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ON SIMULATION OF SPATIAL-TEMPORAL CHAOS:
THE SIMPLEST MATHEMATICAL PATTERNS
AND COMPUTER GRAPHICS*

MO/IEJIIOBAHHSA ITPOCTOPOZO-YACOBOI'O XAOCY:
HAHUITPOCTIIII MATEMATHYHI MO/IEJII
TA KOMII'IOTEPHA I'PA®IKA*

For a certain nonlinear boundary-value problem for PDE, the article represents three scenarios for evol-
ution of spatial-temporal chaos and specifies the corresponding types of chaotic solutions. Analytical
assertions are illustrated by numerical analysis and computer graphics.

s oauiel rpaHHYHOIL 3ana4i A4 PIBHAHL ¥ YACTHHHHX MOXUIHMX POSIAALAKTLCA TPH BHIAAKH
€BOJIIOLIT TPOCTOPOBO-4aCOBOIO Xa0Cy | BH3HAYAIOTLCA BIINOBIIHI THITH XaOTHYHHX po3p’A3KiB. AHa-
JIITHYHI TBEPAXKEHHA CYNPOBOLKYIOTRCA LNIOCTPalllAMH, O/IEPAKAHHMH 34 JONOMOIoK KUMI’]'IOTCP-
HOT'O eKCNePHMEHTY Ta MalllHHHOI rpacpikn.

1. Introduction. In the whole world, scientists attach much importance to nonlinear
dynamics dealing with two (interconnected) trends in the evolution of nonlinear sys-
tems: self-structure and chaotization. At present, a certain progress in clarifying the
nature of the so-called dynamical chaos has been achieved. By the dynamical chaos,
we mean a transition from a regular behavior to the chaotic one in a deterministic
system (i.e., in a system, whose initial state and state dynamics obey deterministic
laws). Lots of works in this field are based on the strange-attractor theory and
_examine, mainly, the chaos of simplest type, i.e., the temporal chaos, which shows the

quasirandom behavior of a system in time (i.e., the nonregularity of the state evolution
for large time (see, e.g., [1])). The certain hopes are set on the strange-attractor
concept in connection with investigation of the spatial-temporal chaos, for which not
only the temporal behavior of a system but also the spatial one is quasirandom (i.e.,
when time is large, both system states (in space) and their evolution are nonregular).
This approach (from the viewpoint of the strange-attractor theory) usually assumes
approximating real systems by finite-dimensional dynamical systems.

The next step on the way of constructing the spatial-temporal chaos theory is the
method of coupled map lattice (i.e., “countable-dimensional” dynamical systems),
which has appeared relatively recently (see, e.g., [2]).

The present work uses the approach [3], alternative to these methods, which is
based on the simulation of spatial-temporal chaos by infinite-dimensional nonlinear
dynamical systems. The gist of this approach consists in the reduction of a corre-
sponding mathematical pattern to studying the dynamics of a continual family of
uncoupled (or weakly coupled) maps.

The paper seeks to exhibit a wide scope for investigating the dynamical chaos by
means of the “continual” approach.

The simplest mathematical patterns for deterministic evolutionary systems are
given by nonlinear boundary-value problems for linear hyperbolic PDE of the form

dut; i du;
Piriisic! I v —t = i =1 TP c m‘ 1
3 + gla,‘, axj 0, x=(xy x)€GCR (1)
du d
H(w 3 3] =0 wm e,

where a;; is a constant m x n matrix and H: R"™ > R is a nonlinear function.

An important advantage of this kind of problems is the following: On the one hand, we
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can analyze them in detail (and, in addition, comparatively simply) and, on the other
hand, although the problems reflect reality in a very abstract (ideal) form, they make it
possible to reveal the mathematical mechanism of self-initiating and evolution of
spatial-temporal chaotization in real systems. The problems of form (1) can be
effectively investigated, first, because of their reducibility to difference equations (this
fact was noted in the thirties, e.g., in [4]) and, second, owing to the achievements of the
modern theory of dynamical systems and the theory of difference and differential-
difference equations (this class of problems was discussed in [3] in detail). By taking a
specific problem of form (1) as an example, we consider the “continual” method and
examine some scenarios of forming the spatial-temporal chaos from a regular initial
state under a deterministic evolution law.

