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ON THE CARDINALITY OF A REDUCED UNIQUE RANGE SET*
PO MOTYXXHICTb PEJYKOBAHOI MHOKWHHU YHIKAJIBHOCTI

Two meromorphic functions are said to share a set S C CU{oo} ignoring multiplicities (IM) if .S has the same pre-images
under both functions. If any two nonconstant meromorphic functions, sharing a set IM, are identical, then the set is called
a “reduced unique range set for meromorphic functions” (in short, RURSM or URSM-IM).

From the existing literature, it is known that there exists a RURSM with seventeen elements. In this article, we reduced
the cardinality of an existing RURSM and established that there exists a RURSM with fifteen elements. Our result gives
an affirmative answer to the question of L. Z. Yang (Int. Soc. Anal., Appl., and Comput., 7, 551 —-564 (2000)).

JBi mepomopdri (yHKuil mogimstors Mix coboro muoxuay S C C U {oco}, He BpaxoByruH KpaTHICTh, SKIIO S Mae
OJHAKOBI MPo0oOpa3u BiTHOCHO 000X mux (yHKOiH. SKmo mis neskoi MHOKHHH Oyab-ski 1B MepoMopdHi (yHKIII, oo
HE € CTAIMMHU Ta MOAUIIOTH MiXK COOOIO IF0 MHOXKHHY, HE BPAaXOBYIOYH KPaTHICTb, 0OOB’S3KOBO € TOTOXKHHMHM, TO Taka
MHOXHHA Ha3MBAEThCS PEIYKOBAHOK MHOXHUHOI YHIKAJIBHOCTI I MEpOMOP(GHHUX (YHKIIIH.

3 HasBHHX pOOIT BiZIOMO, IO iCHY€ penyKoBaHa MHOKHHA YHIKAIEHOCTI UTI MEPOMOP(HUX (YHKIIIH, sIKa CKITaTa€ThCs
3 17 enemeHTiB. Y 1iil poOOTI MU CKOPOYYEMO BKa3aHE YUCIIO Ta JOBOIUMO, L0 iCHY€E peayKOBaHa MHOKMHA YHIKAIbHOCTI
st MepoMophHHX (QYHKLIH, o ckiagaeTbes 3 15 enementiB. Hamr pesynsrar nae cTBepJHY BiAINOBiAb HA IHMTaHHS,
nocrasnene L. Z. Yang (Int. Soc. Anal., Appl., and Comput., 7, 551 -564 (2000)).

1. Introduction. Suppose that f and g are two nonconstant meromorphic functions and a € C. We
say that f and g share the value a-CM (counting multiplicities), if f —a and g — a have the same set
of zeros with the same multiplicities. Similarly, we say that f and g share the value a-IM (ignoring
multiplicities), provided that f —a and g — a have the same set of zeros, where the multiplicities are
not taken into account.

Moreover, we say that f and g share co-CM (resp., IM), if 1/f and 1/g share 0-CM (resp.,
IM).

In course of studying the factorization of meromorphic functions, in 1976, F. Gross [6] first
generalized the idea of value sharing by introducing the concept of set sharing. Before going to the
details of this paper, we first recall the definition of set sharing:

Definition 1.1. Let f be a nonconstant meromorphic function and, let S C C U {oc}. The set

Ef(S) = [J{(z;m) e Cx N| f(2) —a =0},
a€eS

where a zero of f(z) — a with multiplicity m counts m times in E;(S), is called the pre-image of S
under f, which is also denoted by f~1(S). Also, we define

E(S) = J{(z1) eCxN| f(z) —a =0},

a€sS

i.e., E;(S) denotes the set of distinct elements in E¢(S).
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1554 B. CHAKRABORTY

Definition 1.2. Two meromorphic functions f and g are said to share a set S CM (resp., IM),
if Ef(S) = Ey(S) (resp., Ef(S) = Eg(5)).

Thus, if S is a singleton set, then it coincides with the usual definition of the value sharing
notation.

In 1976, F. Gross [6] proposed the following question which has later became popular as ”Gross’
question”. The question was as follows:

Question 1.1. Does there exist a finite set S' such that any two nonconstant entire functions f
and g sharing the set S must be f = ¢?

