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APPROXIMATION OF HARMONIC FUNCTIONS
ON COMPACT SETSIN €

HABJIMKEHHSA TAPMOHIYHHAX OYHKIIIA
HA KOMITAKTAXB €

The direct theorem of the approximation theory of harmonic functions is given for the case where the
functions are defined on a compact set, the complement of which with respect to € is a John domain.

BcTaHOB/MIOETBCA NMPpAMA TeopeMa Teopii HaG/IHKEHHA rapMOHIYHHX (PYHKLUIA Ha KOMMNAKTi, AKHH €
ponoBHeHHAM obnacTi [IxoHa 00 NJIOLLHHH.

1. Introduction. This paper deals with the qualitative theory of uniform approxi-
mation by harmonic polynomials.
- To be more precise, let M be an arbitrary compact set in the complex plane C

with the connected complement Q := C\M, where € is the extended complex plane.
Denote by Har (M) the set of all functions which are continuous on M and har-
monic at its interior points. The best polynomial approximation is given by

E A, M) := inf (lu—1t,lly: t,€T,). ue Har(M),

where »n is a positive integer, || - ||;; denotes the supremum norm over M, and
n
P,:= {p,,(z) = z ag: ajeC } T, := {1,)=Rep,(z ). pje P,}.
j=0
In the monographs [1-3], one can find a survey of the papers investigating the rate
of convergence E, o(u, M) - 0 as n — . In the overwhelming majority of them, M
is a continuum (not a single point).
In this paper, the estimates of E,a(u, M) are established for the case of a compact

set M whose complement & is a John domain [4, 5] (not necessarily simply con-
nected). The form of the result is similar to the analogous assertions in [6].

Note that some results of this paper can be extended to R", n > 2, instead of €

(see [7]). However, the proofs need to be essentially modified in the case of R”,
since we use here the conformal mappings.

2. Main definitions and results. We shall use c, ¢}, ... to denote constants and &,

€,, ... to denote sufficiently small constants (in general, different in different relations)
which depend only on quantities that are not important for a particular problem.

By L,I, and Y, we denote closed Jordan curves or arcs (i.e., curves with different
endpoints) and by |L|,|/|, and |y] we denote their length.

For points z and { € L, denote by L(z, {) the subarc of L lying between them.

The open disk with the center at z and the radius 8 is denoted by D(z, §), D :=
:=D(0, 1). Let d(A, B) be the distance between A C C and B € €. Further, for
ACC and 8>0, weset '

As 1= {L: d(, A) <8}
Let @(8), &> 0, be a function of the type of a modulus of continuity, i.e., a positive
nondecreasing function (with 6(+0) = 0) which satisfies the inequality
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1468 V. V. ANDRIEVSKII

(td) < ctaxd) for >0, 1>1,
We denote by Hary(M) the class of all functions « € Har (M) such that the ine-
quality
lu(zy) —u(z) | € co (|2 -2, ] ()

holds for each pair of points z;,z, € M.
A domain Q is called a John domain [4, 5] if any point { € Q\{eo} can be joined
to o by anarc Y=Y, ) C Q such that

d(z, 9Q) < c|Y(, 2)| (2)
for each point z € 7y, where dA is the boundary with respect to C.

It is more convenient to use another definition of the John domain (see Theorem 1
below) that can be given from the point of view of the theory of quasiconformal
mappings.

A bounded Jordan domain G is called a k-quasidisk and its boundary L:=4dG is
called a k-quasicircle (or, briefly, a quasidisk and a quasicircle), 0 <k < 1, if any con-
formal mapping w of the unit disk D onto G can be extended to a K-quasicon-
formal homeomorphism of € onto itself, K:= (1 +k)/(1 —k).

It is easy to verify (see, for example, [6]) that the domain G = G(k, §), 0< k< 1,
8> 0, which is symmetric with respect to the real and imaginary axes and bounded by
two circle arcs which meet in an inner angle of m(1 — k) at the vertices + 8, isa k-
quasidisk (see [8, 9]).

We say that the domain € satisfies a k-quasidisk condition, 0 <k < 1, if, for each
point {e Q, there exists a k-quasidisk Dy € Q such that { € dDy, diamD; = c.