2. The statement of the problem. We consider the simplest of the multidimen-
sional problems (1), namely, the linear system of two (uncoupled) equations with two
spatial variables

du
i “n% * “123—“‘-
% (2)
5 ay P+ ap®,
4 ax dy
w,»eG=Rx[0.1].reR" a;eR. ij=1.2,
with the nonlinear boundary conditions
[u-vll = 0, (3
(Fy(u,v) up + Fy(u,v) il |, = 0 (4)
and with the initial conditions
Ul = ylx, y),
(5)

Ul = vl y).

If the functions F| and F, are continuous. then the left-hand side of equation (4)
can always be reduced to the total differential dF(u, v) =0 (by means of multiplying
the equation by an integrating factor). Thus, we can transform boundary condition (4)
to the form F(u, v) | _, = A(x). where A(x) is an arbitrary function.

We seek a solution of problem (2)~(5) in the class CHG x [0. T]. R), T < +eo.
This imposes the following additional restrictions on the problem:

1) u, and v, are C'-functions; F| and F, are C’-functions:

2) the initial data are in agreement with the boundary ones, i.e., u,(x, 0) = vy(x, 0),
A(x) = Fluy(x, 1), vy(x, 1)). Consequently, on the boundary y = 1. condition (4) takes
the form

Flu,v) | o = Ay, (6)

y=1

where Ay(x) = Flug(x, 1), vg(x, 1)

Morcover. we demand that the correctness conditions (i.e., the conditions, under
which the problem (2)—(5) has a unique C'1-solution) be satisfied. The ngcessary (but
not sufficient) conditions for the correctness follows directly from the technique of
solving problem (2)-(5) by the method of characteristics:

1) aj5ay,<0:

2) in the plane (u, v), the points with the coordinates u = wy(x, 1), v =vy(x, 1),
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x € R, are regular for the vector field (F|.F,) (this is true, obviously, when F (u(x,

1), vy(x, 1) 20, i=1,2, xe R).

Under the same assumptions, the specific problem of form (2)—(5) was consider-
ed in [3].

T!Ee ]idea of investigation consists in reducing problem (2)—(5) to a difference equa-
tion. In the class C!, the general solution of system (2) is represented as the travelling
waves

ulx,y, 1) = @lx+apt, y+apn,
(7
v(x, y, 1) = Yx +ay 1, ¥+ ayl),

where ¢ and y are arbitrary C!-functions. Conditions (3), (6), and (5) give unique
functions ¢ and y [4, 5], namely
Pz, 1) = w(z, 1),
: (8)
Yz, 1) = wiz-b1, T-c1), z€ R, 1€[l-c, +0),
where b= (ay —ay)/ay, c=1-ap/ay (¢>0), and w(z, T) is the solution of the
difference equation

Fow(z +b,T+¢), wz, 1) = l(z = Sl 521—] )
alz asy

with the initial condition
W& Dl @ Rx(ien) = W@ D) =
b 1
Vol z+—T, T——rt , z€R, te[l-c, 0),

1-c¢
ug(z, 1), zeR, 1[0, 1).

(10)

Consequently, the solution (u, v) of problem (2)—(5) can be written in terms of differ-
“ence problem (9)—(10) as follows

wx,y, 1) = wx+apt, y+apt),

(11)
v(x, 3, 1) = wlx—by+ayt, y—cy+ajl).

Note that the investigation of equation (9) can be essentially simplified if the equa-

tion is resolved for w(z, T) or w(z + b, T+ ¢). In the first case, we have an advanced
difference equation; in the second case, we have a retarded one.

The reduction carried out above enables us to ascertain a special feature of prob-
lems of form (2)—(5). The right-hand side of equation (9) depends on the initial data
ug, vg- Generally speaking, this may have a strong impact on the asymptotic behavior
of the solution (u, v). This means that systems simulated by boundary-value problems
of form (2)—~«5) do not possess the property of “forgetting initial data”, which is typical
for many systems with structural turbulence.

3. The simulation of the processes of forming structures and chaos emergence.
Below, we investigate a specific problem of form (2)—~5) by the reduction method and
consider what types of oscillatory solutions are possible when time is large and how
the oscillation behavior depends on the variation of initial data. In particular, the initial
data, which generate the solutions that simulate the formation of structures and the
emergence of spatial-temporal chaos, are specified.