In 1982, to give an affirmative answer to the above question, F. Gross and C. C. Yang [7]
introduced the terminology of unique range set for entire function (in short, URSE) as follows:

Definition 1.3. 4 set S C C is said to be a unique range set for entire functions (in short,
URSE), if for any two nonconstant entire functions f and g, the condition E¢(S) = Ey(S) implies
f=9

In the same paper [7], they proved the following result.

Theorem A [7]. Let S = {z € C: * + z = 0}. If two entire functions f, g satisfy E;(S) =
= Ey4(S), then f = g.

It is to be observed that the set S given in Theorem A is an unique range set but contains
infinitely many elements. Thus it can not answer to Question 1.1.

Analogue to Definition 1.3, the definition of unique range sets for meromorphic functions was
also introduced in the literature.

Definition 1.4. A4 set S C C is called a unique range set for meromorphic functions (in short,
URSM), if for any two nonconstant meromorphic functions [ and g, the condition E;(S) = E4(S)
implies f = g.

Later on, many authors (see, e.g., [3, 4, 10, 11, 15]) gave the existence of such finite sets for
entire functions as well as meromorphic functions to confirm Question 1.1.

The prime concern of the researchers is fo find new unique range sets or to make the cardinalities
of the existing range sets as small as possible. To see the remarkable progress in this regard, one can
go through the research monograph of C. C. Yang and H. X. Yi [13].

To carry on the research on unique range sets, in 1997, H. X. Yi [16] introduced the concept of
reduced unique range sets.

Definition 1.5 [16]. 4 set S C CU{oo} is said to be a unique range set for meromorphic (resp.,
entire) functions in ignoring multiplicity, in short URSM-IM (resp., URSE-IM) or a reduced unique
range set for meromorphic (resp., entire) functions, in short RURSM (resp., RURSE) if Ef(S ) =
= Eg(S ) implies f = g for any pair of nonconstant meromorphic (resp., entire) functions.

So, the following question is natural.

Question 1.2 [16]. Is there any finite set S such that for any two nonconstant meromorphic
(resp., entire) functions f and g, the condition E¢(S) = F4(S) implies f = g?

In 1997, H. X. Yi [16] gave an answer to the above question.

Theorem B [16]. Let n and m be two integers with n > 2m + 14 and m > 2, and let a and b
be two non-zero constants such that the algebraic equation z" + az™ + b = 0 has no multiple roots.
If n and m are co prime, then
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S={z|z"+az"+b=0}

is a URSM-IM.

The above theorem gives the existence of a URSM-IM with 19 elements. In 1998, H. X. Yi [17]
further improved the above result as:

Theorem C [17]. Let n(> 17) be an integer. Let

S={z|az" —n(n—1)2%+2n(n —2)bz — (n — 1)(n — 2)b* = 0},

where a and b be two non-zero constants such that ab™ 2 # 2. Then the set S is a URSM-IM.
Thus Theorem C gives the existence of a URSM-IM with 17 elements. In this direction, in 1997,
M. Reinders [12] has shown that there exist URSM-IM with 16 elements. But unfortunately, the
proof of a lemma which is necessary in the proof of Reinders’ proof [12] has some gaps [9, p. 204].
In 1998, M. L. Fang and H. Guo [2] gave another example of URSM-IM with 17 elements using
the technique of G. Frank and M. Reinders [3].
For a positive integers n(> 3) and a complex number ¢(# 0,1), we shall denote by P(z) [3]
the following polynomial:

n—1)(n—2)

P(Z) _ ( 5 n(n — 1) n—2

2" —n(n—2)2"" 1+ —g & e (1.1)

Clearly, the restrictions on ¢ implies that P(z) has only simple zeros.

Theorem D [2]. Let S = {z | P(z) = 0}, where P(z) is defined by (1.1). If n > 17, then the
set S is a URSM-IM.

