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SOLVABILITY OF A BOUNDARY-VALUE PROBLEM
FOR DEGENERATE EQUATIONS

PO3B’SI3HICTHh TPAHUYHOI 3A1AUI
JJIs1 BUPOJOKEHUX PIBHAHDB

We consider a boundary-value problem for degenerate equations with discontinuous coefficients and establish the unique
strong solvability (almost everywhere) of this problem in the corresponding weighted Sobolev space.

Po3IIsIHYTO TpaHUYHY 3a/ia4y A BUPOMKCHUX PiBHIHb 3 PO3PUBHUMH KoediliieHTaMu. BCTaHOBICHO OHO3HAYHY CUIIBHY
(Mmaibke CKpi3b) pO3B’sI3HICT L€l 3a1a4i y BiAMOBiIHOMY 3BaxkeHOMY mpoctopi CoboreBa.

1. Introduction. The purpose of this work is to prove a unique strong (almost everywhere) sol-
vability of the first boundary-value problem for equation
n

Zu = Z Qi (xvt)uij_{'w(xat)utt_ut:f(xvt)v (11)

i,j=1

in cylinder Q7 = Q2 x (0,T), T € (0,00), where Q is a bounded domain in R" with a boundary
00 C C? T(Qr) = (02 x[0,T)) UQ x {(x,t) : t =0} is a parabolic boundary of the domain
Qr, ¥ (z,t) and coefficients a;j (x,t) tend to zero. Here

_ Du(x,t) _ O%u(w,t) _ Ou

Ui = (), U s Ut = —.
K 8:618% i 8t2 t 3t

Initial boundary problems for this type of degenerate equations have been studied by many
authors (see, for example, [2—4]). In [1], Fichera considered boundary-value problems for degenerate
equations in multidimensional case. He proved existence of generalized solutions to these boundary-
value problems. Boundary-value problems for the degenerate equations of such type were studied
in the stationary case in [5] and in the nonstationary case in [6]. In [8], coercive estimates for
this problem have been obtained. We also mention the works [2—-4] where strong solvability of
the boundary-value problem (1.1), (1.2) was established for equations with smooth coefficients.
Similar results Cordes-type discontinuous coefficients have been established in [4]. In [9, 10], some
classes of elliptic parabolic equations are considered. In [9], well-posedness of the initial boundary-
value problem for pseudoparabolic equations is studied and estimates of the generalized solution
are obtained. In [10], solvability results have been obtained in case of Cordes-type discontinuous
coefficients. In [11], some general problem for linear and quasilinear equations of parabolic type is
considered.
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In our paper we consider wide classes of elliptic parabolic equations.
Assume that the coefficients satisfy the conditions: |a;; (z,t)| is a symmetrical matrix with real
measurable elements in Q7 and, for any (z,t) € Qr, £ € R", following inequalities are true:

yw (@) €7 < ay (2,6) & <y w (@) 1€, (13)

ij=1
where v € (0,1], w(x) € A, satisfies the Muckenhoupt condition (see [7]) and
P, t) =w (@) A@) o (T —1), (1.4)
where
A(t)>0, A1) ecto,T],
p(2)20, ()20,  (x)eCo,T],

e(0)=¢" (0)=0, ¢(z)>Bz¢ (2),

[ is a positive constant.

2. Auxiliary results. Our goal is to establish a unique strong solvability of the boundary-
value problem (1.1), (1.2) by means of coercive estimate obtained in [8], using coercive continuation
method by parameter. For this purpose, let us prove the solvability for some model equation from
the class under consideration. As a model operator we considering operator

0> 9
Zo=w(@) A+ p(T—1) o — o

62
where A = E n e is a Laplace operator and function ¢(z) satisfies the conditions (1.4).
i=10x;