So, consider the deterministic system such that its state is presented by the vector

field (u(x,y, 1), v(x,y, 1), (x, )eG=R x[0, 1] at every moment r=¢* and the
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dynamics of states (in time) is represented by the nonlinear boundary-value problem

ou _ Oou . Ou

o ox ady
R ) 44
E':hg_gt (I-Y)EG»IER, '
(u-v]ly=0= 0, (13)
[(1=v2) u/+ 2v (1 + u) v] h=1=0, (14)

Wloo= Uox,y) = I—_A—Ay(l—A sin? 2mx),

(15)

V| _o= Vplx,¥) = Ay sin2nx,

where A e (0, 1 /2] is a parameter.
Proceeding like in subsection 2, we transform boundary condition (13) to the total

o A d u+l
differential —
! dt 1-v

takes the equivalent form [u + 1 = A(x) (1 —v?)] |,= » Where A(x) is an arbitrary func-
tion of x. The initial data yield

Alx) =

=0 by using the integrating factor p(v) = (1 —v2)~2. Then (13)

I+ug(x, 1) 1
1-v(x, 1) 1-A’
and, consequently, the second boundary condition (14) is replaced by the following

1
Ul = m(1-:;21}“[)—1 (16)

and problem (12)—(15) is reduced to problem (12), (13), (16), and (15). The latter is
correct and, as has been shown in subsection 2, can be reduced, in its turn, to the
difference problem

wiz+2, T+2) = ﬁ (1-w2(iz1))-1, zeR, 1€ [l —c, +), (17)

Wz, Dl 1« Rx[1<) = W02 T) =

{00(2—21:, -1), ze R, te[l-¢ 0),
= lugz, 1), ze R, T€[0, 1), (18)

by using the formulas (in other words, the change of variables)
ux,y, 1) = wx+t, y+1),
(19)
vix, y, 1) = wx=2y+1t, =y +1).
Let fyw):=(1-Ay'1-wH) -1, we[-1,1] and 1=21+0, ne Z, 6 « [0, 2).
Relations (17)—<(19) yield
u(x,y,2n+8) = fR(w(x+6,y+9)) =

fi(ug(x+0, y+0)), 0<sy+0<]1,
= { i wg(x—2y—0+2, 2—y+0)), 1Sy+6<2, (20)
il ug(x+0-2, y+6-2)), 2<y+0<3,

and
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filwe(x—86, y—0)), —1<0-y<0,
v(x,y,2n+0) = < fiug(x=2y+06, 8-y)), 0<0-y<l, (21)
filvp(x=2y+0-2, y—0+2)), 1<0-y<2.

The representation of the solution (u, v) in terms of iterations of f, shows that

the spatial-temporal evolution of the vector field (u(x, y, 1), v(x, y, 1)) depends on the
dynamics of the map f,. This allows us to analyze the qualitative behavior of the sol-
ution (u, v) with time and to observe its bifurcations when the parameter A changes.
The map fA: wio (1-AX1(1-w)-1 is topologically conjugated to the map
gp: Wi Bw(l—w), where B =2(1-A)!, the dynamics of which was studied in
detail (see, e.g., [4,6]); h: w > 2-1(w+ 1) is a conjugating homeomorphism. This
is why we will use the results concerning the properties of f, without special
explanation. It is known [6] that there exist three types of limit behavior of orbits of
the map f,. Namely, almost all orbits are attracted either by a circle or by a cycle of

intervals or by the set homeomorphic to the Cantor set. The analysis given below
shows that the realization of each of these possibilities, with the exception of the case
where the attractor is a cycle of period 1 or 2, results in the spatial-temporal
chaotization of the solution of problem (12)—(15): the chaotization is accompanied by
forming coherent structures (vortices) of decreasing scales.

We consider the spatial-temporal behavior of the components u(v, v, 1) and v({x, y,
1) asthe parameter A takes different values. Since the initial data are periodic in v

with period 1, we consider the vector field («, v) only in the region Gy = {(x, y):
xe€ [-0.5.05], y € [0. 1]} and the computer figures below exhibit the flow lines of
(1, v) in the region {(x, v): v e [-0.5.0.5]. v € [0.45. 1]}. Moreover, we confine

ourselves to the moments =2n, ne Z*, (when 0 =0). since in this case formulas
(20) and (21) take the simplest form

u(x,y,2n) = fy (ug(x, y)).