In 1999, S. Bartels [1] gave another proof of Theorem D. Thus it is observed from the existing
literature that the smallest available reduced unique range set must contains at least 17 elements (see,

e.g.,[1,2,17]). Let
Ay = inf{4(9): S is a URSM-IM},

where §(S) is the cardinality of S. It is clear from the above discussion that f(S) < 17. Also,
examples show that #(S) > 6 [13, p. 527]. Combining the above results, L.-Z. Yang pose the
following open question [14, p. 557].

Question 1.3 [14]. What exactly the number \;; is?

The main purpose of this paper is to reduce the cardinality of the URSM-IM in Theorem D. As
a result, our paper partially answers to Question 1.3.

2. Main result. The following theorem is the main result of this paper.

Theorem 2.1. Let S = {z: P(z) = 0}, where P(z) is the polynomial of degree n, defined in
(1.1). If n > 15, then S is a URSM-IM.

Remark2.1. In Theorem 2.1, if n > 9, then S is a URSE-IM.

3. Notations. We assumed that the readers are familiar with the classical Nevanlinna theory
[8, 13]. Before going to the proof of the main theorem, we explain some well known definitions and
notations.

Definition 3.1. Let f be a meromorphic function. Also, let a € CU {oc} and m € N.

(i) We denote by N(r,a; f |= 1), the counting function of simple a-points of f.
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1556 B. CHAKRABORTY

(ii) We denote by N(r,a;f |< m) (resp., N(r,a;f |> m)), the counting function of those
a-points of f whose multiplicities are not greater (vesp., not less) than m where each a-point is
counted according to its multiplicity.

Let N(r,a; f |<m) and N(r,a; f |> m) denote the reduced counting function of N(r,a; f |<
m) and N(r,a; f |> m), respectively.

Similar to the above counting functions, N(r,a; f |< m), N(r,a; f |> m), N(r,a; f |< m)
and N(r,a; f |> m) are defined.

Definition 3.2. For a € CU {oo} and p € N, we denote, by Ny,(r,a; f), the sum

N(r,a; f) + N(r,a; f |>2)+...+ N(r,a; f |> p).

Thus, clearly Ny(r,a; f) = N(r,a; f).

Definition 3.3. Let f and g be two nonconstant meromorphic functions such that f and g share
a IM, where a € C U {co}. Let zy be an a-point of [ with multiplicity p and zy be an a-point of g
with multiplicity q.

(i) We denote by N ;J) (r,a; f), the counting function of those a-points of f and g where
p=gq=1. Thus N}E)(r, a; f) = Né)(r,a;g).

(i1) We denote by Ng(r, a; f), the reduced counting function of those a-points of f and g where
p=142>2. S0, Ny(r.a; f) = Ny (r,a;g).

(iii) We denote by N1 (r,a; f), the reduced counting function of those a-points of f and g where
p > q and by N(r,a;g), we denote the reduced counting function of those a-points of f and g
where q > p. Thus Np(r,a; f) # Np(r,a;9).

We denote by N, (r,a; f,q), the reduced counting function of those a-points of f whose multi-
plicities differ from the multiplicities of the corresponding a-points of g. Thus,

N.(ra; f,g) = Ni(r,a;9,f) and  Ny(r,a; f,g) = Np(r,a; f) + Np(r,a; 9).

Definition 3.4. Let a,b € C U{oo}. We denote by N(r,a; f | g #b), the counting function of
those a-points of f, counted according to multiplicity, which are not the b-points of g.

Definition 3.5. A polynomial p(z) over C, is called a uniqueness polynomial for meromorphic
(vesp., entire) functions, if for any two nonconstant meromorphic (resp., entire) functions f and g,
o(f) = pl(g) implies f = g.

In 2000, H. Fujimoto [4] first discovered a special property of a polynomial, which was later
termed as critical injection property.

Definition 3.6 [4]. A4 polynomial o(z) is said to satisfy critical injection property if p(a) #
# o(B), where o and [ are any two distinct zeros of ¢'(z).