Theorem 1. The domain Q is a John domain if and only if it satisfies a k-qua-
sidisk condition, 0 < k< 1.

Theorem 2. Let M C € be a compact set whose complement Q = C\M
satisfies a k-quasidisk condition, 0 < k < 1. Then, for any u € Har,(M) and a
positive integer n, -

E, z(ut, M) < co(*), 3)
where c is independent of n.

In the case where M is a closed quasidisk, this result is presented implicitly in
[10]. Hence, the thrust of our work is that we can now approximate harmonic func-
tions on compact sets by a complement with infinite connectivity.

- Note thatif M is a closed quasidisk, the statement of Theorem 2 is a direct con-
sequence of the'holomorphic analog [11] obtained by passing to the holomorphic co-

mpletion of a harmonic function. However, if € is not simply connected or M is not
a quasidisk, we cannot find any way of deducing the harmonic results from the holo-
morphic analogs. It turns out that for each Holder class

Har*(M) := Hary(M), where od) = 8% O<a<l,

and 0<k <1, itis not possible to improve estimate (3).
Theorem 3. For any 0<k<1 and 0< o < 1, there exist a closed Jordan
domain G = G(k), whose complement satisfies a k-quasidisk condition, and a func-

tion ue Har(G ) such that
CE,Alu, G) = en®-D p=1,2, ..., (4)

where c is independent of n.
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APPROXIMATION OF HARMONIC FUNCTIONS ON COMPACT SETS IN € 1469

In the sequel, we use the symbols a < b, denoting that a< ¢b, and axb if a X b
and b X a simultaneously.

3."Quasidisks. Before proving our theorems, we discuss some facts of the theory
of quasiconformal mappings necessary in what follows. They are consequences of the
appropriate results in [9, 12, 13].

Lemma 1. Let L be a bounded Jordan arc. The following two conditions are
equivalent:

1) there exists a constant ¢ 21 such that diam L(z{, z;) <e|zy —z,| for each
pair of points z,,7, € L;

2) there exists a K-quasiconformal mapping F: T — C such that F(L) =
= [-1, 1], F(eo) = oo,

Moreover, if K is given, ¢ depends only on K, and ifc is given, then
K = K(o).

Lemma 2. Let F: €© — T bea K-quasiconformal mapping, F() = o, {; €
€ |¢' lezF(Cj),j= 1§2. 3, |W1—W2| < CIIWI—H3|. Then |Cl —C2| < cZiCl —C3!,
and moreover,

G-G ‘ & | W) — W3 ."‘
G -G W — W2
where c;=c;(c, K), i=2,3.

Let G bea k-quasidisk, L:=9G. Further,let y: € — C be a quasiconformal
mapping, conformal in D and such that y(@D) = L, y(e) =, We set g : = y(0),
¢ := yL. By applying Lemma 2 to the mapping F :=¢@, we obtain

d (. L) x diamL. (5)

Lemma 3. For Ce L, wesery =y o) := w0, 9. Then

Y& 2| < c11§-2] £ c2d (L),

for each point z € ¥, where c;=c;(K), i=1,2.

k]

Lemmad. Forall w, and w,e D,

| Wwy) — W(wy) | < cdiam L |wy —w, |14,

where ¢ = c(K).
The last assertion is a simple consequence of an appropriate result for the mapping

fe (k) [14,p.347].

4. Proof of Theorem 1. To begin with, suppose that & is a John domain, and let
{ € Q be an arbitrary point. For simplicity, we carry out the proof only for { e M,;
the case where { € Q\M, is obvious.

Let o€ Q be a fixed point and let y = y({, &) be a joining arc satisfying (2).
Without loss of generality, we can assume that, in some neighborhood of the point
the arc 7y coincides with a straight line.

We replace the arc y with the polygon ! = [ ({, {y), by joining the points § and

‘co so that
d(izM) 2 ¢, |z=-C|, zel, _ 6)

G z)| X 17 -22), 2, 2p€ L. @)
Let us describe an algorithm of constructing of this arc. Fix a number 0 < ¢ < 1 such
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1470 C V. V. ANDRIEVSKII

that, for any point z € y. we have D(z, 2¢ |y 2)]) € Q.

