2 \in R$ and $m_1 \neq m_2$. Assume that $i(m_1) = i(m_2)$. The equality $\tilde{m}_1(fg)/\tilde{m}_1(g) = \tilde{m}_2(fg)/\tilde{m}_2(g)$ contradicts the assumption that $m_1 \neq m_2$. Therefore, $i(m_1) \neq i(m_2)$. Conversely, suppose that $\tilde{m}_1 \neq \tilde{m}_2$. Then $i^{-1}(\tilde{m}_1) \neq i^{-1}(\tilde{m}_2)$. Hence, i is a bijection of R onto $M(\mathcal{H}_0^G)$. The continuity of i is obvious. We now prove that i^{-1} is a continuous transform. Let $\tilde{m}_\alpha \to \tilde{m}_0$, $\tilde{m}_0 \in M(\mathcal{H}_0^G)$, and let $\{\tilde{m}_\alpha\}$ be a net of points in $M(\mathcal{H}_0^G)$. We take $g \in \mathcal{H}_0^G$ such that $\tilde{m}_0(g) \geq \delta_0 > 0$. Then $\tilde{m}_\alpha(g) \geq \delta/2$. Hence,

$$i^{-1}(\tilde{m}_{\alpha})(f) = \tilde{m}_{\alpha}(fg)/\tilde{m}_{\alpha}(g) \to \tilde{m}_{0}(fg)/\tilde{m}_{0}(g) = i^{-1}(\tilde{m}_{0})(f).$$

The last equality implies that i^{-1} is a continuous mapping. Therefore, i is a homomorphism.

We now comlete the proof of Theorem 3. Since \mathcal{H}_0^G is an algebra without 1, the maximal ideal space $M(\mathcal{H}_0^G)$ is locally compact [15, p. 236]. Denote $B = L^\infty$. Since $\mathcal{H}_{L^\infty}^G = G$, $M(H^\infty) = M(G) = M(L^\infty) \cup M(\mathcal{H}_0^G)$, $M(L^\infty) \cap M(\mathcal{H}_0^G) = \emptyset$ (here, $M(L^\infty)$ and $M(\mathcal{H}_0^G)$ are subsets of $M(\mathcal{H}_{L^\infty}^G)$) as in the proof above. Therefore, $M(\mathcal{H}_0^G) = M(H^\infty) / M(L^\infty)$. This completes the proof.

Corollary 2. The maximal ideal space $M(\mathcal{H}_{H^{\infty}}^G)$ is $M(\mathcal{H}_{H^{\infty}}^G) = L_1 \cup L_2$, where $L_1 = L_2 = M(H^{\infty})$ and $L_1 \cap L_2 = M(L^{\infty})$.

3. Pathological algebras on the disk. Recall that $A_{\overline{A}} = \text{alg } (H^{\infty}, \overline{A})$, where A is the analytic algebra, $A \subseteq A \subseteq H^{\infty}$ (A is the disk algebra).

Theorem 4. For all analytic algebras \mathcal{A} and all Douglas algebras \mathcal{B} $(\mathcal{B} \neq L^{\infty})$ the maximal ideal spaces \mathcal{M} $(A_{\overline{\mathcal{A}}})$ and \mathcal{M} $(\mathcal{H}_{\mathcal{B}}^{G})$ are different. Moreover, $A_{\overline{\mathcal{A}}} \neq \mathcal{H}_{\mathcal{B}}^{G} = \mathcal{R}_{\mathcal{B}}^{G}$.

Proof. The last statement holds since $M(A_{\overline{A}})$ and $M(\mathcal{H}_B^G)$ are different. According to Corollary 1, $M(A_{\overline{A}}) = M(H^{\infty})$, and according to Theorem 3, $M(\mathcal{H}_B^G) = M(B) \cup (M(H^{\infty}) \setminus M(L^{\infty}))$. Hence, if $B \neq L^{\infty}$, then $M(A_{\overline{A}}) \neq M(\mathcal{H}_B^G)$.