I

f,;l (v{}(,\'. \)]

and there is no principal difference between this case and the general one (when
0 #0).
The initial vector field (at = 0) is regular, the flow lines (i.e.. the orbits of the

system & =A(l1 -A)1y(l-Asin?2my). ¥ = Ay sin 2my) are given by the formula

‘——_L ﬂﬂﬂ:{ [
; 2ny A ’

and are presented in Fig. 1.

To analyze the vector field (1, v) at the moments r=2n, n € Z*, one must mark
a “grid” in the region G, which is formed by curves /! and /). n e Z*. such that
u(x, y, 2n) and v(x, y, 2n) vanishin [, and Iy, respectively. There will be singular

points of the field in the junctions of the “grid”. A large number of singular points thus
appears. which cause spatial-temporal chaotization of a vector ficld. By virtue of (22).

vix, y, 2n)

cos 21':\'] + const
1-A

the curves /) and [/, are given implicitly by the following conditions
15 = {lx; 3 uglx,y) = o, e f0}. 1=0;1,00 (23)
Iy =00 vl = P B ef 00} =0T 0u0 (24)

where £73"(0) is the total preimage of the origin. Thus, we have obtained two one-
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parameter families of curves (n is a parameter) and each curve consists of a finite set
of continuous branches or of a countable set of branches. The limit behavior (as

n — o) of the field (u, v) can be characterized analogously with a “grid” formed by
the curves

1]

L, = {(x.y): .y = o, a € f"O0), n=0,1,...}}, (25)
L, = {(x,y) volx,y) = B, Ped{f2"©0), n=0,1,... }}, (26)

where 9{f3"(0), n=0, 1, ... } is the set of limit points of the set {f3"(0), n=0,
1,... }. Evidently, L, and L, are the limit curves as n — o (with respect to the

"

Hausdorff metric) for the curves I}, and /7, respectively. _

The map f, has two fixed points when A e (0, 1 /3] and has a fixed point and a
cycle of period 2 when A & (1/3, (46 — 1)/ (+/6 + 1)]. There is no spatial-temporal
chaos in these Cases and so we do not consider these here. When the parameter A

increases, the cycles of period 4, 8, etc., arise in accordance with the Sharkovsky order
[6]. This causes the chaotization of the vector field (u, v) both in time and in space.

1. For A e ((+/8 —=1)/(+/8 + 1), 0.47941482...), the map f, has an attracting

cycle of period 3, which is denoted by Y= {w,,w,, w;}, and no other atracting sets
(for any M =1, there exists at least one repelling cycle of period M ). The set

D(fp)= U { fa"(Per fi\ 7}} (a so-called separator) is the boundary of the domain
n20

of attraction of the cycle y. The set D(f,) is homeomorphic to the Cantor set and
mes D(f,)=0.

For any given n >0, curves (23) and (24) divide the region G, into subregions
where both component # and v do not change the sign (Fig. 2); there are singularities
of the field (u, v) at the intersection points of the curves [, and I} (at these points,
u and v reduce to zero). To clarify the dynamics of the field with increasing n, note
that d{f,"(0)}, n=0, 1, ... } =D(f,) in the case under consideration. Conse-
quently, “limit” curves (25) and (26) are given by the following formulas

o o ed{f3"0), n=0,1,...}}, (27
B, Bed{f1"(0), n=0,1,...}}, (28)

and L, (and L) consists of a continuum of continuous branches and, moreover, in
any neighborhood of any branch of L, (or L,), one can find another branch of L, (or
L ). Hence, a number of singular points (in the region G,) grows exponentially as n
increases. The evolution of the vector field (u, v) (near the curves L, and L) is

accompanied by a cascade process of appearing and splitting coherent vortices up to an
arbitrarily small scale: Self-similar structures, where laminar regions of the field
alternate with turbulent ones, are formed by themselves in G, when n increases,
new regions of small-scale turbulence arise and, moreover, the total area of turbulent
regions tends to zero (Fig. 3).