First, we construct a sequence of points §;, {,, ... € ¥ in the following way. For
C,» we take the 'poinl of the intersection Yy N aD(Ly. q |Y(C, &)|) which is the first
one as we move along the arc Y from  to (,, and so forth; for {,,;, we take the
point of the intersection (¢, &) N dD(C,, ¢ |1&, §)|) which is the first one as we
move along the arc Y, ;) from { to {, (if this intersection is empty, then we set
Ci+1 : =€ and terminate our conslrluction).'

If we successively join the points {, {,, ... by the intervals, we obtain the poly-
gon [ with properties (6) and (7). ;
Note that (7) and Lemma 1 imply the existence of a K-quasiconformal mapping

F: T — C, 1<K <1, which satisfies the relations
F(h =[-L1], FQ=1, F)=-1, F(eo)=oo.

Consider a convex lens domain E = E(e) which is symmetric with respect to the
real and imaginary axes and bounded by two arcs which meet in an interior angle of
2ne at the vertices * 1.

Set V :=FYE). We claim that, for sufficiently small &, V € Q, and con-
sequently, V' can be taken as a domain Dy in the definition of a quasidisk condition.

Indeed, let z € dV, z#{, z# {;, be an arbitrary point. We set w:= F(z), w, :=
:=Rew, z; :=F(w,). Consider triplets of points z,,z, { and w,, w, 1, respectively.
If e<1/4, then |w, —w| < |w;—1] and, by using Lemma 2, we can conclude that

= -1 Wk .
a-% > c2| == | 2 ¢, (ctge)K, 8)
-z W —w

Therefore, if € < arctan (cz.d'cl)x, where ¢, and c, are the constants from (6) and

(8), then z € Q.

Thus, since the point z is arbitrary, we have V C Q.

Suppose now that Q satisfies the k-quasidisk condition for some 0 <k<1 and let
{ € Q be an arbitrary point. By applying Lemma 3 to the quasidisk D¢, we can con-
clude that there exists an arc y(§, ;) € Dy € Q joining { with some point §, €
€ C\M, and possessing property (2). An elementary argument involving the tech-
nique of construction of the polygon / shows that y({, ;) can be extended to an arc
Y(&, <) satisfying relation (2). This completes the proof.

5. Approximation of the Cauchy kernel. Let Q satisfy the k-quasidisk condi-

tion, 0 < k < 1. The problem of approximating the Cauchy kernel 1/({-z) by a poly-
nomial kernel of the form

n

P,&2:= Y a7 )
j=0
arises in connection with several problems in approximation theory. In this and next

sections, we develop a harmonic analog of the stated problem.
We begin with a description of one construction that will be useful below.

Suppose that { € € N M, is an arbitrary point, and let Dy be an appropriate -
quasidisk, i.e., { € dDg, Dy € Q, and diam D¢ »=1. For convenience, we always as-
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APPROXIMATION OF HARMONIC FUNCTIONS ON COMPACT SETS IN € 1471

sume that diam D¢ x 1. Our nearest purpose is to construct an unbounded domain
By D Dy such that

MC (II\B; and DgN D, e) = By N D, ). (10)

For this purpose, we denote by ¢ = ¢; : =T — C an appropriate quasiconformal
mapping, conformal in Dy and satisfying @(D¢) =D, @Q€) =1, () = . We set
yi=¢l, §:=w(0). According to (5), we have d(Cy. M) < 1. Let M C D(0, c)).
By using the procedure from the proof of Theorem 1, we join the point {, to dD(0,
2¢,y) by the polygon | € C\M,, satisfying

G, 81 16 -8

for any points {, and {, € I. It seems interesting to note that / consists of a finite
number m X 1 of segments, each of the length = 1. Therefore, lg, : = {z:d(z, ) <
< ¢g,} is asimply connected domain.

From parts of the curves dlg,, dD¢, and dD(0, 2c,), we construct the Jordan curve
L = L(§) such that the unbounded component By of C\L satisfies (10).

Let ®(z) denote the function that maps By onto the exterior A of the unit disk
conformally and univalently and is normalized by the conditions @ (o) = o and

@®’(c0) > 0. This function can be naturally extended to a homeomorphism between the
closed domains B; and A, and we retain the previous notation for the extension.