4. Auxiliary lemmas.

Lemma 4.1 (First fundamental theorem of Nevanlinna, [13]). For a nonconstant meromorphic
function f and for a complex number a € C U {0},

1
7 (r st ) =760+ o),
where O(1) is a bounded quantity depending on a.
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Lemma 4.2 (Second fundamental theorem of Nevanlinna, [13, p. 15]). Suppose that f is a non-

constant meromorphic function in the complex plane and a1, as, ..., aq are q(> 2) distinct values
in C. Then
q
(= DT(r, f) < N(r,00; f) + > N(r, a5 f) = Neam(r, f) + S(r, f), (4.1)
j=1
where

Niam (7, f) = 2N(r,00; f) — N(r,00; f') + N(r,0; f/)

S(r, f)
T(r, [)

and S(r, f) is a quantity such that — 0 as 7 — 400 outside of a set E(C (0,00)) with

finite linear measure.
Remark4.1. Clearly, (4.1) can be written as

q
(q—].)T(T,f) N?"OOf ZW’FG]? —NO(T,O;f/)+S(T,f),

where No(r,0; ') is the counting function of those zeros of f’ which is not zeros of szl(f —aj).

Lemma 4.3 [13, p. 28]. Let f be a nonconstant meromorphic function and let

ZZZO ay f*
Z;nzo bi f?

be an irreducible rational function in f with constant coefficients {ay} and {b;}, where a,, # 0 and
by, # 0. Then

R(f) =

T(r,R(f)) =d-T(r,f)+5(r f),
where d = max{n, m}.
Lemma 4.4 [5]. Let ©(z) be a monic polynomial without multiple zero whose derivative has
mutually k-distinct zeros, given by di,do, . .., dy with multiplicities q1,q2, . . ., qi, respectively.
Suppose that p(z) satisfy the “critical injection property”. Then o(z) will be a uniqueness

polynomial if and only if
k
D win> )
I=1

1<i<m<k
In particular, the above inequality is always satisfied whenever k > 4. When k = 3 and

max{qi1,q2,q3} > 2 or k = 2, min{q1,q2} > 2 and q1 + q2 > 5, then also the above inequality
holds.

Lemma 4.5 [13, p. 376]. Let F and G be two non constant meromorphic functions sharing
1CM. If

Ny(r,0; F) + Na(r,0;G) + Na(r,00; F) + Na(r,00;G) < (pu+ o(1))T'(r),

where n < 1, r € I, T(r) = max{T(r,F),T(r,G)}, I is a set of infinite linear measure of
€ (0,00). Then one of the following holds:
) F=g,
i) FG=1.
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1558 B. CHAKRABORTY
Lemma 4.6. Let F and G be two non constant meromorphic functions sharing 1 IM. Then
N(r,1;F)+ N(r,1;G) — Né)(r, 1;F) + Nu(r,1; F,G) <
< SN L) + N LG} + N 1F > 2) + N 1,6] > 2).

Proof- Given F and G share 1 IM. Let zg be an 1-point of F of multiplicity p and let zy be
an 1-point of G of multiplicity q. Now, we consider following cases:
Casel. Assume p = q.
If p=¢q =1, then 2 is counted (1 + 1 — 1+ 0) = 1 times in the left-hand side of the above
1 .
inequality whereas it is counted 5(1 + 1)+ 0+ 0 =1 times in the right-hand side of the same.
If p=q > 2, then 2 is counted (1 +1 — 0+ 0) = 2 times in the left-hand side of the above
1 . . .
inequality whereas it is counted i(p + p) + p+ p = 3p times in the right-hand side of the same.

Case2. Assume p > q.
If p>qand ¢ =1, then p > 2 and 2 is counted (1 4+ 1 — 0+ 1) = 3 times in the left-hand

1 3 1 1\ . .
side of the above inequality whereas it is counted §(p +1)+p+0= ?p + 3 (2 3+ 2) times in

the right-hand side of the same.
If p > qand g > 2, then 2 is counted (1 +1 — 0+ 1) = 3 times in the left-hand side of the
1 3 . . .
above inequality whereas it is counted §(p +q)+p+qg= 5(1) + q)(> 3q) times in the right-hand
side of the same.

Case3. Assume q > p.
The explanations are similar to Case 2. Hence, the proof is completed.

5. Proof of Theorem 2.1. Given that f and g share the set S IM. Now, we define

F:=Q(f), G:=Q(),

where

and P(z) is defined in (1.1), c € C\ {0, 1}.