Throughout this paper we consider the most interesting case, where ¢(z) > 0 for z > 0. If
©(z) = 0, then the equation (1.1) is parabolic and the corresponding results on solvability of the
boundary-value problem was obtained in this case in [7]. But if ¢(z) = 0 at z € [0, 2°], then the
solution of the problem (1.1), (1.2) can be obtained by combining the solution u(x,t) of the problem
in a cylinder @), with the solution v(x,t) of boundary problem for parabolic equation in a cylinder
Q x (2%, T) with boundary conditions v(z, 2%) = u(x, 2°), | pax[z0,r) = 0. Let us fix an arbitrary
P o)

m mem—1

e € (0,T) and introduce a function ¢(z) by p-(2) = ¢(¢) — 2™ for z € [0,¢),

2
@e(2) = ¢(z) for z € [¢,T], where m = 5 It is easy to see that . € C*[0, 7). Let us show that
for z € [0, T

we(2) > sp(2). (2.1

N |

It suffices to prove (2.1) for z € [0,¢). It is clear that due to monotonicity of ¢(z) the inequality
(2.1) will be fulfilled if

> ~¢(e)
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or

ole) > = /(e)e.

The last estimate is true by condition (1.4). Hence, the inequality (2.1) is proved. Without loss of
generality, we consider the case m > 1. Then

qe(T) = sup p.(2) < q(T) = sup (). (2.2)
[0,7] [0,7]

For R > 0, 2° € R™, we consider a ball Bg(2°) = {2: |z — 20| < R and a cylinder Q% =
= Br(z")x(0,T). Let Br(z") C Q. Wesay that u(z,t) C A (QF(2")) if u(z,t) € C (@?(mo)) ,
ul,_o = 0 and supp u (Q7(z°)) for some p € (0,R). We will also use the Banach spaces

WQLO (Qr), WZQ’O (Qr), VVQQ’1 (Qr) and ng (Qr) of functions u(z,t) given on Qr with finite
norms (see also [8])

2

HUHW%,W(QT) = /w(x) (u2 + Z“i) dxdt |
i=1

Qr

N[

HUHWEM(QT) = /w x) | u +Zu + Z ugwJ dzdt |

QT 7] 1

lullwzror = lulwz @r) + lutll o) -

HUHW“(QT) /wx u+Zu +Zu 2 +ul+

QT 7_7 1

% (x, t)ui, + h(x,t) Zuft dxdt
i=1

Let V({/i i (Qr) be a subspace of VV2 ! *(Qr) consisting of all functions from C'>° (Q7) which vanish
on I' (Q7) and form a dense set in W2,¢ (Qr) .
Let us consider the operator
oL
Vo " or
Lemma 2.1. [Ifw(x) satisfies the Muckenhoupt condition [7], then there exists T1(p(2),w(z),n)
such that , for T < T and any function u(z,t) € B(QEF(2°)), the following estimate is true:

/ w(@) > uf+up + (T =) ufy+ (T — 1) Y ufy | dedt <
i i=1

ij=1 i=1
QE(20) J

Ze=w(@) A+ (T —t
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< (14 2(n+1)g(T)) Z.(u)?dzdt. (2.3)
Q7 ()

(We say that u(z,t) € B(QF(2?)) if u(z,t) € A(QE(2°)), ul,_p = ], 0.)
Proof. For simplicity we shall write Q7 instead of Q% (2"). We have

/(Zau)Qda:dt > /w(az) Z u?jda:dt—k/go T —t) i, dedt+
Q

Q b=l Q
+ / u?dxdt +2 / oe(T — t) Avuydrdt — 2 / 0o (T — t)uguydxdt. (2.4)
Q Q Q

But, on the other hand,

n

2 / oe(T — t)Au ugdzdt — 2/ t)ui;)¢ ugdzdt =
Q Q ’73:1

=2 / oL (T — t)Zuiiutd:Udt -2 / we(T — t)Zuiitutd:cdt >
Q

Q =1 =1

> —q.(T) /w x) Z u?jda:dt —nqe(T) /u?dxdt—i—
Q W= Q

+2 / pe(T — 1) uidzdt, (2.5)
Q =1

because
WUjjl4—g = Uz’i|t:T =0.
Also we have

-9 / 0e(T — t)uguydrdt = — / oL (T — t)ZuZZd:rdt—&—
Q Q i=1

+:(T) / ul(z,0)dzdt > —q.(T) / uldadt, (2.6)
B Q
because
u,-l-]t:T =0.