Weset ¥:= oL,
Lemma 5. For any point w such that 1 <|w|<X 1, we have

YW =L % |w=-®Q) |+
Proof. We set z :=¥(w), T := ®({). We carry out the proof only for the case
| T—w| <¢€,, and consequently, |z-{| < &,; the case, where |T—w| < g, is trivial.
Let I'; be afamily of all arcs ¥ C By with the endpoints on dBy separating, in
By, the points { and z from . Further, let T be a similar family for the domain
Dy and the points { z, and {0, respectively.
Since, for ye I';\I';, we have |y| 2 €,, by recalling the definition and elementary

properties of a module of a family of arcs or curves [8], we obtain m(I";) < m(I'y) + ¢;.
By a slightly modified version of a result by Belyi (see [11], Theorem 1), we find that

lw—t| x expt-mm (T} and |@@)-@L)| = exp{-mm ()}
Hence. |¢@z)-@&)| < |w—T|, and, by virtue of Lemma 4,

12=81 = 1¥[e@)] - W@ X 196) -0 I'* X [w-T|™
This proves Lemma 5.
Further, we apply the technique of [2] to prove the main assertion of this section.
Lemma 6. For each positive integer n,d := n*!, and { € M, N Q, there exists
a polynomial kernel of the form (9) satisfying

1 1 8 3
; PGa| = IC—zI(IC~:I+8] (b

-

forall ze M.
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Proof. Let n be sufficiently large. Starting from the domain By, we consider the

Dzyadyk polynomial kemnel K, ;4 ,(, z) (see, e.g., [2, p.429]). In [11], it is shown
that

¥ 3

1
e )| g —m—
|t;-z 113, )| Y-z -2 P

where we have set E =1+ 1/n) D).
It follows from Lemma 5 that |{— {| % & Therefore, by Lemma 2, we have

E —£ 1+ ; ==

-8 g

Thus, the desired inequality (11) follows from (12) and (13) if we set P, (C, z) : =
=K 3 (en] (€, z), where a sufficiently small constant € is chosen so that deg P, < n.
By virtue of standard argument (see, e.g., [2, p. 345]), we can assume that the coef-

ficients a; (C) in representation (9) are integrable with respect to { over QN M,.

6. Proof of Theorem 2. The idea of the following discussion goes back to [15].
We give a sketch of the proof to show how Mergelyan’s argument can be modified to
obtain the required result.

Let n be sufficiently large and 8 : = n*~!. We extend the function u continuously
to the whole of the complex plane € so that the extended function, also denoted by u,
satisfies condition (1) for any z,,z, € C (see, for example, [16]). Without loss of

=

d+I1L -zl
' 5 .

(13)

generality, we can assume that u(z) = 0 for z € C\M,.
For ze C, we set

u, () := j ju(z +8§) K(C)dcc
) C

where

cexp{IL? / QLR -1}, 0<ILI<1;

K©) := {0 st

and the constant ¢ is chosen so that _[ -[cc K(C)dc,; = 1.
An elementary computation shows that u,(z) is an infinitely differentiable func-
tion € satisfying

uz) = 0 if ze C\Mg,s, u,z) = u(z) if ze M\Qs,
lu@) —usz)| X @@ if ze C, “and |[Au, @) X ©@) /8, if ze C.
It remains to show that

E, 50, § 0. (14)

By the Green formula, we can write

[—

| Au,@©log|g-z|doy.

u, (@) =
" T QsNM,
[

[

We now describe the method for approximating the function log |{ —z| by harmonic
polynomial kernels of the form
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APPROXIMATION OF HARMONIC FUNCTIONS ON COMPACT SETS IN € 1473

T, 2) := Re Z a;@© 7. (15)

J=1

Lemma 7. Let {ye Q\(e} be a fixed point. There exists a harmonic polyno-
mial kernel of the form (15) satisfying, for z€ M and § € QsNM,, the in-
|log| S

equality
-z 5 3 Ig - zl+5)
T s (IC zI+5) (ng itz ; 40

Proof. Suppose first that { € Q N M,. Since Q is the John domain, we can join

€ to § byan arcY(§, {) € Q with property (2).
Next, we note that

- Tu(c- Z)

logl %—_—5 I =Re | ;‘g
: "W >
for z € M. Thus, it is reasonable to consider the expression
Tn(c'z) i= -Re J Pu@'z)dg'
Y5 Co)

where P,E&,z) is a polynomial function from Lemma 6, as the desired harmonic poly-
nomial kernel.

