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ON THE DEFINITION OF SINGULAR BILINEAR FORMS AND
SINGULAR LINEAR OPERATORS

PO O3HAYEHHS CHHI'YJISPHUX BIIHIAHAX ®OPM TA
CHHI'YJISPHHUX JIHIMHAX OIEPATOPIB

‘We revise various definitions of the notions of singular operator and singular form and propose the most
suitable ones. We also preserit the simplest properties of these objects.

AmnastiayloThes pisHi 03HaYeHHS IOHATE CHHI'YJIAPHOTO ONepaTopa Ta CHHIYJISpHOI 6iiniHHOL dhopMH
i nponoHyloTECA HaHGLILI BAaN]. PosryifaaloTecs TakoX HaHIpocTil BJIAaCTHBOCTI TaKHX 06’ €KTiB.

The singular bilinear forms and singular linear operators in a Hilbert space are remark-
able objects. Roughly speaking, they vanish on a dense subset but are still capable to
produce a nontrivial perturbation effect.

This note is devoted to the analysis of various definitions of notions of singular
operator and singular form. We also sketch the simplest properties of singular objects.

In the physical literature the singular objects are often associated with the potentials
supported by null sets. In mathematics the term “singular” (for a form or an operator)
originates from the canonical Lebesgue decompositions of one measure with respect to
another into absolutely continuous and singular parts [1]. Later, it became clear that
the concept of singularity for the forms and operators is of intrinsic nature and admits
appropriate definition [2-4].

1. Regular and singular bilinear forms. In our approach, the properties of regul-
arity and singularity are not alternative [1-4].

Let ¥ be a symmetric bilinear form with the domain Q(y) dense in a Hilbert space
H. We shall use the notation Y{@] = Y(@, @), Ye O(Y).

Definition 1. A vector ¢ € H is called regular for vy if ¢, Q(Y), (pn—pf? 0,
MNP, — ¢, )= 0 = v[9,] > ae R and the number a is independent of the choice
of the sequence ¢,

The set of all vectors regular for y will be denoted by R(Y).
Following facts from the theory of bilinear forms [5] are well-known.
Proposition 1.

o) =R = v=17, 1
where ¥ stands for the closure of .
Proposition 2. )
0eRW & 7 C 7. @

. If Q() < R(Y), we say that 7y js regular. Thus, v is regular iff it is closable. In
other words if 7 is regular , then all vectors ¢ € Q(Y) are regular for v. A sufficient
condition for this to hold is 0 € R(Y) [5] The set of all denscly defined symmetric
bilinear regular forms is denoted by 7.

If v is not closable in # then 0 g R('y). What can we say about other vectors

9= QM ?
Definition 2. ¢ e H is said to be of singular type for <y if there exist at least
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wo different sequences ¢, ¢, € Q(Y) such that
H ;
¢, — ¢ MY, — 9, 0, 'Y'[(Pn] —a, 3

o 50, M, -9 >0, Ye,) >, @)

and a#a'.

The set of all vectors of singular type for <y is denoted by S(y).

Itis clear that if vy is not closable, then S(}) is not empty. Indeed, then at least
0 e S(y). 1t may even happen that H = S(7). This is the case, for example, if we set
H=Lo, V=i, +75 (1. where 15(¢] = p(O).

Definition 3. A singular type vector ¢ @ € S(Y) is called singular for y if
one of the numbers a, a’ of (3), (4) is zero. The set of all vectors singular for 7y is
denoted by S(y). A form v is called singular if S(Y) is dense in H. In this case,
wewrite ye T,

Proposition 3. If y#0, Y20 and the set

®y:= {0 =0®) | 30, 0®s 9,2 0, vio,] - 0} )

is dense in H, then ye I,
Proof. The set

Kery:= {90 | M9l =0} (©6)
is evidently contained in ®,. Moreover, if Ker y is dense in %, then y e 7. In-
deed,let we Q(Y), fwl=a’#0 and y, > vy, vy, € Kery. Then for each ¢ =
e Kery, we consider two sequences ¢, =@ and ¢}, = ¢ + ¥ — v, which satisfy (3),
(4). Thus, Kery € S(y) and, according to definition (3), v e .