Remark 1. Obviously, the analog of Theorem 4 holds for the case of an arbitrary collection H of bounded complex harmonic functions,

Example. Let \mathcal{A} be the disk algebra A. According to [2],

$$A_{\overline{a}} = \operatorname{alg}(H^{\infty}, \overline{A}) = H^{\infty}[\overline{z}] = H^{\infty} + UC(D),$$

where $UC(D) \stackrel{def}{=} C(\overline{D})|_D$. Clearly, $A_{\overline{A}}|_{\mathbb{T}} = H^{\infty} + C$. Therefore, we consider the algebra $\mathcal{H}^G_{H^{\infty} + C}$. According to Theorem 3, $M(\mathcal{H}^G_{H^{\infty} + C}) = M(H^{\infty} + C) \cup (M(H^{\infty}) \setminus M(L^{\infty}))$. Then, by using Corollary 1, we get $M(A_{\overline{A}}) = M(H^{\infty})$. Hence, $A_{\overline{A}} = H^{\infty}[\overline{z}] = H^{\infty} + UC(D) \not\subset \mathcal{H}^G_{H^{\infty} + C}$. This example is a good illustration of Theorem 4.

Remark 2. Algebras $A_{\overline{A}}$ and $\mathcal{H}_{H^{\infty}+C}^G$ are subalgebras of the Hoffman algebra G and $H^{\infty} \subset A_{\overline{A}}$, $H^{\infty} \subset \mathcal{H}_{H^{\infty}+C}^G$. Moreover, according to Theorem 2, $A_{\overline{A}}|_{M(L^{\infty})} = \mathcal{H}_{H^{\infty}+C}^G|_{M(L^{\infty})} = H^{\infty}+C$.

This is an unexpected result. Therefore, a natural analog of the Chang-Marshall theorem in a disk is a difficult problem [2, 3, 5].

4. Description of certain Banach subalgebras of the Hoffman algebra. The most famous theorem on the Douglas algebras is the Chang-Marshall theorem on the description of Banach algebras B such that $H^{\infty} \subseteq B \subseteq L^{\infty}$ on \mathbb{T} . Later, this result was generalized in various ways; one version is presented in this section. We generalize the Chang-Marshall theorem on Banach algebras \mathcal{H}_B^G . Note that $A_H \neq \mathcal{H}_B^G$ for all Douglas algebras B ($B \neq L^{\infty}$). Therefore, we shall replace Banach algebras H^{∞} by the Banach algebra $\mathcal{H}_{H^{\infty}}^G$. Let $\{u_{\alpha}\}_B = IB$ be inner functions such that $\overline{u}_{\alpha} \in B$.

Theorem 5. For any Douglas algebra B, $\mathcal{H}_B^G = \operatorname{alg}(\mathcal{H}_{H^{\infty}}^G, \overline{IB})$.

Proof. Let $f \in alg(\mathcal{H}_{H^{\infty}}^{G}, \overline{B})$. Thus, for any $\varepsilon > 0$, by taking $f_{\varepsilon} = \sum_{i=1}^{N} g_{i}\overline{u}_{i}$, $g_i \in \mathcal{H}^G_{H^\infty}$, $u_i \in IB$, we obtain that $||f - f_{\varepsilon}||_{C(\mathbb{D})} < \varepsilon$. Since $g_i, \overline{u}_i \in G$, we have $f_{\varepsilon}|_{M(L^{\infty})} = (\sum_{i=1}^{N} g_{i}\overline{u}_{i})|_{M(L^{\infty})} \in B$. According to Theorem 2, $f_{\varepsilon} \in \mathcal{H}_{B}^{G}$. By using the completeness of \mathcal{H}_B^G , we can see that $f \in \mathcal{H}_B^G$. Hence, alg $(\mathcal{H}_{H^\infty}^G, \overline{IB}) \subseteq \mathcal{H}_B^G$.

Conversely, let $f \in \mathcal{H}_B^G$. By using Theorem 2, we see that $f|_{\mathcal{M}(L^{\infty})} \in B$. Therefore, for any $\varepsilon > 0$, by the Chang-Marshall theorem, we find $\{g_i\}_{i=1}^{N} \in H^{\infty}$ and $\{u_i\}_{i=1}^{N} \in IB$ such that

$$||f|_{M(L^{\infty})} - \left(\sum_{i=1}^{N} g_{i}\overline{u}_{i}\right)|_{M(L^{\infty})}|| < \varepsilon.$$