By virtue of conditions (1.4) for " — 0, we have ¢(7') — 0. Choose 77 such that

N

(n+1)q(T1) <
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Then, for T' < T3, we have

1

1= (n+ 1)q(T) <14+2(n+1)g(T).

Now using this inequality (2.2), and Lemma 1 of [8], we get the estimate (2.3).
Lemma 2.1 is proved.
Lemma 2.2. Let the function p(z) satisfies the conditions (1.4), and w(x) satisfies the Mucken-

houpt condition. Let the operators Z. with € > 0 be the same as in Lemma 2.1. Then, for
0 2,2
T < Ty(p,w,n,Q) and any function u(z,t) € W, , (Qr), the following estimate is true:

Jull o 2.2 < Ci(p,w,n, Q) (| Zeu — Mu||L2(QT) ) (2.7

2,pe \WT

where p = 227’35 (Qr) is a Banach space of functions defined above with function 1 replaced

by pe.
Proof. 1t suffices to prove the lemma for functions u(x,t) € C*° (Qr) , ulyq,. = 0. Note that,

Tﬂ

1
derive from (1.1) the existence of T3(p,w,n,) < T; such that if 7' < T3, then for any function

v(z,t) € O%(Qr) , vlrgp) =0, vl = vi|;_p = 0 the following estimate is true:

. . T . . .
according to the above mentioned, ¢ (T < 1. Then, as in the proof of coercive estimate [8], we

W22 (gp < Colerwm, @) (I Z:lly(gp) + 1ol ar) ) - )

Let T < T3/2. We take R = T'//4 and let u(x,t) € C™ (Qr), ulyg, = 0. We consider a
: R
function g(t) € C*°[0,T] such that g(t) = 1 for t € [0,T — R], g(t) = 0 at t € [T— 2,T} ,
0<g(t) <1and

|9 ()] < Cs/R, |4 (t)| < C3/R%. 2.9

Putting in (2.8) v(x,t) = u(x,t)g(t) and taking into account (2.9), we get

C
< st ) (1Zetlyign + (5 +1) lo@lnyan ) +

2Cs 2Cs
+ 222 el agan) + 2 Ieetllzaon) 2.10)

From the conditions (1.4) it follows that sup 1 ©(2) < C7()T. So, taking into account that
SuP[o,T] pe(2) < Sup|o, 77 ©(z), we conclude

[l Ly gry < CrT luw ()l (g - (2.11)
On the other hand, for any o > 0 the interpolation inequality
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1
l=utll 1y (0p) < CsT lpatntll,yp) + o lull @) (2.12)

holds. Indeed, let us fix an arbitrary o’ and consider for v > 0 the integral

1 2
k= / [l/gog(T — t)uy + Vuw(x)] dxdt.
Qr

It is clear that £ > 0. At the same time

1
=12 / ©2(T — t)yub dxdt + 2 /w(x)quxdt+ 2 / ©2(T — t)ugudzdt <
Qr Qr Qr

1
< C2T%)? / ©2(T — t)ubdedt + — /w(m)qumdt -2 / ©2(T — t)yubdedt+
v
Qr Qr Qr

+4 / 0e(T — t)L(T — t)uusdadt.
Qr
Besides, by using the fact that ¢(7") < 1 and the inequality (2.2), we get

4 / 0e(T — 1)L (T — t)uugdadt < / ©2(T — t)uldxdt+
Qr Qr

+4 / (QL(T — t))uldxdt < / ©2(T — t)yuldxdt + 4 / w(z)udzdt. (2.13)
Qr Qr Qr
From (2.12), (2.13) it follows that

/ ©2(T — t)yuldxdt < C2T*V? / ©2(T — t)yubdedt+
Qr Qr

+ (:2 + 4) / w(z)uldadt.