If Kery is notdensein # then the reasoning is different. Denote

o* = {9 Q)| Ylg) #0}. (7
In this case,
@*0 N ‘I)g =0 (8)

because Kery is not dense in . Moreover, any @ that belongs to both ®* and
®, is singular, i. e., '

*0 N @, < (. )]

Indeed, let us take, for the sequences in (3), the one given by (5) and ¢; = ¢ with .
a’=v{¢] # a=0. We now have to show that each @, € @ is singular. For this, we
construct two sequences: ¢, o from (5) and @, o= @ — ¢ — ¢,, where @ € ®*0 is
fixed and @, — ¢ asin (5). Then @, @y, ¢;,0—> Pp, and a=0, a’"=y{p] 0.

By virtue of Proposition 3, we can reformulate the definition of a singular form as
follows.

Definition 4. A positive bilinear form y# 0 s said to be singular in H (y =
€ 1) iffor any
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0 €00, 39, O, 0n > 0, V@I 0. (10)

Remark 1. If ®5 < Q(Y)NS(Y) is dense in H, then Q(Y) T S(¥).
The above formulations of the concepts of regularity and singularity for bilinear
forms has the following important consequence.

Theorem 1 [1, 3]. Every symmetric semibounded bilinear form vy densely de-
fined in the Hilbert space H admits the unique decomposition into regular and sin-
gular components

| PR, 68V
where YV, e T, v 2-M, v, € T, ¥ 20.
In the case y= 0, the decomposition (11) was first obtained in [1], where v, was

defined as Y—7, and ¥, was the largest regular form obeying 7, <.

2. Relative regularity and singularity for a pair of forms. In this section, we
consider a pair of bilinear forms defined on a linear complex vector space and discuss
the concepts of their relative regularity (respectively, singularity).

Let @ be a linear tomplex vector space and let ¢ be a positive bilinear form on
®. We shall use following notation [6, 7]:

Z.!' = { {q)n}:=l 1 ¢, € @, t[{Pn— ('pm] _)O}’
(12)
0= {{o.}_, | ¢ @, t[,1 >0}

In other words, X, is the set of all 7-Cauchy sequences and 0, C X, is the set of all

zero--Cauchy sequences. Itis clear that the factor space X,/0, is a Hilbert space with
the inner quasiproduct

(':P) ‘I’)&‘ = I((P, W): ‘P, \II € Q. (13)

We denote this space by #,.

Consider now two positive bilinear forms y and % defined on ®. By ﬁsing (12),
we introduce the sets

I=%4NL, 6:=6,N86,

My = ZyN Ly, ILy= % N6,

Definition 5. A positive bilinear form y on ® is called regular with respect

(14)

to another positive bilinear form X on ® (we write Y| %) if
' Iy, = 6. _ (15)

Relation (15) implies that 7y is closable (regular) in the Hilbert space H. x The
forms ¥ and y, are mutually regular (Y|l %, %Il ) if

Iy = Iy = 6. . (16)

Proposition 4 (7). For v,x 20 on ®@,

YIX = vlx Y

iff Ker ¥ =0 in H,.
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For 120 on @ and ¢ € @, we denote

EP = {{%}:=l | (X[0— @] =0, i.e. @, ¢}
Definition 6. A form Y20 on © is is called singular with respect to the form
xX20o0on ® (yL y) ifforany ¢ e ®,
N6, #0. (18)
Proposition 5. _
YLy & xly (19)
Proof. Let v 1 % and, for ¢ € ®, we have

¢, _x) ¢, 9, L. (20)

Then, clearly, y,=¢—¢, i> ¢, W, i 0.
Proposition 6 [3].

YLy & Hhy= 20 %, @1)
Theorem 2 [3]. Let ¥, Y be symmetric bilinear forms on ®. Assume that %=
20, Kery c Kery, and Y is bounded below in Hy, i.e., Y[¢]2-M ||q)||§ for

some M 20. Then Yy admits the unique decomposition
Y=%*+% _ (22)
where Y,=-M, ¥, isclosablein H;, v, L ¥, ¥:20 in H, If M =0, then

Y % and YL, .
3. Singular forms in the scale of Hilbert space. Let ® and y be fixed and let
%o @20, denote a family of positive bilinear forms on @; also let

H 5 My D H D, ol (23)

we deﬁne-xa.(-, Y= (, ‘)%, o=0,
If y|l %o G.e., v is clésablc in ﬂ;)), then, evidently, v[| x, forall a > 0. But
if yL o (or yL Yoy 0 >0), then it is possible that v [| X, for some o> a.
Conversely, let v|| %, for some o> 0. Under what condition y.L Xg, 0= B<a?
Theorem 3. Let Y=0 on @ and Y|| %o O >0. Assume that