Thus F and G share the value 1 IM, and, hence, Er({1}) = Eg({1}). Now we consider two
cases:

Case 1. First, we assume that F' and GG are linearly dependent. Then there exist a non zero
constant £ such that

F=kQ@.

Thus, using Lemma 4.3, we obtain
T(r, f) =T(r,9) + S(r, 9).
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Subcase 1.1. If Ex({1}) N Eg({1}) # ¢, then there exist a zy € C such that F(z) = G(z) =

= 1. Thus, £ =1, i.e.,
F =G, ie., P(f) = P(9).
—1 —2

Since P'(z) = n(n - D(n )z”_3(z—1)2 and P(0) # P(1). So, P(z) satisfies “critical injection
property”. Thus, in view of Lemma 4.4, P(z) is a uniqueness polynomial, i.e., f = g.

Subcase 1.2. If Ep({1})NEg({1}) = ¢, then Er({1}) = E¢({1}) = ¢. Thus, we can assume
that F' and G share 1 CM.

First, we show that under the given conditions,

FG #£1,
because, otherwise if F'G = 1, then
2 42
f H f PYZ E(g PYZ) - (TL _ 1)2(n _ 2)27
9 2n n
where ;, ¢ = 1,2, are the roots of the equation z* — 1 z + —5 = =0.
7 —

Let zg be a ~;-point of f of order p. Then zy; must be a pole of g (say, of order ¢). Then
p =ng > n. So,

_ 1 1
Again, let zg be a zero of f of order ¢. Then zy must be a pole of g (say, of order s). Then
(n—2)t =ns. Thus t > s. Now, 2s = (n —2)(t — s) > (n— 2). Thus (n — 2)t = ns gives t > g
So,
_ 2 2
n n

Similar calculations are valid for g also. Thus, applying the second fundamental theorem, we get

T(r,f) < N0, )+ > N(rv;f)+8(rf) <

||Mw

IN

2707, f) + %Tm )+ 50, 1),

which is impossible as n > 5. Thus, F'G # 1.
Now, our claim is ' = G. Since

No(r,0; F) + Na(r,0; G) + Na(r,00; F) + Na(r,00;G) <
< 2N(r,0; f) + 2T(r, f) + 2N(r,0; g) + 2T°(r, g) + 2N (r, 00; f) + 2N (r,00; g)+
+S(r, f) + 5(r,g9) <
< AT(r, f) +4T(r, g) + 2N(r,00; f) + 2N (r,00;g) + S(r, f) + S(r, 9) <

< (14 0(1))T(r) (asn >9 (resp., n > 15) for URSE-IM (resp., URSM-IM)),

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 11



1560 B. CHAKRABORTY
where T'(r) = max{T'(r, F),T(r,G)} and S(r) = o(T'(r)), so, in view of Lemma 4.5, we obtain
F=aG. (5.1)

Thus, from (5.1), we have

-1 -2
Since P'(z) = n(n = 1n )z”_3(z—1)2 and P(0) # P(1). So, P(z) satisfies “critical injection

property”. Thus, in view of Lemma 4.4, P(z) is a uniqueness polynomial, i.c.,

=g

Case2. Assume that ' and G are linearly independent. Then F' # (. Henceforth we shall
denote by H the following function:

F'  2F G 26
H:= (FF—I)(GG—l) (5-2)
Again we consider two subcases:

Subcase 2.1. Assume H = 0. Then on integration, we get from (5.2) that

1 A
G—lZF—1+R

where A(# 0), B are constants. Thus F' and G share the value 1 CM. Since,
Ny(r,0; F) + Na(r,0; G) + Na(r, 00; F) + Na(r,00; G) <
< 2N(r,0; f) + 2T (r, f) + 2N (r,0;9) + 2T (r, g) + 2N(r, 00; f) + 2N(r, 00; g) +

+5(r, f) +5(r,9) <

>~

< =T(r)+S(r) (A=38, or 12 according to f and g both are entire,

3

or meromorphic functions, respectively) <
< (140(1)T(r) (asn > 9 (resp., n > 15) for URSE-IM (resp., URSM-IM)),
where T'(r) = max{T'(r, F),T(r,G)} and S(r) = o(T'(r)), thus, in view of Lemma 4.5, we obtain
FG=1 or F=G.