T

Now putting v = min{c/, 1} we prove the inequality (2.12).
By using (2.11) and (2.12) in (2.10), we conclude that, for any o/ > 0, the inequality

lullyz2 (@p py < CallZe(ug)liy gy + 80 CaCsCe lully22 (g, +
2.0e (@T—R) (Qr) 2,0e (QT)

C?(QO, w, M, Q)
+ o' R Huw(l‘)HLQ(QT) (214)
holds. o
Let us fix an arbitrary o > 0 and choose o/ = . Then from (2.14) follows that
CyC5Cq
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||UHW22’£g (Qr_r) <Oy ||Z€u)||L2(QT) to ||u||W2235 @r T

Cs(p,w,n, 2
4 Gelo @) luw (@)l 1, (0r - (2.15)

Similarly, we can show that if Q' = Q x (T — 2R, T + 2R), Q" = Q x (T — R, T + R),
S(Q') =9 x [T — 2R, T + 2R], then for any function W(z,t) € O (Qr), Ww(z)|gg,) =0
and for any o > 0 the following estimate is true:

IWllwzz (@ < CallZeWllLy @y +allWllyze o+
CQ(()Ou w,n, Q)
* o'R

Let @, =Qx (T—-2R,T), Q. =Qx (T, T +2R), Q =Qx (T —R,T). Let us extend
the function . (T — t) — ih through the hyperplane ¢t = T' from Q’, onto Q" in an even and odd
ways. Denote the extended functions also by wu(z,t) and ¢ (T — t), respectively.

Putting w =wu in (2.16) and taking into account the inequality

IWw (@) 100 - (2.16)

HUHW;”ES(QZ) < ﬂ”“”ﬂ/ﬁig(@;)

and similar inequalities for the norms ||u|,; 2.2 @) ull yiry » 1Zeull @y » We get
2,p0e

lullyz2 gy < CrolZetlygry +alullyzz (g +

011(907(")7 n, Q)
t—7 el 2o - (2.17)

Combining (2.15), (2.17) and choosing the corresponding «, we conclude
2 2 1 2
”“HW;je(Q+) < Crzp,w, n, Q) (| Zeull 1,0y + 7 luww(@)T, @q - (2.18)

1
On the other hand, recalling that . = T we have

/ (Zew — p)? dadt = | Zeul2 0, + 122 luo(@) |2, 0,y — 20 / wZoudwdt =
Qr Qr

2 2
= | Zeullz, 00 + w luw(@)[|7, (00 + K- (2.19)
Moreover,

Ky =—-2u / uw(x) (Au+ e (T — t) uge — ug)dadt =
Qr

=2u / Zw(x)u?dxdt —2u / 0o (T — t)uugydzrdt + p /(uQ)tdxdt >
Qr =t T Qr
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>2u / 0e(T — t)uuydrdt — 2 / OL(T — t)uugdzdt. (2.20)
Qr Qr
Let us show that for z € (0,7)

0e(2) > Bzyl(2). (2.21)

Due to (1.4) it suffices to prove (2.21) only for z € (0,¢). But for such z the inequality (2.21)
is equivalent to the inequality

/ / m
¢'(e)e _ ¥'(e)z _
o(e) — > T where m = 3

The last inequality is true if the following estimate holds:

0le) > 24l (2.22)

Note that (2.22) is follows from the conditions (1.4). Hence, from (2.20), (2.21) and (2.22), we
obtain

(T — 2 (T —
k1 > K / MUdedt > % / Wqumdt >

-2 Pe (T - t)
Qr Qr
. _uqé?:r / (‘;@iﬁ:; ddt. 2.23)

T
We apply the Hardy inequality according to which
2
/ Md;pdt <4 / wldadt. (2.24)

T—t
QT( ) Qr

Then, from (2.19), (2.23) and (2.24), we conclude
1Zel2 0y + 12 (@)l 0y < 12w — ]2 g0 +

2¢(T)
+ 3 HUHW;’};(QT)-

(2.25)

Now let us choose T (p,w, n,2) small enough to satisfy

p
Ty) <
aTy) < 4C12
Then, from (2.18) and (2.25), we obtain the estimate (2.7).
Lemma 2.2 is proved.
Now let us establish the solvability of our problem for a model equation. Let us consider the
operator

T:
and fix Tp = min{;’,ﬂ}.