Indeed, by setting u(?) := |V L) NDE, 1|, 1>0, and using Lemma 6 and the
obvious relations p(f) < ¢ and d @, Y(§, &) = 1z—-{|, we obtain

|og| 22| -.@o | s | | g - Paen 1l <
9 16.80)
1§zl 18-zI1+8 o
. 83[ i O 0, ﬂﬁﬂj <
UL Emaag-aes? T - z+) |g-{|+s
1§-z1+8

8 3 () T HO
4(*————)(14- —rdf]+53 J- —s—d!#
IE-z1+3 T Ig-21+8 .

< (gmams ) (1 o550 )

Now let { € M N Qg Consider any point {; € Q with the properties |{; - {| <28
and d({;, M) > 3. Denote by Y(,;, ) the arc of the circle

o 35,552,

which joins { and {; and is farthest from the point z.
By integrating the identity

TR S (1 4 L& V_1,
. Z)lﬂjz-l(cl—z)”‘*('l S

we get
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§-2 dg
log = Re =
S 1(;{;;?’_2
_ v ! g —¢ V! G -8\ &
j=0 J *1 (c'"’) +Re~f(§{o( CI_ZJQ'Z.

This relation suggests the following definition of the harmonic polynomial kernel:

3
1 , .
Tn(t:# Z) ‘= n(Clrz) o Z ; RC(CI L C)’] [P[ﬂﬁl(cl’ z)]J’
j=1
where P, (C,,z) are polynomial kernels from Lemma 6.

The proof of inequality (16) in this case is identical to that in the previous case
This completes the proof of Lemma 7.
Consider the function

1 -z

gn(z) o E -U Au (C} logl m |d0c, z # CO
Qs NM,

Since u,(z) - g,(z) is harmonic in some fixed neighborhood of M, we need, for the

check-up of estimate (14), to prove a similar inequality for the function g,

In order to do this, weset A :=D(z,8/2)N Q;NM, B:=(QN Me)\A. and

L@) = % [| au,@©T,C2doy, ze M,
QsNM,

where T, (G, z) satisfies (16). Finally, the condition
¢ . 5
leog—dx < 8% /e
X

implies, for z € M, that

dc
861,01 < 22| [ o 5 o + ] ] s
8/2
o(3) $ r
Szn—sr[ {Tl@g?dr+535}[2_;2_:| 4 (0(8),

which yields E, a(g,. M) < 6X8). Hence, our proof is completed.
7. Proof of Theorem 3. We begin with the examination of the domain

= G(k) := {re®: 0<r<1; |0-7| <m(l +k)/2}

and the functions f(z) =f(z, @) := z% and u(z) := Ref(z) givenin G.
We only need to check the following inequality:

E, A, G) ¥ &* 17)

for sufficiently large n and & := n-1,
To do this, we assume that E, : = E, a(u, G)< 8% Let t,€ T, be such that

fu-t,llz = E,
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APPROXIMATION OF HARMONIC FUNCTIONS ON COMPACT SETS IN € 1475

and let p, € P, be a holomorphic completion of ¢, i.e., 1,(z) = Rep,G).
Consider the domain

G" :={z=re®-8: 0<r<1/2, |0-x| <n(l+k)/2}.
By defining d:=d (dG, dG") =< 3, we get, by the Schwarz formula for z € 3G”,

@1 S IF@+ 1 - F@1 = alziet + | M ;| <
aD(z,d)

€-2)

< ajz|*l + 2-5:1 £ ™

By applying the Bernstein—Walsh theorem, we find that the relation
|grad, €)| = | pi(2)| < ;8!

holdsif -8<:z<0.
We set z, :=—¢€d, where €=(a/(2c;))V/ (1), Hence, we get

| grad (u ze) — 1, G | 2 | gradutze) | — | grads, o) | 2
> o)z %] - ¢80 2 % PALY
A glance at the already estimated functions indicates that we can also take
| grad (u(ze) — 1,42 | = 1f(2) = Pa(zd) | =

1' | _.(.C_)._"l%c_)dCISZEullzgl’

aD(z,,lz,
which, in view of the previous mequalily. yields (17) and, consequently, (4).
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