But, already we have seen that, if n > 5, then FG # 1. Thus, F' = G, which contradicts the fact
that F" and G are linearly independent.
Subcase 2.2. We assume that H # 0. Then by simple calculations, we have

N(r,00; H) < N(r,00; F) + N(r,00;G) + N(r,0; F| > 2) + N(r,0; G| > 2)+
+N«(r,1; F,G) + No(r,0; F') + No(r,0; G'),
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where No(r,0; F') is the reduced counting function of those zeros of F” which are not zeros of
F(F — 1), similarly, Nq(r,0;G’) is defined.

Since ( 1( 2)
_n- n— n—2 2 o
eF = =2 (F =)
and
CF/ — n(n B ]‘2)(n B 2) f’n,—3(f _ 1)2](‘/’
. . 9 2n n
where ;, ¢ = 1,2, are the roots of the equation z* — 1% + 5 = 0. Thus,
n— n—

N(r,00; H) < N(r,00; f) + N(r,00;9) + N(r,0; f) + N(r,0; 9) + N.(r, 1; F, G)+
+N(r,1; f) + N(r,1;9) + Nu(r,0; f/) + Ni(r,0;¢') <
< N(r,00; f) + N(r,00;9) + 2{T(r, f) + T(r,9)} + N.(r, 1; F,G)+
+N.(r,0; f') + N (7,05 ¢), (5.3)

where N, (r,0; f') is the reduced counting function of those zeros of f’ which are not zeros of

f(f—1)and (F —1), N.(r,0;¢") denotes similarly according to g. Again
NP (r.1;F) = Ng (1, 1:G) < N(r.00: H) + S(r.J) + S(r. 9), (5:4)

where NB (r,1; F) is the counting function of those simple 1-points of F' which are also simple
1-points of G.
Thus, using (5.3), (5.4) and Lemma 4.6 and first fundamental theorem, we have

N(r,1;F)+N(r,1;G) <
< N(r1;F)+ N(r,1;G) — N (r,1; F) + N(r,00; H) + S(r, f) + 5(r, ) <

< N(r,00; f) + N(r,00:9) + 2{T(r, f) + T(r,9)} + Nu(r,1; F,G)+

+N(r,1;F) + N(r,1;G) — ND(r,1;F) + No(r,0; f) + N (r,0: )+
+S(r, f) + S(r,g) <

< N(r,00; f) + N(r,00;9) + 2{T(r, f) + T(r, 9)}+
+%{N(r, LF) 4+ N 1,G)} + N(n 1 F |> 2) + N(r, 1; G > 2)+
+N.(r,0; f') + No(r,0;9") + S(r, f) + S(r, g) <
< V(1,00 ) + N(r,o0ig) + (2+ 2 ) {T(r, /) + T(r.9)}+
+N(r,1; F [>2) 4+ N(r,1;G [> 2) 4+ No(r,0; f') + Nu(r,0; ')+

+S(r, f) + S(r, g), (5.5)
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where N, (r,0; f') is the counting function of those zeros of f’ which are not zeros of f(f — 1) and
(F —1), N.(r,0;¢") denotes similarly according to g.

If a1, o, ..., ay be the n-distinct zeros of P(z) = 0, then
(n—1)(n—2)
o(F = 1) = P(f) = P T - )
i=1
and .
n—1)(n—2
oG- 1) = Plg) = "= T oy,
i=1
Thus, applying the second fundamental theorem for n + 2 distinct values 0, 1, aq, a9, ..., an, We
obtain

(n+1)(T(r, f) +T(r,g)) <

S N(T)OO; f) +N(T,0,f) +N(T7 17f) + ZN(T, (073 f) - N*(T,O, f/)+
i=1

+N(r,00:9) + N(r,0;9) + N(r,1;9) + > _ N(r, ai;g) — Nu(r,0,9')+
i=1

+S(r, f) + S(r,9) <
< N(r,00; f) + N(r,00;9) + 2(T(r, f) + T(r,g9)) + N(r,1; F) + N(r,1; G)—
—N*(T,O,f/)—N*(T,O,g/)+S(T,f)+8(7‘,g). (56)