0? 0
I _
Zy = w(z)A + (x, t)at2 5

0? .
where A = E n L 922 is a Laplace operator.
= z;
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Lemma 2.3. [If w(x) satisfies the Muckenhoupt condition and (x,t) satisfies the conditions
(1.4), then, for T < Ts(¢), 7 € [0,1] and any function u(z,t) € A(Q%(2")), the following
estimate is true:

/ w?(x) Z ufj +u? + 3@, t)ud, + Y(x,t) Z ud | dedt <
Q?(a@“) ,j=1 =1
T 2
< (1+ D(T)S>) / (Z{)u - Tw(z)u) dadt, (2.26)
QF (a0
where Sy = Sy (1,n) is some constant, D(T) = q(T) + q1(T), qi(T) = supycpo.11 (1), ¢(T) =

= supe(o,7] ¢ (1)-
Proof. 1t suffices to consider the case 7 > 0. We denote % by /. Then we have

L = / (Zou — u’w(az)u)Q dxdt = / (Z(’)u)Q dxdt+
QF(2°) QF(2°)

—i—(//)2 /w(x)quxdt—Q,u’ / w(z)uAudzdt+

Q7 (x0) QF (x0)
+2u / wugdzdt — 24/ / U(x, t)ugudrdt. (2.27)
Q7 (20) Q7 (z0)

In Lemma 2.1 of [8], the following estimate has been obtained:

/ w?(z) Z u?j +u? 4 PP (x, t)ud + (z, t) Z u3 | dedt <

ij=1 i=1
QF(z0)

< (14 DS) / (Zhw)? dadt,
Q7 (x0)

where S = S (¢, n) is some constant.
We can rewrite it as follows:

1 n
/ (Zhw)® dzdt > o) / W) Y uld A+ upt

QE(a0) QE(a0) b=l

+ P (x, t)ud, + p(x, t) Z u? | ddt.
i=1
1 SD(T)

—1--22Y) 51 S$D(T) and

But ——=1-—
S 1+ SD(D) 1+ SD(T)
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[ i asae=-spy [ (w3 i

QE(a0) QE(a0) wI=t
+ 2 (x, t)uZ, + 1p(x,t) Z u? | dxdt.
=1

We have used the last inequality to estimate the first term in (2.27). For the third term in (2.27)
we have

—2u/ / w(z)uAudzdt = 24 / wmi(a:)ZugdxdtZ
i=1

Q7 (x0) Q7 (x0)
>2u' M / Zu2d$dt >0,
QE(x0)

where M = supgr .0 lu(x)] .
For the fourth term we get

24/ / w2 (z)uwpdzdt = 1/ / w?(z)u?(x, T)dz > 0.
Q7 (x0) Q7 (x0)
Let us consider the fifth term in (2.27) in detail:

—2u / U(x, t)ugudrdt = —24' / (T — )Nt w(z)upudrdt =
QE ) Q)

= -2 / (z, t)udedt — 24 / o' (t — T)Nt)w(z)ugudzdt—
Q7 (20) QF(x0)

=24/ / o(T — )N (t)w(z)ugudzdt >
QF ()

W, / AT — ONOw (@) [u] |ue] dwdt—
Qo)

2 / (T — 1) (D) (@) Jul [ug] dzdt > —' Cra(w)Cra(N)2q(T)

Q7 (z0)

« / dxdt——C’lg( )Cra(N)g(T) / W2 () dadt—

QF (a0) Q7 (x0)
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— 1/ C13(w)Cra(N)agq (T) / uldxdt—
Q7 (20)