When n — oo, the behavior of the field (v, v) is as follows. The curves L, and
L, divide the region G, into open subregions G" (there are countably many of these
subregions in G,). Since the set D(f,) is the boundary of the domain of attraction of

L, = {(xy): ux.y)

L, = {(x,y): volx.y)

the cycle ¥, the vector field (u, v) possesses the following properties
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lu(x, y, 2n) - a(x, y, 20) |y ——=7— 0.
(29)
where
(x,y,2n) = fLO3uy(x, y)) Dlx,y, 2n) = fR (@3 @(x, y)).  (30)
mx(w) isan -limit set for the orbit of the point w under the map g: |[w, —w, ||;;:=
= Ay(graf wy, graf wy) V wy,wy: Gy — [-1, 1], and Ay is the Hausdorff distance
between sets. We call the vector field (i(x, y, 2n), v(x, y, 2n)) a limit field for (u(x,
¥, 2n), v(x, y, 2n)).

The limit field (&, D) is periodic in time with the period 6. At any fixed moment, -
it takes one of three possible values {wf”, w?)). i, j=1,2,3, ineach of the subre-
gions G*, because the set D(f ) is the boundary of the domain of attraction of the

" cycle y. If we take an arbitrary subregion G, , where (i(x, y, ng)s D(x, y, ng)) = (w; ,
wjl). and an arbitrary subregion G;. where (i(x, y, ny), v(x, y, ny))= (w'.l. wj,) (it
is possible that (i}, j,) = (i5. j,)), then there exists a subregion G; such that (i(x, y,
ny), v(x,y, ny)) = (w‘-s. wj-s) and (iy, j3) # (i}, j|). (i3, J3) # (iy. j;). This effect is an
analog of the Serpinsky “carpet.”

Note that the chaotization of the vector field (u, v) follows a somewhat different:
course if an attracting cycle has the period 2%, V k>2. In this case, there is no

Serpinsky “carpet” effect since D(f4) is a countable but not continual set.

2. Let A" be the value of the parameter A such that forany i=0, 1, ..., the map
f 4+ has a cycle of period 2 and has no cycles of period other than 2, i=0,1,...
(A* =0,43976738...). Then, as is well known, all the cycles of the map f,+ are
repelling. The points of the interval [-1, 1], with the exception of the countable set

P(fy) = S Perfye),
n=0

are attracted by the set which consists of the limit points of the set Per f4+ and, hence,

is homeomorphic to the Cantor set. Denote this attracting set by K. The orbit of any
point from the set K is dense on K and almost periodic with the almost periods 1, 2,

22,23, .... For any point w & [-1, 1]\ P(f,°), there exists the point w’ € K such
that f:. (w) - f:. (w") > 0 as n — o=. Accordingly, the region G is divided by the
curves

o, weP(f,},

L, = {(xy): volx.y) = &, @ eP(f9)},

into open subregions (the set of these subregions is countable), in which relation (29)
takes place with

L, = {0 y): uplx,y)

i(x,y, 2n) = f'. [ﬂ w fj,"- (ug (x, y)}}
i>0

3D
b,y 2= f, [n Wf: o(x, y))].

i=0
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Thus, the limit vector field (i (x, y, 2n), D(x, y, 2n)) is almost periodic in time (with
the almost periods 2, 2-2, 2-22, ... ) and takes values from the set {(w", w”’): w’,
w” & K}. As in the previous case, for t=2n, n=0, 1,2, ..., there are singular points
of the field (u,v) at nodes of the “grid.” The set P(f4?) is an o-limit set for any

point w € [-1, 1]\P(f+) (in particular, for w = 0). Therefore, the singular points are
located near by the curves L, and L, as n grows and the evolution of (u,v) as
n — oo is accompanied by a cascade process of emergence of structures of decreasing
scales (Fig. 4).