Ker 7 < H,, (24)

is dense in H, 0 <P <o. Then y L xp, where Y denotes the closure of ¥
in H,.
Proof. (24) = (18) with }2{0t forall @ € @.
Further, let us study a geometrical question for the scale (23), namely, when a sub-
space Fy C Hy, 0.>0, isdensein H;, 0<B<a?
For 0 < B < a, we introduce the rigged Hilbert space
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H D HDH,, : (25)

where H = 91%, Hy=H, A H=H,,d=a-p.
Theorem 4 [3, 8]. The linear space Fy closed in Hy is dense in H_ iff:
i) (FHpOF,) N H, = {0}; (26)

or
i) (1_,0(#H0Fp)) N Hy = {0} @7

where 1_ is‘canonical isomorphism from Hy to F [9). .
Thus, every positive closed operator V in #H, such that Ker V.N A, = {0},
0<d <a, generates the bilinear form Yy (¢, ¥) =(VQ, W)g;, which is singular in

5{(1_4 = % (v -LXB)‘

4. Singular operators. According to [4], an operator A densely defined in H is
called singular if for any y € R(A) there exists a sequence W, € D(A) such that
v, =0 and Ay, — y.

Equivalently, A is singular if for any ¢ e D(A); there exisis a sequence @, €
e D(A) such that @, —> ¢ and A@,—0 (wecanput Yy=AQ, V¥, =¢,— ).

This shows that the formulation of the concept of singularity in terms of forms has
some advantage over that in terms of operators. Namely, if A is positive and singular,

then the form v, (¢, W) = (A, ) is singular in the sense of definition 4. On the other

hand, a positive form 7y defined on ® C % does not necessarily admits an operator
representation in this space. However, according to the discussion in Sec. 3, it might

.be possible to find a positive form % || ¥ and then y will possess an operator repre-
sentation in Ff,.

As a conclusion, we present a theorem on connection between singular forms and
operators under some additional assumptions.

Assume that a rigged Hilbert space of the form (25) is given. We write Y e ‘1:,0_;+
if the following conditions hold:

i) O(Y) € H, andisdensein #;

i) y=v*=F™ > —co, i.e., ¥ is symmetric, closed, and bounded below in #;

iii) Kervy is dense in Hj,. (28)

It is clear that each y = ‘I:,n_a has the operator representation in H,, (¢, ¥) =
= (V9 Wi 0,y & DXV,) C Q(y), where V= Vy >—co is the self-adjoint bounded
below operator in F, such that the set Ker V, = Ker v is dense in H,. Consider
Ty:=1y,V, asan operator in F,, where 1, is the canonical isomorphism from
H, to H,. Bvidently, T, is singularin % because the set Ker Ty = Ker V, is
dense in H,. Thus, we can call T, the associated singular operator corresponq;ng to

the singular bilinear form ¥y given in the rigged Hilbert space (25).

Conversely, let T be a singular operator in #; from (25) with the following pro-
perties: i
i) the domain 2XT) € #, andisdensein #;
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ii) 1_, T is self-adjoint and bounded below as an operator from H, to Hy;

iii) the closure of the range R(T) in H;, has zero intersection with 74, i.e.,

BT n A, = (0). 29)

We denote by E; 7 the set of all operators of this sort.
Theorem 5 F “or the fixed rigged Hilbert space (25}, there exists the one-to-one

correspondence between the sets ‘I;Uﬁ and E; ;. .

Proof. For each ye ‘I;wa, the singular associated operator T., belongs to the

class E, 7. Indeed, 1_ o7, isself-adjointas Vy=Vy and 1 ,=1 415, isa
unitary operator. Further, condition (28) implies (29) by theorem 4. Conversely, each
T e, ; defines the form (9, y)=(1_oTe, ) in H, ({--) denotes the duality
between 7 and #{) which is symmeric and bounded below. In 4, the following
representation is tme: - ¥(¢, ) =(Vo, ), = (¢, Vy),, where V:=1, 1_,T isa
self-adjoint operator. Let ¢ be the closure of ¥ in ﬂH‘;. Finally, the set Ker vy is

dense in # by virtue of (29). In fact, the equivalence (29) and

RA_oD) N H = (0) (30)
give |
0= (y, Kery) = ( v, Kery) = (1, v, Kery),.

foreach Wy e H; such that y L Kery. This means that e Q{(l_,gT)(_), and
therefore, due to (30), w= 0. Thus, y e ‘I}o-ﬁ' It is clear that the singular operator

T associated with 7y coincides with T.
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