/
Oy () O (7) / W (2)udadt. (2.28)
Qf(z0)
Let C15 = maX{Clg, 014}, C16 = C13C15. Then, from (2.28), we obtain

—24/ / Y(z, t)ugudedt > —Ci5aD(T) / urdxdt—
QF (=) QF (=)

/
—%015D(T) / W (z)uldzdt. (2.29)
QF(x0)

Let T' < Ts(1)) be so small that Cy5D(T) < 1. Then, taking into account the above inequalities,
from (2.27) we get

I > (1-SD(T)) / w? Y ul +ut

QF (a0) W=

+ P (@, t)ud, + (x, t) Z uy, | dedt + (u')2 / wuldzdt—
= Qf(a0)

/

—u/'Ci5aD(T) / u?dwdt—% / w?(z)u?dzdt.
Q7 (x0) Q7 (20)

1
If we put = —, then we have
I

I > (1 - SD(T)) / W () i ug; +ui+

QE(x0) =
+ P (x, t)ud, + (x, t) Z ul | dadt—
i=1

—C15D(T) / uldzdt = (1 — S3D(T)) / w?(z) En: U%ﬂ‘

QE(20) QE(a0) =1

n
+ u? 4 PP (x, t)ud + (b Z ud | dadt,
i=1
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where S3 =5 + C15. Hence,

/ w’(x) Z ufj +u? + (@, t)ud, + P, t) Z ul | dedt <
QF () = i=1
1 S3D(T)

< I
S 1=%Dm) T 1= SD(T)

1.

Let 75 be so small that S3D(T") < —. Then

N =

/ W) Y ud 4 uf + (@ g+ (1) Y g | dadt <

QR (") b= i=1
< (14283D(T)) I, = (1 + S4D(T)) I.

So, we get the needed estimate (2.26).
Lemma 2.3 is proved.

Lemma 2.4. Let the coefficients of the operator Z satisfy the conditions (1.3), (1.4). Then,

for any function u(z,t)C> (Qr), ulppy =0, for T < T5(v,4,n,Q) and any T € [0,1], the
following estimate is true:

)
lullwzz, @) < Cuo(0vm) |20 = Ze@pa
ype T

T

Proof is similar to the proof of coercive estimate for the operator Z in [8].

In what follows, we will denote the operators Zy — p and Z. — u by My and M, respectively.
We will also denote Ty = min{7Ty, Ts}.

3. Strong solvability of boundary-value problem. Main results.

Theorem 3.1. Let the function p(z) satisfies the conditions (1.4). Then, for T < T the
boundary-value problem

Mou = f(x,t)(z,t) € Qp, (3.1)
has a unique strong solution in the space W;’;(QT) for any function f(x,t) € Lo(Qr).

Proof. First assume that f(x,t) € C*° (Qr) . Let v(z,t) be a classical solution of the boundary-
value problem

W($)AU — Ut = f('xat)a (Ivt) € QTa

vl =0

It is clear that this solution exists and due to [7, 9]
2,2
U(xvt) € WQ,w(QT)v
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and

S Cl7(n,Q,f), (33)

HU”WZQﬁ(QT)

where VV22 f(QT) is a Banach space of functions given on @ with finite norms of W22 ’i(QT) type.
For € € (0,T) we have p.(z) < 1. Then, we conclude from (3.3) that

HUHW;; (Qr) < Cir. 3.4)

o 2,2
We denote by Wy ,(Q1) the complement of a set of all functions from C°° (Qr) vanishing with

respect to the norm of the space W;}f(QT), and by u®(z,t) the strong (almost everywhere) solution
of the problem

Mt = f(x,t), (z,t) € Qr,

0 2,2
(u(2,t) —v(z,t)) € Wy (Qr).

This solution exists for every € > 0 due to [7]. It is clear that (u®(z,t) — v(z,t)) € W;is (Qr).
Taking into account v[r(QT) = 0 and the inequality (2.1), we get

o 2,2
u(z,t) € Wy, (Qr).