$$(1)$$

Consider the function $W_{\varepsilon} \stackrel{\text{def}}{=} \sum_{i=1}^{N} g_{i}\overline{u}_{i}$ on \mathbb{D} . Define the function $\Psi_{\varepsilon} = f - W_{\varepsilon}$ on **D**. Note that $\|\Psi_{\varepsilon}\|_{\mathbb{T}} \| < \varepsilon$ by (1). The harmonic extension of the function $\Psi_{\varepsilon}\|_{\mathbb{T}}$ to the unit disk \mathbb{D} is defined by $P(\Psi_{\varepsilon}|_{\mathbb{T}})$. According to Maximal Principle for a harmonic function, $||P(\Psi_{\varepsilon}|_{\mathbb{T}})||_{C(\mathbb{D})} < \varepsilon$. Define the function $R_{0,\varepsilon}^G \stackrel{\text{def}}{=} \Psi_{\varepsilon} - P(\Psi_{\varepsilon}|_{\mathbb{T}}) \in \mathcal{H}_0^G$. Obviously, $W_{\varepsilon} + R_{0,\varepsilon}^G \in \text{alg}(\mathcal{H}_{H^{\infty}}^G, \overline{IB})$. We claim that the function $W_{\varepsilon} + R_{0,\varepsilon}^G$ is the required one. Indeed,

$$||f-(W_{\varepsilon}+R_{0,\varepsilon}^G)||_{C(\mathbb{D})}=||\Psi_{\varepsilon}-\Psi_{\varepsilon}+P(\Psi_{\varepsilon}|_{\mathbb{T}})||_{C(\mathbb{D})}=||P(\Psi_{\varepsilon}|_{\mathbb{T}})||_{C(\mathbb{D})}<\varepsilon.$$

Since the algebra $\operatorname{alg}(\mathcal{H}_{H^{\infty}}^{G}, \overline{lB})$ is closed and $\varepsilon > 0$ is arbitrary, $\mathcal{H}_{B}^{G} \subseteq \operatorname{alg}(\mathcal{H}_{H^{\infty}}^{G}, \overline{lB})$ \overline{IB}). This completes the proof.

Remark 3. The theorem which characterizes exactly when a function g on the disk is in $alg(H^{\infty}, f)$ and which replaces the Chang-Marshall theorem for these algebras may be found in [5].

- Garnett J. B. Bounded analytical function. New York: Acad. press, 1981. 459 p.
- 2. Axler S., Gorkin P. Algebras on the disk and doubly commuting multiplication operators // Trans. Amer. Math. Soc. – 1988. – 309, №2. – P. 711–723.
- Gorkin P., Izuchi K. Some counterexamples in subalgebras of L[∞](D)// Indiana Univ. Math. J. − 1991. - 40, Nº4. - P. 1301-1313.
- Axler S., Shields A. Algebras generated by analytic and harmonic functions //Ibid. -1987. -36, $N^{\circ}3. -P. 631-638$.
- 5. Bishop C. A characterization of some algebras on the disk. 1992. P. 22 (Preprint).
- 6. Ivanov O. Fatou theorem on nontangential limits and problems of extension on the ideal boundary // Zap. LOMI. - 1991. - 19. - P. 101-109 (in Russian).
- Ivanov O. The Axler-Shields problem of nontangential limits and a maximal ideal space of some pseudoanalytic algebras. $-1992.-P.\ 1-3$ (Preprint).

 Hoffman K. Bounded analytical functions and Gleason parts //Ann. Math. -1967.-86, $N^{\circ}1.-P$.
- Ivanov O. Generalized analytic functions and 2-sheeted Corona theorem // Dokl. Akad. Nauk
- Ukraine SSR, Ser. A. 1989. Nº4. P.10–11 (in Russian). 10. Ivanov O. Generalized analytic functions and analytic subalgebras // Ukrain. Math. J. - 1990. - 42,
- Nº5. P. 616-620 (in Russian). Ivanov O. Generalized Douglas algebras and Corona theorem // Sub. Math. J. – 1991. – 32, Nº1. –
- P. 37-42 (in Russian). Ivanov O. Nontangential limits and Shilov boundary of the algebra H[∞] // Dokl. Akad. Nauk Uk-
- rain. SSR. Ser. A. 1991. Nº7. P. 5-8 (in Russian). 13. Axler S., Shields A. Extensions of harmonic and analytic functions // Pacif. J. Math. - 1990. - 145, Nº1. - P. 1-15.
- Gamelin T. Lecture on H[∞](D). Univ. national de la Plata, 1972. 245 p.

- Naimark M. Normed rings. M: Nauka, 1968 (in Russian). 570 p.
 Gamelin T. Uniform algebras. Prentice-Hall, 1969. 328 p.
 Sundberg C. Truncation of B.MO function // Indiana Univ. Math. J. 1984. 33. P. 749–771.
- 18. Brown L., Gauthier P. M. Behavior of normal meromorphic function on the maximal ideal space of H^{∞} // Mich. Math. J. – 1971. – 18. – P. 365–371.

Received 22, 10, 92