3. When A =1/2, almost every orbit is attracted by the interval [-1, 1] and,
consequently, it is dense on [-1, 1]. In particular, the set { f3"(0), n=0,1, ...} is
dense on [-1, 1]. This is why the points (x, y), at which the field (u(x, y, 2n), v(x, y,

'2n)) vanishes for n=0, 1, ..., are everywhere dense in Gy. Hence, when n in-
creases, a cascade process of emergence of vortices of decreasing scales up to arbit-
rarily small ones takes place in G and, in contrast to the previous cases, this process
is accompanied by splitting large-scale vortices (Fig. 5). There is a complete turbu-

lization of the field («,v) as n — 0. The limit vector field does not exist in an
ordinary sense and, when time is large, we are able only to reveal the probability that

(u,v) takes a certain value from [-1, 1] x [-1, 1].
For A=1/2, the map f, has the invariant smooth measure with the density

W(dw) = dw [ (11:\}1 —w? ) This makes the statistical description of the field ( u, v) as

n —» oo possible. The mathematical justification of the statements given below can be
found in [5). For the vector field (u, v), we introduce a certain random vector field
(as the limit one)

i(x,y) = &x,y),
(32)
D(x,y) = E(x—2y,—-y)
induced by the two-dimensional stochastic process &(z, T) such that &(z, 1) is the ran-
dom variable with the distribution function

v
F(v) = Ju(dw) = 3 arcsin v + 1
5 n 2
forany (z,7) e R x [-1,1] and E(z", T') and &(z"”,t”) are independent random vari-
ables for any (z’, 1) # (z”, 17).

The evolution of the vector field (1, v) as n — o is described by the random
vector field (i, D) in the following sense. For any €>0 and an arbitrary finite
collection of points (x;,y)e D and (u-measurable) sets A, B, e/, i=1,2, ..,k
there exists an integer N* <o such that the difference between the frequency, with
which the field (u(x;, y;), v(x;, y;) takes values from A, xB;, i=1,2,...,k, n=0,

1, ..., N, and the probability that (i(x; y,), V(x, y) € A;XB,, i=1,2, ..,k isat

most € if N >N*. A phenomenen of such type in deterministic systems (i.e., the
behavior of a system is described by stochastic laws asymptotically accurately when
time is large) is called the self-stochasticity [5].

4. Computer analysis. In this article, we pay much attention to the computer
experiment, which combines modern analytical and numerical methods with a large
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amount of calculations and computer graphics. For given problem (12)—(15), the
worked out software makes it possible to visualize the evolution of the vector field
(u,v) and the process of arising and expanding of spatial-temporal chaos.

One of the techniques for the graphic representation of a vector field consists in
depicting it by using the corresponding vectors at the nodes of a spatial-temporal mesh.
The vector at a node and the vector field at this node are the same in direction: the
vector magnitude at a node is proportional to the vector-field magnitude at this node
and the proportion factor is taken so that the magnitude of each vector is less than the
half of the spatial mesh width. Such graphic representation of vector field shows the
direction of motion and the relative change in velocity along the flow lines (of the

vector field) at any fixed moment ¢ € R* but does not show the small-scale structures
formed by the flow lines.

This is why we have preferred another technique of graphic representation which is
based on depicting the flow lines of a vector field. In this case, if a multicolor monitor
(or a multicolor printer) is available, one can visualize the velocity magnitnde along a
flow line. For this purpose, one should associate a certain range of velocity magnitude
(as narrow as possible) with a certain color and paint a flow line according to the
change of velocity. The direction of motion along a flow line may be indicated by an
arrow. However, arrows obstruct the visual perception of small-scale structures.

From the viewpoint of the software realization, surely, the former of these two
techniques is much,_simpler. But we have preferred the latter, since it presents the
graphic information in the better form.

The figures given in the article exhibit the instantaneous flow lines of the vector
field (u,v) at fixed moments t* € R*, i.e., the curves on the plane (x, y) determined
by the equations

dx e Ay

e ulx, y, 1), = vix, y, 1) (33)
The values of the components u and v at each node of the spatial-temporal mesh are
found by the analytical formulas (20) and (21). Equations (33) are integrated by the
simplest method (the Euler method) that gives the accuracy needed. In the developed
application software, the “automated algorithm for the control in the density of flow
lines”. which was created while working out this software, is used for constructing
flow lines.

The software has certain service resources. But we do not seek to examine them in
this paper.

5. Conclusion. The examples considered show that the following three kinds of
dynamic behavior are typical for boundary-value problems of form (2)-(5): asymp-
totically periodic, asymptotically almost periodic, and self-stochastic (i.e.. asymptotic-
ally stochastic).
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