Moreover, for F.(x,t) = M_wv, taking into account (3.3), we have
HFE||L2(QT) < ClB(”aQaTv f) (35)

From Lemma 2.2 it follows that

[Ju® — UHW;*(?E(QT) <G (HfHLz(QT) + HFEHL2(QT)) )

Then, from (3.3), (3.4) and (2.1) we conclude
”u€||W227’£(QT) <Cis HUHWQQ,’;E(QT) < Cy(n, T, f).

Thus, a family of functions {u®(x,t)} is bounded by the norm of the space W22 ’j(QT) uniformly with
o 2,2

respect to €. So, this family is weakly compact in W, ,(Q7). This means, in particular, that there

exist the sequences of positive numbers {ej}, limy_,~oer = 0 and a function ug(z,t) € Wii(QT)

such that for any h(z,t) € C* (Qr)

lim (pou®,h) = (nouo, h), (3.6)
k—o0
where (a,b) = / abdxdt.
But !
(mou™, h) = ((po — pe)u™, h) + pe,u™, h) = (o — pie, Ju™®, h) + (f, h). (3.7)
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Besides, taking into account (2.1) and (3.5), we have
(k) = (0 = e U™ )] < 110 = e 1 e I aoieny <
<3 ”“EHW;’,i% @) 1Ly < 3C20 1Al Ly » (3.8)

where Q(¢) = Q x (T' —¢,T) . Thus, we have J(k) — 0 as k& — oco. From (3.6)—(3.8) it follows
that (pouo, h) = (f, h) and poup = f(x,t) almost everywhere in Q7. Now let f(z,t) € La(Qr).
In this case there exists a sequence {fy,(z,t)}, m = 1,2,..., such that fn(z,t) € C™(Qr)
and limym—oo || fm = fll 1, (@) = O- For any positive integer m, consider a sequence {um(z,t)} of
strong solutions of the boundary-value problems

Moy, = fm(a:,t), (.T,t) € Qr,

Umlp(ry =0

Based on the above, we can say that for any m there exist the function w,,(z,t) such that using
the estimate obtained in the previous lemma, for the operator Z|, and 7 = 1, we get

”Um||W22§(QT) <Cn Hfm”LQ(QT) < Oy (p,w,n,Q, f). (3.9)

o 22
Thus, the sequence {um(z,t)} is weakly compact in W, ,(Qr), i.e., there exists a subsequence

o 4

{my} € N, limy_,oomy = oo and a function u(x,t) € WQW(QT), such that for any h(zx,t) €
€ (@T) limg o0 (ftoUm,, R) = (pou, h) . But

lim (Motm,,h) = im (fm,,h) = (f,h).
k—o0 k—o0

Therefore, (p1otm,,h) = (f, h) and pou = f(z,t) almost everywhere in Q7. Thus, the existence
of strong solution of the problem (3.1), (3.2) is proved. The uniqueness of the solution follows from
Lemma 2.4.

Theorem 3.1 is proved.

Theorem 3.2. Let the coefficients of the operator Z satisfy the conditions (1.3), (1.4). Then, for
T < TY, the boundary-value problem (1.1), (1.2) has a unique strong solution for f(xz,t) € La(Qr)
and the following estimate is true:

lumlly22 g < CorllfllLy@r) - (3.10)

Proof. The estimate (3.10) and the uniqueness of the solution follow from the coercive estimate
in [8]. Therefore, we only need to prove the existence of the solution. Consider a family of operators

ZO =1 —Npy+7Z for 1e€[0,1].
Let us show that the set £ of points 7 for which the problem
Z0u = f(z,1), (z,t) € Qr, (3.11)
“|F(QT) =0, (3.12)
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0 2,2
has a unique strong solution in W, ,,(Qr) for any function f(z,t) € L2(Qr), is nonempty and
simultaneously open and closed with respect to [0, 1]. Hence, we get E = [0, 1] and, in particular,
the problem (3.11), (3.12) is solvable at 7 = 1, i.e., when Z(!) = Z.