By using inequalities (5.5) and (5.6), we get

(5 -3) @)+ T(rg) <
< 2(N(r,00; f) + N(r,00;9)) +{N(r,1; F| 2 2) + N(r, ;G| = 2)}+
+S(r, f)+ S(r,g). (5.7)

Also, using first fundamental theorem and elementary calculations, we have

N <r,0; J;:) §T<r, J;) +0(1) :N<r,oo; J;) +S(r, f) <

< N(r,0; f) + N(r,00; f) + S(r, f) < T(r, f) + N(r,00; f) + S(r, f).

Thus on simplifying (5.7), we obtain

(5-3) (TN +T(rg) <
< 2{N(r,00; f) + N(r,00;9)} + N(r,1; F| > 2) + N(r,1; G| > 2)+
+S(r, f) + S(r,g) <
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< 2{N(r,00; f) + N(r,00;9)} + N(r,0; f'| f # 0) + N(r,0;¢'|g # 0)+

+5(r, f) +5(r,9) <

< 2{N(r,00; f) + N(r,00;9)} + N <r,0; “;Z) + N <r,0; gg’) +

+5(r, f) +5(r,9) <
< 3{N(r,00; f) + N(r,00:9)} + T(r, f) + T(r,g) + S(r, f) + S(r. 9).

That is,

(n—8)(T(r, f) +T(r,g)) <
< 6{N(r,00; ) + N(r,00;9)} + S(r, f) + S(r,g)

which is impossible as n > 15 (resp., 9) for URSM-IM (resp., URSE-IM) case.

References

1.

&

o 0=

10.

11.
12.
13.
14.

15.
16.

17.

S. Bartels, Meromorphic functions sharing a set with 17 elements ignoring multiplicities, Complex Variables, Theory
and Appl., 39, 85-92 (1999).

M. L. Fang, H. Guo, On unique range sets for meromorphic or entire functions, Acta Math. Sin. (New Ser.), 14,
Ne 4, 569576 (1998).

G. Frank, M. Reinders, A unique range set for meromorphic function with 11 elements, Complex Variables, Theory
and Appl., 37, 185-193 (1998).

H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122, Ne 6, 1175-1203
(2000).

H. Fujimoto, On uniqueness polynomials for meromorphic functions, Nagoya Math. J., 170, 33 -46 (2003).

F. Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton,
Ky (1976); Lect. Notes Math., 599, 51-69 (1977).

F. Gross, C. C. Yang, On preimage and range sets of meromorphic functions, Proc. Japan Acad., 58, 17-20 (1982).
W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford (1964).

P. C. Hu, P. Li, C. C. Yang, Unicity of meromorphic mappings, Springer, DOI 10.1007/978-1-4757-3775-2.

P. Li, C. C. Yang, Some further results on the unique range set of meromorphic functions, Kodai Math. J., 18,
437-450 (1995).

P. Li, C. C. Yang, On the unique range set for meromorphic functions, Proc. Amer. Math. Soc., 124, 177 - 185 (1996).
M. Reinders, Unique range sets ignoring multiplicities, Bull. Hong Kong Math. Soc., 1, 339-341 (1997).

C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Acad. Publ. (2003).

L. Z. Yang, Some recent progress in the uniqueness theory of meromorphic functions, Proc. Second ISAAC Congr.,
Int. Soc. Anal., Appl. and Comput., 7, 551 -564 (2000).

H. X. Yi, Unicity theorems for meromorphic and entire functions IlI, Bull. Austral. Math. Soc., 53, 71 —82 (1996).
H. X\ Yi, The reduced unique range sets for entire or meromorphic functions, Complex Variables, Theory and Appl.,
32, 191-198 (1997).

H. X. Yi, On the reduced range sets for meromorphic functions, J. Shandomg Univ., 33, 361 -368 (1998).

Received 17.12.18

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 11