The nonemptiness of the set E' follows directly from Theorem 3.1. Let us prove its openness.
Let 19 € E. ¢ > 0 will be specified later. Let us show that the problem (3.11), (3.12) is solvable.
Then, we can rewrite this problem in the following equivalent form:

200 = fx,t) — (Z(T) _ Z(TO)) u, (z,) € Qr, (3.13)

o 2,2
where u(z,t) € Wy ,(Qr). It is clear that (2 — Z(0))  w(a,t) € La(Qr). Note that for all
operators Z(7) the conditions (1.3) and (1.4) with constants 7{7) > min{y/,n} are fulfilled. Now let
us note that from the above mentioned considerations and Lemma 2.4 it follows that for 7" < T,

any 7 = [0, 1] and any function u(z,t) € W22 i(QT) the following estimate is true:

<l

lumlly22 200" (3.14)

By the assumption, the boundary-value problem (3.13) has a strong solution u(x,t) for any v(z,t) €

€ W; i(QT) . Thus, the operator F' from I/%/sz(QT) into ﬁ/zzw(QT) is defined and
u = Fuv.
Operator F' is a contration operator for properly chosen ¢. Indeed, let
v (2,1) € W;i(QT), u® = Fo®), i=1,2.
Then, taking into account the equality
(27 - 20) = (7 =) (Z ~ u).
we conclude that ) (z,t)— u(®(z,t) is a strong solution of the boundary-value problem

7(70) (uu)(gg, t) — u®@(z, t)) = (1 —70)(Z — o) (v(l) (z,t) — v (z, t)) ,

(uD (@, t) = u®(@,0)) € W2Qr).
By using (3.14), we get

Hu(l)(1‘7t) —u®(z, t)HWQZ’j(QT) =

< Cog | — 70| H(Z — [o) <v(1) - U(2)>‘ (3.15)

La(Qr)
On the other hand,

<

o0 (0. s 0)], =
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< o (Z,n,Q,T) Hv(l)(x, t) — o® (x,t)“ (3.16)

Wl (Qr)
Thus,

H“(l)(x’ t) = u® (x’t)HWS,’j(QT) < CosCos HU(I)(x’t) - (e, t)HWi’i(QT) ‘

Now choosing ¢ = 16‘23024 we prove that the operator F' has a fixed point u = F'u, which is a
strong solution of the boundary-value problem (3.13) and, consequently, (3.11), (3.12). Therefore,
the openness of the set F is proved.

Now let the set F/ be closed. Let 7, € F,k = 1,2,..., and limy_,,,7x = 7. For positive
integer k, denote by ) (,t) a strong solution of the boundary-value problem

Z(Tk)u[k}(xat) = f(xvt)a (l’,t) € QT7

I'(Qr) '
According to (3.14), we have
[Jgng (xvt)HWQQﬁ(QT) < Cos5 | fll Ly (p) - (3.17)

o 22
So, the family of functions {u(w,?)} is weakly compact in W, ,,(Qr), i.e., there exists a subse-

quence of positive integers {k; }im;_,.ok; = oo and a function u(z,t) € WQ:w(QT), such that for
any ¥(z,t) € C% (Qr)

lim (Z(Tkl)u[k},ﬂ)) - (Z<T)u, ¢) . (3.18)
But
(20w, v) = (27 = 200wy, 0) + (£0) = 10 + (£,0). (3.19)

Moreover, taking into account (3.15) and (3.16), we have
[ ()] < 17 = 7| [((Z = 10) uppg, )| < |7 — 7] Cg H“[dew;j(QT)’

19y @ry < C25C26 1T = Ti | | fll Lo 0) 191 2000 - (3.20)

From (3.20) it follows that lim;_,..J1(l) = 0.
Further, from (3.18) and (3.19) we conclude that

(20u,0) = (£.0).
1.e.,
ZTu = f(x,1)

almost everywhere in Q7. So, we have showen that 7 € FE, i.e., the set E is closed.
Theorem 3.2 is proved.
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